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Abstract. Distancing policies became the primary preventive intervention during
the COVID-19 pandemic. This paper estimates the effect of such interventions on
the effective reproduction number (Rt) of this virus on a daily panel of 109 countries.
Distancing interventions affect COVID infections indirectly through the regulation of
social behaviors, which are also a function of voluntary decisions. The main contri-
bution of this paper is the separation of policy-compliant and voluntary distancing
effects. I identify the policy-compliant component of distancing behavior as rapid
changes in social activity immediately after an intervention. This allows me to isolate
the voluntary component as residual changes in activity. I use the isolated voluntary
component as a control in the main estimation of distancing policy effects on Rt. I
distinguish between (i) place restrictions: restricting destinations and (ii) mobility
restrictions: regulations on inland movements. I find strong and permanent effects
for both types of restrictions. Place restrictions that target specific destinations are
found to be less effective than general mobility restrictions. The effect of voluntary
distancing is also significantly negative but weaker than that of policy restrictions.
These results suggest that governments can use distancing restrictions effectively in
pushing the effective reproduction number below the containment threshold: Rt = 1.
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1 Introduction

Distancing policies, such as school closures, gathering limits, or stay-at-home orders were the primary
preventive interventions in essentially all countries in the COVID-19 pandemic of 2020–2021. The logic
behind these policies is to reduce the chances of already infected people infecting others. The number
of new infections an infected person is expected to cause during her illness is the effective reproduction
number, Rt.

The main objective of this paper is to quantify the effect of distancing policies on the effective repro-
duction number of COVID-19.1 The main contribution of this paper is the separation of policy-induced
and voluntary distancing effects. I identify the policy-induced component of distancing behavior as rapid
changes in social activity immediately after an intervention. This allows me to isolate the voluntary
component as residual changes in activity. I use this isolated voluntary component as a control in the
main estimation of distancing policy effects on Rt. Because holding voluntary distancing effects fixed
allows for the identification of unbiased policy effects in a comparison of countries with different policy
interventions.

In Section 2 I start with the description of the data. I use four datasets: (i) daily preventive policy
interventions from Hale et al. (2020), (ii) reported COVID cases, deaths, recoveries, and (iii) Google’s
publicly available mobility reports from Wahltinez et al. (2020), and (iv) Google’s COVID-19 Aggregated
Mobility Research Dataset, which is available with permission from Google. I build a daily frequency
cross-country panel database covering 109 countries and spanning calendar days between February 2020
and April 2021. The population of the countries involved in the sample is 5.4 billion, representing 70
percent of the world’s population in 2020.

After the data description, I define the most important variables in this paper: distancing policies,
reproduction numbers, social activity, and imported cases. This study focuses on the effects of two
different distancing policy types: place and mobility restrictions. A place restriction targets specific
destinations or events where people are not allowed to go. These are school and workplace closures;
cancellations of public events; and gathering limits. A mobility restriction controls how and when people
are allowed to move around within their countries, regardless of their destination. These are restrictions
on public transportation, stay-at-home orders, and within-country travel restrictions.

Because of its policy relevance, I chose the effective reproduction number Rt as the outcome variable of
this study. All preventive measures aim to achieve Rt ≤ 1, which defines the containment of an epidemic.
Knowing the effects of distancing interventions in terms of Rt is therefore useful information for decision-
makers. I proxy Rt by the instantaneous reproduction number RI

t . The advantage of using RI
t is that it

is much easier to calculate and proportional to Rt. Therefore, any proportional effects measured on RI
t

can be interpreted as effects on Rt.
Social activity proxies distancing behaviors. It is an indicator derived from Google mobility indica-

tors, which measure the frequency of Google users in public spaces relative to pre-COVID levels. I use
this indicator to isolate its voluntary component, which is the most important control in the main esti-
mation.Finally, imported cases are proxied by an indicator that I created using the proprietary Google
COVID-19 Aggregated Mobility Research Dataset2.

In Section 3, I present my empirical strategy. I carry out my estimation in a two-stage design. The
first stage is the separation of the voluntary and policy-compliant components of social activity. The
second stage is the main estimation of distancing policy effects on the effective reproduction number.
In the first stage, I identify the policy-compliant component of distancing behavior as rapid changes in
social activity immediately after an intervention. I isolate the voluntary component as residual changes

1COVID-19, officially known as SARS-CoV-2, is a virus spread by human droplets like the regular flu. It has a
higher basic reproduction number and mortality rate than the regular flu, according to Petersen et al. (2020).
Neither vaccines nor designated medical treatments were available until the end of 2020.

2This dataset is only available with permission from Google LLC.
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in activity. This allows me to identify policy-compliant and voluntary distancing effects separately in
the second stage by using this isolated voluntary activity component as a control variable. In the second
stage, the effects of distancing policies are identified from a comparison of countries that have introduced
a particular restriction to those that have not, holding voluntary activity, other preventive policies, and
covariates fixed.

At the end of this Section, I discuss possible threats to identification. A policy intervention can work
as a signal, inducing voluntary distancing. This kind of voluntary distancing does not harm identification
because it is a direct consequence of the interventions.3 Countries differ in demographics, population
density, and the quality of political and healthcare institutions, which are likely to correlate with inter-
ventions, social activity, and reproduction numbers. I address these differences by including country-fixed
effects in both stages, assuming the invariability of these factors on daily frequencies. Countries also differ
in the timing of their interventions, which is addressed by the inclusion of time-fixed effects.

Different countries provided different levels of economic support, which might have worked as incentives
to leave workplaces for sick people. I address these differences by controlling for all available information
on economic support. I control for daily weather conditions to address the effects of the climate on the
reproduction numbers of the virus. Finally, I control for weekly seasonality in both stages of my design.

I present all results in Section 4. I find that place restrictions reduce Rt by 29 percent and mobility
restrictions by 61 percent on average. These are strong effects on the reduction of the effective repro-
duction number, suggesting that distancing policies were an effective tool for reducing the impact of the
pandemic. Place restrictions that target specific destinations are found to be less effective than general
mobility restrictions. A one standard deviation drop in voluntary social activity is found to decrease Rt

by 17 percent. The effect of voluntary distancing is also significantly negative but weaker than that of
policy restrictions. Based on these results, I calculate the contribution of distancing policies and volun-
tary distancing to the average decline of Rt observed in the first wave. I find that distancing policies
contributed 6.5 times more than voluntary distancing to the decline in reproduction numbers.

These findings suggest that although voluntary distancing behaviors help to slow down the reproduction
of the virus, any kind of distancing policy measures are much more effective in stopping a pandemic. In
the second part of Section 4, I investigate heterogeneous policy effects. The first of these exercises
analyses the strength of the policy effects on different time horizons. I am interested in how long the
effects identified in the main design last. I do that because it is useful to know how long a government
can rely on a place or a mobility restriction. To do that, I modified my second stage design into an event
study design, allowing for heterogeneous effects on different time horizons. I find similarly strong effects
on shorter and longer horizons for both restriction types. These results suggest that governments can
rely on these distancing restrictions on longer horizons when fighting longer waves of infections.

In the second exercise, I break down the larger restriction categories into their components: place and
mobility restrictions. I also allow for heterogeneity in the different stringency levels of these policies. I
do this to provide comparative results for more delicate policy interventions. I found that school and
workplace closures, gathering limits, and stay-at-home orders were effective restrictions in the reduction of
reproduction numbers. I cannot find supporting evidence, however, for the effectiveness of the cancellation
of public events, restrictions on public transportation, and inland travel restrictions.

School closures are found to be effective only if they are mandated. Workplace closures are found to be
effective already when they were only a recommendation. Their efficiency only marginally increases with
stringency. Gathering limits become effective at the 100+ limit and gain effectiveness at more restrictive
limits. Stay-home orders are found to be effective when they are just recommended. They also gain
effectiveness as they become more stringent. Overall, these findings suggest that there was heterogeneity
between the effectiveness of different policies, implying that different policy mixes could have led to very

3It has to be noted, though, that this kind of induced voluntary distancing is also accounted for in policy effects
in this study.
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different outcomes.
Conclusions are discussed in the final section of this study. Based on my results, I conclude that

governments can use distancing restrictions effectively to push the effective reproduction number below
the containment threshold of Rt ≤ 1. They can rely on these effects for as long as these measures are
in place. Considering the heterogeneous effects of particular distancing policies suggests that a careful
selection of these policies and their stringency levels is recommended before their implementation.

Literature

This paper belongs to the empirical evaluation of non-pharmaceutical interventions (NPI) during the
COVID-19 pandemic, surveyed exhaustively by Perra (2021). This literature already provides strong
qualitative evidence for the effectiveness of NPIs. The quantitative comparison of these papers is difficult,
however, because of the high variety in the chosen outcomes and treatments.

Within this literature, this paper is a contribution to cross-regional studies. These studies encompass a
set of countries or states within a federation such as the US or Germany. Islam et al. (2020) study the effect
of five physical distancing interventions on a sample of 149 countries and regions on estimated incidence
rate ratios. They found that any physical distancing intervention reduced COVID-19 incidence by 13%.
This finding is qualitatively in line with the findings of this study, as I also find significantly negative
effects of distancing policies on case reproduction. It is much more difficult to contrast these results
quantitatively because the outcome variable chosen for this study is new incidence per total number
of active infections. Askitas et al. (2021) estimates the effect of different NPIs non-parametrically in
an event study design controlling for overlapping interventions. They found that closing schools and
workplaces had significant effects on reducing COVID-19 infections, while later installed restrictions on
inland travel and public transport had no effects. When comparing different NPIs I find that school and
workplace closures were much more effective in the reduction of the reproduction number than restrictions
on inland travel and public transportation. As lower reproduction implies lower incidence, these findings
are in line. This paper considers other NPIs as well, finding that stay-at-home orders and gathering limits
set at 100+ people are found to be similarly effective to school and workplace closures. Ullah and Ajala
(2020) contrasts the effects of distancing measures to testing policies on a very similar sample. They find
that a unit change in their lockdown index decreases the total number of confirmed cases by 0.19 percent,
which becomes significant after 7 days of its implementation and stays intact even after 21 days. This
study takes into account testing policies, but the outcome variable is so different I dispense comparison.

There are papers which choose the effective reproduction number as their outcome variable, similarly to
this paper. Haug et al. (2020) rank 46 different NPIs by their impact on Rt on a sample of 79 territories.
Overall they find that less stringent NPIs are just as effective as more drastic ones. They find that the
most effective NPI is a small gathering limit, which reduces Rt by about 9 % on average.4 They found
the impact of a school closure on Rt at about 7.5%. These results are about 1/3 of the effects found in
this study. They find weaker, but significantly negative effects for individual movement restrictions, lock-
downs. These findings are qualitatively comparable to stay-at-home orders of this study. They evaluate
many other NPIs that are not directly comparable NPIs studied in this paper.

Koh et al. (2020) confirms that all forms of lockdown interventions effectively reduce average Rt

regardless of stringency levels, adding that earlier implementations are associated with stronger results.
They discover that, depending on the timing of the intervention, the gathering limits reduce Rt by 15 to

4They report their main results in absolute reductions in Rt, whereas this study estimates percentage reductions;
thus, their results can be directly compared to those found in this study by assuming some basic reproduction
number, R0. Liu et al. (2020) estimates COVID-19’s basic reproduction number to be between 3 and 5. I
translate their findings on absolute reductions to percentage reductions by taking the middle point of this
range at 4.
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41%. This interval contains the results found in this paper for the effect of gathering limits.5 They find
that "lock-down-type" measures to reduce Rt between 14 and 44 %. These numbers are almost the same
in size to the findings of this paper: the slackest stay at home order is found to significantly reduce Rt by
18.5 %, while the most restrictive type by 35.6 %. Castex et al. (2021) find that the effectiveness of NPIs
is negatively correlated with population density, country surface area, employment rate, and proportion
of elderly in the population, and positively correlated with GDP per capita and health expenditure.

There are papers that estimate the effect of NPIs on the mobility of people similarly to the first stage
estimation of this study. Gupta et al. (2020b) and Gupta et al. (2020a) are focused on the mobility effects
of NPIs, while Castex et al. (2021) and Askitas et al. (2021) use their similar estimations as supporting
evidence for their main conclusions.

A common limitation of these works is that they do not address the confoundedness of policy compliant
and voluntary distancing effects. This is where the main contribution of my paper lies relative to this
strand of the literature. I address this problem by separating voluntary and policy compliant distanc-
ing behaviors in a first stage estimation and using the voluntary component as a control in my main
specification that estimates the effects of distancing policies on the reproduction number of COVID-19.

The only paper I am aware of that addresses this confoundedness problem is Chernozhukov et al.
(2021). They estimate the effect of NPIs on the growth rate of COVID cases and related deaths on a
daily panel of US states by instrumenting NPIs and observed distancing behavior with the past history of
their outcome variables. They find evidence for both policies and information on transmission risks having
a significant influence on COVID-19 cases and deaths and show that policies explain a large fraction of
social distancing behaviors. They exploit the exogeneity of past cases and deaths in the separation of
voluntary and policy-compliant effects. This study leverages the discontinuity in distancing behaviors
after an intervention in contrast.

2 Data and Variable Definitions

In this section, I start with a brief description of data sources and the estimation sample. Then I present
the definitions of the most important variables of this study: distancing policies, reproduction numbers,
social activity, and imported infections.

I use four datasets: (i) daily preventive policy interventions from Hale et al. (2020), (ii) reported
COVID cases, deaths, recoveries, (iii) Google’s publicly available mobility reports from Wahltinez et al.
(2020), and (iv) Google’s COVID-19 Aggregated Mobility Research Dataset, which is available with
permission from Google.

I build a country-day panel dataset covering 109 countries and spanning every calendar day between
the 15th of February 2020 and the 3rd of April 2021. The sample covers 5.4 billion people, representing
70 percent of the world’s population in 2020. Figure 1 shows the geographical coverage of the sample on
a world map. Countries are colored if they are included. More intensive colors show more observations.
The sample includes countries from all populated continents, covers most of Europe Australia, and both
Americas. China is excluded, where the first outbreak preceded the beginning of my sample.

My primary data source is Google’s COVID-19 Open-Data platform by Wahltinez et al. (2020), which
is a "repository attempting to assemble the largest COVID-19 epidemiological database in addition to
a powerful set of expansive covariates. It includes open, publicly sourced, licensed data relating to de-
mographics, economy, epidemiology, geography, health, hospitalizations, mobility, government response,
weather, and more." I extend this data by daily country level reports of recoveries from COVID infec-
tions of the Johns Hopkins University.6 I employ the Google COVID-19 Aggregated Mobility Research

5Except for the slackest type of a gathering limit of above 1000 people, which was found to be ineffective in this
paper.

6The reliability of these reports were questioned in the Summer of 2021. Therefore, these figures are no longer
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Figure 1: Geographical Coverage of the Sample

Notes: One observation per country is a daily observation. Countries are colored if included. Brighter colors show
more observations.

Dataset to calculate a proxy of imported COVID infections for each country. This database is available
with permission from Google LLC.

2.1 Distancing Policies

This study focuses on the effects of distancing interventions implemented during the COVID-19 pandemic.
These interventions are collected and reported in a daily regional dataset by Hale et al. (2020) called
the the Government Response Tracker. They cover all sorts of government interventions related to the
COVID-19 pandemic including distancing measures, e.g. gathering limits, other types of preventive
policies, e.g. mask wearing mandates and different kinds of economic support, e.g. debt reliefs.

I form two groups from the seven different distancing interventions and label them as place and mobility
restrictions:7

• Place Restriction: lock-down of schools, workplaces, cancellation of public events, plus gathering
limits,

• Mobility Restriction: restrictions on public transportation, inland travel restrictions and stay-
at-home orders.

The primary reason for this grouping is statistical. Many governments introduced these measures in
bundles reducing the likelihood to identify the effect of each distancing indicator in isolation. Collecting
these measures into groups might allow for more powerful estimates. My grouping is based on the pairwise
time distance between the introductions of a pair of policies. Table 1 reports the fraction of countries that
had introduced a pair of policies within at most seven days, and highlights the shares that are greater
than 50 or 66,7 percent.8 The larger fractions concentrate in two different groups which gives the basis

reported in the Johns Hopkins dataset. I use these numbers for the calculation of instantaneous reproduction
numbers (RI

t ), my primary outcome variable. I provide some country level validity checks of RI
t in the

Appendix.
7My interests are limited to inland restrictions. Therefore, I exclude international travel controls from distancing

policies.
8Same grouping can be confirmed by setting different thresholds on day distance. Find similar tables for 3,5 and

9 days in the Appendix.
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for my grouping.

Table 1: Percent of Countries Implementing a Policy Pair within 7 Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

School Closure 76.15 67.59 71.56 50.00 53.70 39.00
Events Cancelled 76.15 70.37 55.96 44.44 49.07 29.00
Gathering Limit 67.59 70.37 65.74 57.94 58.88 44.00
Workplace Closure 71.56 55.96 65.74 62.96 60.19 54.00
Stay Home Order 50.00 44.44 57.94 62.96 67.29 58.59
Movement Restricted 53.70 49.07 58.88 60.19 67.29 64.65
Public Transport Closed 39.00 29.00 44.00 54.00 58.59 64.65

Notes: highlight: ≥ 50%, strong highlight: ≥ 66.7%

These two types of policies have qualitative similarity as well that motivated their labels. Places
restrictions are targeted interventions. They define specific locations or events where people are not
allowed to go. Mobility restrictions on the other hand control when and how people are allowed to go
regardless where they are headed to.

Governments implemented these distancing orders with different levels of stringency and generality. A
school closure can be a recommendation or a strict mandate, and it can cover different levels of education
or geographic locations. Hale et al. (2020) define several stringency levels for each distancing intervention
and flag if the intervention was country level or regional.9 To retain estimation power I use the following
definition for my policy indicators:

P p
it = min

1, ∑
j∈type

Dj
itF

j
it

 , p ∈ {place,mobility} (1)

where Dj
it is the category variable for distancing policy j, e.g. school closures, which is Dj

it = 0 if
restriction j is not in action in country i on day t, and Dj

it > 0 codes the level of stringency in country i

on day t using consecutive integer values starting from 1. Type can be either place or mobility restrictions.
F j
it is a binary indicator of a distancing measure j being a country level order in country i on day t or

only regional. This formula defines a binary variable, therefore, for each distancing policy type. P placeit

takes the value 1 if there was at least one country-wide place type restriction in action in country i on day
t, and 0 if there was none. Pmobilityit defines another binary variable on the same grounds for mobility
restrictions.

These definitions of policy indicators have the benefit of a binary treatment: their coefficients are
easy to interpret. This advantage, however, comes at a cost: P place

it and Pmobility
it indicate the first ever

countrywide distancing interventions, thus and stay blind to later changes in those interventions. They
also overlook the cross-country heterogeneity in the stringency and the number of interventions of these
first interventions, as they are normalized to 1 from day 0. That means these heterogeneities and later
changes are absorbed by other variables or the error terms unless they are controlled for. The current
version of this paper lacks this control, which is a serious limitation.

An important limitation of the data sources is that they only provide information about the imple-

9A state level intervention is flagged as regional in a federal state such as Germany or the US, which are treated
as a single unit in this estimation.
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mentation of distancing restrictions but not on their announcements. There is anecdotal evidence that
some of these restrictions were announced earlier in some countries, allowing for people to adjust their
behaviors before-hand. Panic shopping for basic goods could be a good example of such anticipatory
responses. The effects of earlier announcements are discussed in the Results section.

2.2 Reproduction Numbers

The effective reproduction number Rt is the chosen outcome of this study. It is the number of new cases a
single infection is expected to cause. When Rt > 1 the number of infections grow exponentially, which is
the definition of an epidemic. But, when Rt ≤ 1, the growth is linear and the contagion is considered to be
contained. It is therefore, the most useful indicator to judge the efficiency of any preventive interventions:
a prevention is successful if it is able to push Rt below 1.

Rt can be decomposed the following way:

Rt = RI
t · Et[duration of infection], (2)

where RI
t is the number of new infections an infected individual is expected to cause within a day and

usually referred to as the instantaneous reproduction number.10 Albeit simple this decomposition is
useful for two reasons.

First, in contrast to Rt, the calculation of RI
t from daily COVID incidences is feasible. RI

t can
be calculated by dividing the number of new infections discovered on day t by the number of known
infections from the precious day:

RI
t = New Infectionst/Infectedt−1 (3)

where New Infectionst are reported, thus can be observed. The number of infected individuals can-
not be directly observed, but can be calculated from reported figures: Infectedt−1 = Total Casest−1 −
Total Deathst−1 − Total Recoveriest−1.

Second, this decomposition allows me to identify the effect of distancing policies on Rt even if I use
RI

t as the outcome, because I assume that distancing policies cannot affect Et[duration of infection] only
RI

t . The intuition is that once one have the virus its duration is independent of the frequencies she meets
other people. This strategy also requires me to estimate proportional effects, because Rt ∝ RI

t .
Figure 2 shows the evolution of RI

t around the days of place and mobility restrictions smoothed by
a seven days backward looking moving average. A turn in the trend of Rt is apparent on both graphs.
Rt is in a decline after both place and mobility restrictions, which suggests a strong effect of distancing
policies.

10All the formulas presented here are consistent with and can be derived from the commonly used compartment
models of epidemics, e.g. SIR models.
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Figure 2: Instantaneous Reproduction Numbers Around Distancing Interventions
Place Restrictions Mobility Restrictions
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the 5th and 95th percentiles of the cross country distribution of RI
it.

Looking at the 90 percent boundaries we can see a rather wide distribution of Rt accross countries
ranging from 0 to 1.5 new infections by a single infected individual every day during her infection. This
upperbound is huge considering the expected length of the infection is around 10 days according to Liu
et al. (2020), suggesting an effective reproducion number close to 15 in some countries on some days.

2.3 Social Activity

The main contribution of this paper is the separation of policy compliant and voluntary distancing effects.
To be able to do that I need an indicator that measures overall distancing behaviors. I call this indicator
social activity and use the notation ait.

I define ait as the first principal component of Google’s six mobility indicators. These are publicly
available daily indicators published for countries and sub-regions from February 15, 2021. A mobility
indicator is recording differences in the frequency of Google users relative to a five week period from
before the pandemic in a specific location category, which are:

• groceries: grocery markets, food warehouses, farmers markets, specialty food shops, drug stores,
and pharmacies,

• retail: restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters,

• parks: local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens.

• transit stations: public transport hubs such as subway, bus, and train stations,

• workplaces: places of work,

• residential: places of residence.
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Table 2 shows the results of the principal component analysis. The first principal component captures
86 percent of the total variance of the six mobility measures. It is loaded almost equally by all indicators
with the same signs except for residential locations. This pattern parallels the intuition that social
distancing resulted in less people in public spaces and more people at their homes relative to pre-COVID
levels. The rest of the components are all dominated by one or two of the mobility indicators supporting
the choice of the first component as my proxy for social activity.

Table 2: Principal Components of Google’s Mobility Indicators

Component 1st 2nd 3rd 4th 5th 6th

Groceries 0.4029 0.0491 0.9006 -0.1201 -0.0518 0.0837
Retail 0.4295 -0.0846 -0.0387 0.5563 0.2122 -0.6726
Parks 0.3439 0.8916 -0.2172 -0.1330 0.1379 0.0534
Transport Stations 0.4275 -0.1375 -0.1886 0.5227 -0.2263 0.6621
Workplaces 0.4140 -0.3844 -0.2010 -0.4402 0.6478 0.1645
Residential Areas -0.4252 0.1697 0.2534 0.4375 0.6800 0.2690

Share in Total Variance 0.8596 0.0793 0.0328 0.0151 0.0077 0.0055

2.4 Imported Infections

Imported infections is an important control variable of this study. I create a proxy for imported infections
using the proprietary Google COVID-19 Aggregated Mobility Research Dataset, which is only available
with a permission from Google LLC. It contains anatomized mobility flows aggregated over users who
have turned on the Location History setting, which is off by default. This is similar to the data used
to show how busy certain types of places are in Google Maps — helping identify when a local business
tends to be the most crowded. The dataset aggregates flows of people from region to region, which is
here further aggregated at the level of NUTS3 areas, weekly.

First, I keep only the flows that connect cells from different countries.11 Second, I aggregate these
flows then by countries and match the epidemiological indicators by departure countries. Third, I take
cross country flows and multiply them by the number of infected individuals per 1000 citizen in departure
countries. This yields me the expected flows of COVID infections by source and receiver country pairs.12

Finally, I aggregate these expected infection flows by the reciever country to get the expected number of
imported infections.13

This process has some minor limitations, as it is based on google user accounts, Therefore, it might be
less accurate or totally missing for underdeveloped nations. And flows are missing for some microstates,
such as Lichtenstein or Andorra.

3 Empirical Strategy

In this section, I develop a two-stage empirical design to identify the effect of distancing policies on
the reproduction number of COVID-19. Identification relies on a comparison of countries that have

11I geolocate all cells using Picard (2015).
12I shift back infection data by 14 days to account for the presumed delay in epidemiological reports.
13It is a weekly frequency information. I use the first day of the week as its time index and date back by 6

days. Therefore, it codes the expected inflow of infections into a country in the past calendar week. Then I
interpolate missing datapoints within a week by a quadratic spline developed using the csipolate Stata module
developed by Cox (2009).
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Figure 3: Causality Map

Distancing Policiest Social Activityt

Other Preventive Policiest

Reproduction Numbert+l

Newst

Foreign Infectionst−1

Notes: Arrows point in the direction of causality. Solid line: observed, dashed: unobserved effect. Bold font:
focus variables, thick arrows: the path to be identified, ∆t is one day.

introduced a particular restriction to those that have not. The central question here is: which are those
factors that have to be held fixed to make sure this comparison is a valid identification of the effect of
that policy? In this Section, I am working towards an empirical design that takes into account all these
factors and is feasible to implement.

A good way to start is to map out all the relevant causal links connecting distancing policies to
reproduction numbers on a graph. Figure 3 shows this causality map, where each arrow shows a causal
link pointing in the direction of causality. The main path connecting distancing policies to reproduction
numbers is drawn by thick arrows. The first thing that meets the eye is that distancing policies are not
connected to reproduction numbers directly. The reason is that a distancing order can only reduce social
activity directly. This reduction in social activity is what governments expect to reduce the reproduction
number by diminishing the number of new infections.

I added time indexes to explicitly show that these effects can only be observed with a significant delay
l on daily frequencies. This delay happens, because it takes time (typically 10-14 days) for an infected
individual to start producing symptoms, get tested and end up reported.14

This causality map is not only helpful in showing a clear and comprehensive picture of all relevant
causal relations, but it also informs identification. This method is known as the directed acyclic graph
(DAG) method and described in details in Cunningham (2021). What is sufficient to know about the DAG
method here is that any backdoor paths connecting policies with reproduction numbers are signalling
possible omitted variable bias.

I recognize three such backdoor paths in this context. The first one connects distancing policies with
social activity through news, which is a set containing any bits of information about COVID-19 that has
a potential to alter government and individual decisions about distancing.15 For example a discovery of a
large number of infections raises the probability of a distancing intervention and it can also make people
decrease their social activity voluntarily. I will refer to the latter channel as voluntary distancing in this
paper onward.

14This delay mechanism is different for traced contact persons, however most countries did not choose to do any
contact tracing or only tested the contact persons who were showing symptoms. I have information about
whether a country is practicing and what kind of contact tracing, which I control for in the second stage. It is
also known that a large fraction of COVID cases never gets tested, thus reported, which surely have an effect
on the outcome. This effect can be addressed by fixed effects and controls for testing, which are elaborated in
subsection. All these issues are addressed in Section 3.2.

15The arrow connecting News to Distancing Policy and Preventive Policy acknowledges the fact of endogenous
selection of the treatment of this study: distancing policies. Closing backdoor paths containing this link
simultaneously eliminates the endogenous selection bias.
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The second backdoor path is the channel of other preventive policies, such as mask wearing mandates,
contact tracing, testing or vaccination. These policies have an effect on reproduction numbers and their
implementation were also likely to be influenced by news. Their effect on reproduction number can be
direct, e.g. mask wearing reduce the transmission probability of the virus, while it might also lead to
greater distancing according to Seres et al. (2021).

The third path is the channel of imported cases. It is the number of infections in neighboring countries
affecting interventions indirectly through news and domestic reproduction numbers directly. For example
if the number of new infections shoots up in a neighboring country, that might influence more restrictive
policies and also increases the likelihood that new infections will or are already arriving from that neighbor
by infected travelers.

Fortunately all backdoor paths go through news, it would be sufficient therefore to control only for
news to eliminate the omitted variable biases caused by them. That means that comparing countries with
the same news components but different policies identifies the effect of those policies.16 This observation
is captured by the following design:

Ri,t+l = βPit + η′Nit + µ+ εit, (4)

where i indicates a country, t a day. R is reproduction number, P is distancing policy and N is a set
of news components containing reported infections and deaths from t − 1. Assuming that a distancing
policy is a binary treatment, this design identifies β by comparing R in countries that has introduced
policy P to those that has not, but were otherwise identical in all components of N, i.e. recieved the
same news.

The simple design in equation (4) is not feasible however, because N is not completely observable. For
example I have no information about local media influencers or politicians informing the public about
COVID developments. Neither about country specific behavioral reactions to news, such as compliance
with government policies. These factors are also correlated with distancing policies and virus reproduc-
tion. I address this problem by closing the three backdoor paths separately.17 To control for the channels
of other preventive measures and foreign infections is simple, because these are observable factors. Clos-
ing the voluntary distancing backdoor path is challenging because I can only observe social activity ait,
which pools policy compliant and voluntary distancing motives.

3.1 Voluntary Distancing

Here I present the first stage of my estimation, which identifies the policy compliant component of
social activity ait in a regression discontinuity in time (RDiT) design. The voluntary component, called
voluntary activity vit is then defined as the residual of the first stage regression.18

The effects of a distancing intervention are identified as sudden changes in ait after the intervention.
The key identifying assumption is that changes in social activity due to voluntary distancing is slow,

16Holding news fixed implies that the effects of voluntary distancing, other preventive interventions and imported
cases are the same.

17Alternatively, I could close all three backdoor paths by modeling the endogenous selection of policies based on
Heckman and Sedlacek (1985). That would require the credible exclusion of exogenous variables, for which
the share of distancing policies in neighboring countries up to day t − 1 could be a valid candidate. The
exploration of this possibility however is beyond the limits of this paper. Another alternative approach is of
Chernozhukov et al. (2021), who use the observable components of N as an instrument for both policies and
social activity.

18RDiT is described in details in Hausman and Rapson (2018). A regular RD exploits a discontinuous change
in the close neighborhood of a border separating the treated and untreated samples. RDiT is a special case
when the running variable is time, which is usually a discrete variable in empirical exercises. This discreteness
allows us to identify the effect by event time dummies rather than a discontinuity in a continuous polynomial
like in regular RD designs. This design is related to event study designs, but it lacks a control group.
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Figure 4: Social Activity in the Neighborhood of Distancing Policy Interventions
Place Restrictions Mobility Restrictions
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Notes: cloud: country-day observations of social activity ait in the neighborhood of distancing interventions,
darker regions show overlapping observations. Solid line: within day averages. Left: place restrictions, right:
mobility restrictions. All figures are cleaned from their within country pre-intervention means and normalized by
the full sample standard deviation of social activity.

while the response to a distancing intervention is quick, on daily frequencies. Distancing interventions,
e.g. lock-downs, prescribe a coordinated and sudden reduction in social activities after an intervention.
Voluntary distancing responses on the other hand are likely to be much less coordinated considering the
heterogeneous attitudes towards COVID infection risks, e.g. virus sceptics and overly cautious people.
Changes in social activity due to voluntary motives is presumably much smoother and slower therefore ,
on daily frequencies, when aggregated to the level of a country.

Figure 4 provides visual motivation of the RDiT strategy. It shows the deviation of the social activity
indicator from its within country pre-intervention mean and normalized by the full sample standard
deviation in the close neighborhood for the two types of distancing interventions defined in Section 2.1.
Darker regions show more observations.

It looks like both types of policies reduced social activity by between 1 and 3 standard deviation in most
countries just within 10 days. These changes seems to be more rapid in the case of mobility restrictions.
It is also apparent that social activity remained constant in most countries before the interventions.
Overall the rapid drop and negligible pre-trends observed on in social activity in the close neighborhood
of distancing interventions supports the identification strategy of the first stage estimation.

3.2 Second Stage

The second stage estimates the effect of distancing policies P p
it, of type p ∈ {place,mobility} on the

reproduction number Rit. Identification is based on the comparison of countries that have introduced a
distancing policy P p

it = 1 to those that have not P p
it = 0, holding voluntary activity vit, other preventive

policies, imported infections, and other covariates fixed.
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3.3 Threaths to Identification

In this subsection I review the possible threats to identification. The effect of distancing interventions
is conveyed by two channels: policy compliant and policy induced voluntary distancing. People might
increase their distancing after the implementation of a restriction because of compliance, but might also
because they perceive it as a signal of a worsening epidemic. This kind of voluntary distancing is does
not harm the separation of unconditional voluntary distancing effects, because it is a direct consequence
of the interventions.

Countries differ in demographics, population density, the quality of political and healthcare institutions,
which are likely correlate with interventions, social activity and reproduction numbers. I address these
differences by including country fixed effects in both stages assuming the invariance of these factors on
daily frequencies. Countries also differ in the timing of their interventions, which is addressed by the
inclusion of time fixed effects absorbing a common trend that track the days after the first reported
infection within a country. Different countries provided different levels of economic support, which might
worked as incentives to leave workplaces for sick people. I address this by controlling for all available
information on economic supports.

I control for daily weather conditions to address the effects of the climate on the reproduction rate of
the virus. Finally, I control for weekly seasonality in both stages of my estimations.

4 Results

In the first part of this Section I specify the empirical designs and present estimation results. I start the
first stage. From the results of that I calculate and analyse voluntary activity vit. I then continue with
the second stage estimation. In the second part of this Section I investigate heterogeneous distancing
policy effects by simple modification to the second stage design.

4.1 First Stage

In the first stage I model social activity ait as a function of event time indicators δpt−d(i,p) centered around
the last day before a distancing intervention d(i, p) of type p ∈ {place,mobility} in each country i:

ait = δplace
t−d(i,place) + δmobility

t−d(i,mobility) + ζ ′Xit + µi + γt + νit, (5)

where Xit are different covariates. The first components of Xit are observable news components covering
four set of variables. First set contain reported domestic COVID cases and COVID related deaths per
population from 1, 2-7, 8-14 days before. The second set includes the average of the same per capita
reports with same time lags in neighboring countries. The third set is the share of neighboring countries
that had already implemented a place or a mobility restriction in the past 1, 2-7 or 8-14 days.19 The final
set are two indicators indicating if there was ad hoc public urging or an organized public information
campaign about COVID-19 in place on day t. Table 11 in Appendix A.5 shows the estimation results for
this set of variables.

Xit includes also other preventive policies, such as the level of international travel controls, testing
policies, quantities and share of positive tests, level of contact tracing, debt reliefs, fiscal aids and if there
were income supports as an incentive for staying home when someone was sick, mask wearing mandates,
vaccination share, and different indicators of daily weather conditions (temperature, rainfall, snowfall,
dewpoint, humidity) plus weekly seasonality.

I allow for country fixed effects µi to capture country fixed (e.g. cultural, demographic) differences
that possibly affect social activities. I include time fixed effects γt setting t = 0 to the day the first

19Neighbors are defined by land borders.
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Figure 5: Effects of a Place (•) and a Mobility (■) Restriction on ait
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Notes: ait - social activity. Point estimates of δplace
t−d(i,place) and δmobility

t−d(i,mobility) coefficients of equation (5) with 99%
confidence intervals. Standard errors allowed to cluster within countries. Reference period: last day before the
intervention. 50,070 daily observations within 120 countries.

COVID case was reported in a country to absorb a global trend of distancing response to the evolution
of the epidemic that was common across countries.

Event time indicators δpt−d(i,p) are included to capture the common trend in social activity around the
days of a type p intervention. Because they are intended to capture the effects of the intervention relative
to the previous day, δp−1 is omitted for both policy types, as δp0 represents day 0 of an intervention. Figure
5 show the estimation results for the event time coefficients δplace

t−d(i,place) and δmobility
t−d(i,mobility) of the first stage

equation (5). Circles represent the point estimates in case of place, squares for mobility restrictions. Both
set of estimates are graphed with 99 percent error bands. I pool periods more than one week distant
from the intervention into three categories, i.e. δpt−d(i,p) is a single dummy if t ∈ (−∞,−8], or [7, 20], or
[21,∞), keeping the focus in the close neighborhood of the intervention.

It is apparent that social activity ait decreases significantly in the first seven days of distancing inter-
ventions, while there are only weak and marginally significant trends in ait preceding the interventions.20

The rapid response after interventions and negligible pre-trends before are consistent with the main iden-
tification assumption of the first stage estimation, i.e. interventions caused sudden changes in distancing
behaviors.

A place restriction reduces activity by almost half, a mobility restriction by close to one standard
deviations on day 6. It stays low on longer horizons suggesting a long lasting effect of both policies. Both
restriction types decrease social activity by roughly 1 standard deviation after one week. The effects of
both restrictions are gradual in the first seven days. People seem to react to a mobility restriction already
on day 0, while significant responses to a place restriction come with a roughly 4 days delay.

20One possible explanation for pre-trends is the anticipatory effects of earlier announced restrictions. These early
announcements are not observed in Hale et al. (2020) only on the day of implementation for each distancing
restriction.
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4.2 Voluntary Activity

The goal of the first stage estimation is the isolation of the voluntary component of social activity. I use
the results of the first stage estimation therefore, to break down social activity ait into three components:
the effect of distancing policies p̂Dit , the effect of other policies p̂Oit , and voluntary activity v̂it. Distancing
policy effects are defined as changes in ait from day 0 to 6 after an intervention and fixed for later days
as the effect on day 6. Consistently with the identifying assumption that changes only shortly after an
interventions are attributed to that intervention. It is set the same way for both place and mobility
restrictions.

The effect of other preventive policies are defined as changes in ait due to other policies. Voluntary
activity v̂it is then defined as residual changes in ait that are not attributed to either distancing or any
other policy interventions. These definitions are summarized in the following equations:

p̂Dit =
∑

p∈{place,mobility}

[∑6

j=0
δ̂pj + δ̂p6I

p
t−d(i,p)>6

]
(6)

p̂Oit = θ′PO
it (7)

v̂it = ait − p̂Dit − p̂Oit (8)

where PO
it is a set of binary indicators indicating if a particular policy with a specific stringency level is in

place in country i on day t. By this definition in equation (8) the error term of the first stage estimation
of equation (5) is attributed to voluntary activity. This way it might be a more powerful control, than a
standard instrumental variable, because that error term contains the effects of all the unobserved factors
that might induce changes in voluntary distancing behaviors.21

Figure 6 shows cross country averages of social activity with its three components. The time axis is
adjusted, such that day 0 is the day, when the first COVID case was reported within a country. Solid line
is social activity. Voluntary activity is pictured by a dashed line, the effect of other policies by dotted
dashed line, and the effect of distancing policies by a dotted line. Social activity started to drop soon
after day 0, and leveled out roughly on day 20 approximately 2 standard devotions below its pre-COVID
levels.

All three components are in a decline in the same period between days 0 and 20. Distancing policies
dropped the most, more than one standard deviations, and it kept on declining in the following days.
Voluntary distancing dropped almost on standard deviations as well, but it started to rise again after
day 30. Other preventive policies had a much smaller effect on social activity.

This decomposition suggests that distancing interventions and voluntary distancing both had a major
role in the global reduction of social activities. On longer horizons policies seems to had a more prolonged
effect, while voluntary distancing was less permanent. This suggests that distancing interventions might
had a more important role in the containment of the epidemic. Investigating this possibility is the primary
purpose of the second stage estimation, which is presented in the next Section.

4.3 The Effect of Distancing Policies on the Effective Reproduction Number
of COVID-19

In this subsection I develop the empirical design of the second stage first, then I analyze its results. Tha
second stage estimation aims to identify the effect of distancing policies on the reproduction number of
COVID-19 controlling for the effects of voluntary distancing, other preventive policies and covariates. I
model the effective reproduction number Ri,t+h as a function of distancing policies, voluntary activity

21One could interpret v̂it as counterfactual social activity ait of a no-intervention scenario.
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Figure 6: Decomposition of Social Activity at the Beginning of the Pandemic
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Notes: cross country averages of social activity and its three components.

v̂it, other preventive policies and covariates:

Ri,t+l = exp
[
βpP

place
i,t−4 + βmPmobility

it + βv v̂it + ξ′Xit + µi + κt

]
+ εi,t+l, (9)

where Ri,t+l is proxied by the instantaneous reproduction number in country i observed on day t+ l. P p
it

is an indicator of a distancing policy interventions being 1 on days, when any components of that policy
type was in action in country i. Based on the first stage results in Section 4.1 place restrictions started
to afect social activity after 4 days. Therefore, I include place restrictions in the second stage with a four
day delay: P place

i,t−4 .
By setting the functional form to exponential, this model is a Poisson regression identifying proportional

effects. Identifying proportional effects allow me to use the easily calculable instantaneous reproduction
number RI

t instead of Rt and get equivalent results, because RI
t ∝ Rt as it has been shown in Section

2. It is less restrictive than a log-transformation, because it allows for zero observations in the outcome.
This is useful, because RI

t is zero each day, when there are 0 new infections are reported.22 I use v̂it that
resulted from the first stage estimation as a control to eliminate the effect of voluntary distancing.

I allow for country fixed effects µi to capture time invariant differences among countries, e.g. popula-
tion density, demographics, the quality of the healthcare system, which possibly affect the reproduction
number of the virus. I include also a time fixed effects κt setting t = 0 to the day the first COVID case
was reported in a country to absorb a global trend in the evolution of reproduction numbers that was
common across countries.

Covariates Xit include other preventive policies, addressing the third backdoor path. These preventive
policies are the level of international travel controls, type of testing policies, testing quantities and share
of positive tests, level of contact tracing, debt reliefs, fiscal aids and if there ware income supports as an
incentive for staying home when someone is sick, mask wearing mandates, vaccination share. Xit contains
also different indicators of daily weather conditions (temperature, rainfall, snowfall, dewpoint, humidity)
to capture the patterns of infections in different weathers. It contain also controls for weekly seasonality.
Finally, I include the expected number of imported infections and its interaction with international travel
22This is a Poisson model on non-integer outcomes. For details see for example Silva and Tenreyro (2006).
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Table 3: Effect of Distancing Policies on Reproduction Numbers 10 days later.

(1) (2) (3) (4)

Place Restrictions t−4 -0.415*** -0.331** -0.287** -0.287**
(0.155) (0.142) (0.142) (0.139)

Mobility Restrictions t -0.737*** -0.690*** -0.621*** -0.610***
(0.163) (0.139) (0.123) (0.118)

Voluntary Activity t 0.154*** 0.165*** 0.167***
(0.041) (0.040) (0.040)

Imported cases t 0.310***
(0.105)

Import × Screening t 2.067
(9.768)

Import × Quarantine t -1.952*
(1.100)

Import × Selective Ban t 1.080
(2.119)

Import × Total Ban t -1.670***
(0.553)

Observations 26,566 26,566 26,566 26,566
Countries 109 109 109 109
Other Preventiv Pol’s ◦ ◦ • •
Country and Day FE’s • • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, • = included ◦ = excluded. Standard errors in parenthesis allowing for
within country clustering. Dependent variable is instantaneous reproduction number 10 days forward: RI

i,t+10.
Controlled for daily weather conditions and weekly seasonality.

controls into Xit to control for the channel of imported infections.
Table 3 shows the main results of this paper. These are the results of different specifications of the

second stage equation (9) setting the latency parameter l = 10 days.23 The table starts with the most basic
specification that includes only distancing policy interventions besides controls for weather conditions,
weekly seasonality and country and time fixed effects. The next columns add important omitted factors:
voluntary activity, other preventive policies and imported cases one by one. This way one can judge the
relevance of these omitted factors by comparing the point estimates for place and mobility restrictions
accross columns.

Column (1) shows strong correlations for both policy types with Ri,t+l. Based on Column (1) place
restrictions reduce the reproduction number by 33 percent, while a mobility restriction by 74 percent. This
is a misspecified specification however, only included as a benchmark for the better specified models that
control for different sources of omitted variable biases: voluntary distancing, other preventive policies,
and imported cases..

In the second column I add the voluntary activity indicator that has been isolated in the first stage.
Controlling for this factor reduces the coefficients of both interventions substantially. This finding confirms
the importance of controlling for this factor. This result is consistent with first stage results, which already
suggest an important role for voluntary distancing in observed distancing behaviors.

In the third specification I add other preventive policies to the set of controls. These are included as

23A sensitivity analysis of l can be found in the Appendix. Results show little sensitivity to the choices of
l ∈ {7, 9, 11, 13}
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a set of different variables for which the parameter estimates are not shown in the table. The effect of
distancing policies are marginally smaller compared to specification (2) suggesting that other preventive
polices are also important controls to include similarly to voluntary activity. Finally in column (4) I add
imported cases and its interaction with different levels of international travel controls. The difference in
the parameter estimates of place and mobility restrictions are negligible between columns (4) and (3)
suggesting that international travels were not strongly correlated with distancing policy interventions.

Column (4) is my most complete specification, therefore, I refer to it as my main result. In column
(4) I find that place restrictions reduce the effective reproduction number of COVID-19 by 29 percent,
while mobility restrictions by 62 percent. These are strong effects suggesting that distancing policies
were an effective tool for reducing the impact of the pandemic. Place restrictions that are targeting
specific destinations are found to be roughly half as effective as general mobility restrictions. This finding
suggests that there was much heterogeneity between the effectiveness of different policies, implying that
different policy mixes could have led to very different outcomes

Now let us turn to the estimation results for the other important factors, voluntary distancing and
imported cases in this most complete specification of column (4). In the case of voluntary activity I find
that a one standard deviation drop in voluntary social activity decreases Rt by 17 percent. The effect of
voluntary distancing is also significantly negative but weaker than those of the policy restrictions. This
finding suggests that, although voluntary distancing behaviors help to slow down the reproduction of the
virus, any kinds of distancing policy measures are much more effective in stopping a pandemic.

In the case of imported cases I find that a one standard deviation rise in imported cases significantly
increases Rt by 31 percent. This effect is more than offset by travel restrictions, if it takes the form of
quarantines or a total ban. Although this offsetting effect is only marginally significant for quarantines.
I have found no evidence for the effectiveness of screening and selective travel bans in the reduction of
Rt via imported cases.

4.4 Comparing Compliant and Voluntary Distancing Effects

It is crucial to compare the consequences of voluntary and distancing policy induced distancing when
forming policy conclusions about the relative efficiency of policies. Voluntary mobility and distancing
policy induced components are measured in different units, so Table 3 coefficients are not directly com-
parable between rows. One possible way to address this issue would be to use the first-stage estimates
for place and mobility with their coefficients from equation (5) directly on the right-hand side of equation
(9), instead of the policy variables. Although this strategy appears simple and straightforward, it is
impossible to implement because policy variables, P place

it and Pmobility
it , are not included in the first-stage

equation. The reason they are not included is that the effect of the policies is captured by the RDiT
design that builds on the key identifying assumption of sudden responses to policy changes. Giving this
design up is considered to be a greater cost than the gain of the comparison that would emerge from a
different design would provide.

I work around this problem by picking a different strategy to make the effects of distancing policies and
voluntary distancing comparable. It is a decomposition of the changes in reproduction numbers around
the time of the first global wave. I start that by taking the cross-country averages of Rit in the estimation
sample. Reproduction numbers peaked in late February and declined until the summer. Assuming an
average duration for an infection to be 12 days, the seven-day backward-looking average of the effective
reproduction number peaked at 6.32 on February 26 in 2020 and fell below 1 for the first time on April
11. This was a 85 percent drop in Rit on average across countries in the first wave. I decompose this
decline into four suggested factors by calculating the changes in the cross-country averages of distancing
policies and the voluntary activity indicator in the same time period and then multiplying them by their
coefficients of the most complete specification in Table 3. I proceed similarly with standard errors.
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Table 4: Comparing Compliant and Voluntary Distancing Effects

Change (%) Contribution

Effective Repr’ Number Rt -0.85 100%

Place Restrictions -0.25 29.4 %
(0.102)

Mobility Restrictions -0.59 69.4 %
(0.088)

Distancing Policies -0.84 98.8%

Voluntary Distancing -0.13 15.3 %
(0.032)

Other Factors 0.12 -14.1 %

Notes: Effects are calculated as change in cross country averages multiplied by the coefficients of column (3) of
Table 3. Standard errors in parenthesis are calculated similarly, using the s.e. of the corresponding coefficient.

Taking cross country averages of binary policy indicators gives the share of countries that are introduc-
ing that policy on that day, therefore its change in the period shows the change in the sample coverage of
these policies. This change in coverage for place and mobility restrictions were 84 and 95 percent in this
period. That means most countries in the sample implemented these types of distancing interventions
within these roughly two month period. In the same period voluntary activity declined by 0.8 standard
deviations.

The results of these calculations are summarized in table 3. It shows that the drop in Rit was mostly
due to restrictions, which altogether contributed almost 100 percent of the total decline in reproduction
numbers. It was mostly mobility restrictions that were responsible for this effect. Their sole contribution
were nearly 70 percent. This suggests that mobility restrictions were much more effective than place
restrictions.

Voluntary distancing on the other hand contributed only a little more than 15 percent, which were
counter acted almost completely by other unexplained factors. This results suggests that voluntary
distancing had only a marginal role in the containment of the COVID pandemic in the first wave.

4.5 Heterogeneous Effects

In this Section I investigate heterogeneous policy effects. The first of these exercises analyses the strength
of the policy effects on different time horizons. I am intrested in how long the effects identified in the
main design last. In the second exercise I break down the larger restriction categories: place and mobility
restrictions, into their components. I also allow for heterogeneity in the different stringency levels in this
exercise. I do this to provide comparative results for more specific policy interventions.
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4.5.1 Heterogeneous Dynamics

Here I investigate how long the effects found in the main specification lasted. It is useful to know how
long a government can rely on a place or a mobility restriction, when they are fighting more and more
waves of an epidemic. To address this question I modify equation (9) by allowing for time heterogeneity
in the policy effects by the the following modification to the main estimation equation (9):

Ri,t+10 = exp
[
βplace
t−w(i) + βmobility

t−w(i) + βv v̂it + ξ′Xit + µi + κt

]
+ εi,t+l, (10)

where βplace
t−w(i) and βmobility

t−w(i) are event time dummies indicating seven day periods and relating the effect
of a type of intervention to the last seven day period (w(i) = −1) before the intervention. This equation
is other than this modification is equivalent to equation (9).
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Figure 7: Effects of Distancing Policies on the Reproduction Number 10 days later
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Notes: point estimates of βplace
t−w(i) and βmobility

t−w(i) coefficients and 95% confidence intervals of equation 10. Standard
errors allowed to cluster within countries. Reference period: last 7 days before the intervention. 26,566 daily
observations within 109 countries.

Figure 7 shows the results for the β coefficients of equation (10). It looks like that both policies
produce a significant drop in Rit already in the first seven days after their implementation. These
effects get somewhat stronger on later weeks. In the case of a mobility restriction these effects stay
significant throughout the entire horizon. In the case of place restrictions some longer horizon effects
are only marginally significant. Overall these results suggests that both policy types have a significant
long lasting effect on the reproduction number. Governments can rely on these distancing restrictions on
longer horizons, when fighting longer waves of infections based on these results.
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4.5.2 Heterogeneous Policies

In this Section I estimate another variant of the second stage, where I break down the comprehensive place
and mobility restriction indicators into their components, and estimate the effect of those components
and their stringency levels separately. I do this to provide comparative results for more delicate policy
interventions.

I estimate the following variant to equation (9), where I include all the different distancing interventions
with all their different stringency levels reported by Hale et al. (2020):

Ri,t+l = exp
[
βjkD

jk
it + βv v̂it + ξ′Xit + µi + κt

]
+ εi,t+l, (11)

where Dj,k
it is an indicator indicating if a distancing policy j at stringency level k was in action in country

i on day t. For example j = workplace closures, which are k = recommended. All other parts of the
equation is equivalent to of equation (9).

The results for equation (11) is reported in Table 5. Results show that four of these restriction types
were found to be generally effective in my global estimation sample. For the effectiveness of cancellation
of public events, restrictions on public transportation and inland travel restrictions on the other hand I
found no evidence.

Looking at policies one by one I find that school closures seems to be effective only if they are mandatory
even if they are partial in terms of education levels. A required school closure reduces the effective
reproduction number by between 17.6 to 24.1 percent on average depending on the coverage. Closing
workplaces seems to reduce Rit significantly, no matter if it is recommended. The effect becomes 1.5
times stronger: -31 percent, when it is required. There is no significant difference though between a
partial requirement or if it includes all non-essential businesses.
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Table 5: Effect of All the Different Distancing Policies on Ri,t+10

School Closures:
Recommended -0.160

(0.109)
Required Partial -0.241**

(0.104)
Required All Levels -0.176*

(0.100)
Workplace Closures:

Recommended -0.209**
(0.093)

Required Partial -0.310***
(0.080)

All Non-essential B’s -0.265***
(0.092)

Public Events Cancellations:
Recommended 0.102

(0.111)
Required 0.015

(0.096)
Gathering Limits:

1000+ -0.073
(0.133)

100+ -0.268**
(0.112)

Public Transport Restrictions:
Recommended 0.021

(0.061)
Required 0.029

(0.081)
Stay At Home Orders:

Recommended -0.185***
(0.059)

Required with exceptions -0.149**
(0.070)

Minimal exceptions 0.356*
(0.205)

Inland Travel Restrictions:
Recommended -0.067

(0.072)
Required 0.093

(0.077)

10+ -0.331***
(0.112)

1+ -0.345***
(0.124)

Observations 38,704
Countries 111
All Controls •
Country and Day FE’s •

Notes: *** p<0.01, ** p<0.05, * p<0.1, • = included ◦ = excluded. Standard errors in parenthesis allowing for
within country clustering. Dependent variable is instantaneous reproduction number 10 days forward: RI

i,t+10.
Controlled for daily weather conditions and weekly seasonality.

Gathering limits show the strong effects, when the limit is at most 100 persons. The introduction of
a 100+ limit reduces Rit by 26.8 percent. A less stringent 1000+ limit show no effects, while the more
stringent 10+ or 1+ limits seems to have stronger effects but with strongly diminishing gains. Stay at
home orders, i.e. curfews are also found to be effective already if they are recommended. A recommended
home staying reduces Rit by 18.5 percent. When it is mandatory with minimal exceptions by 35. percent,
which is the strongest effect among all policies, but only weakly significant however only at 10 percent.
Overall these findings suggest that there was much heterogeneity between the effectiveness of different
policies, implying that different policy mixes could have led to very different outcomes.
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5 Conclusions

In this study I estimated the effect of distancing interventions on the effective reproduction number Rt

of COVID-19. I was focusing on the effects of two types of such policies, place restrictions, that target
specific destinations, and mobility restrictions that are general restriction on inland movements. The main
contribution of this study is the separation of voluntary and policy induced distancing. I have found that
distancing interventions had a strong and permanent effect on Rt. General mobility restrictions are found
to be roughly two times more effective than targeted place restrictions. These policy effects were found to
be much more dominant than the effects of voluntary distancing. These results suggests that governments
can use distancing restrictions effectively in pushing down the effective reproduction number below the
containment threshold of Rt ≤ 1. Although these policies need time to exert their effects on reported
case numbers, governments can rely on their effects for as long as these measures are in place.

Comparing specific interventions I have found significant differences. Based on these results school
closures are better if they are mandated, in contrast with workplace closures, which were found to be
effective already, when they are just a recommendation. Stay at home orders are similarly effective already,
when they are only recommended, but more effective, when mandated with only minimal exceptions.
Gathering limits become effective below 100 person and only get marginally more effective at more
restrictive limits. I have found no supporting evidence for the effectiveness of cancellation of public events,
restrictions on public transportation and inland travel restrictions. These results suggest therefore, that
a careful selection of particular distancing policies and their stringency levels is recommended before their
implementation.
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Appendix A

A.1 Policy Pairs

Table 6: Percent of Countries Implementing a Policy Pair within 3 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 43.12 44.44 38.53 23.15 24.07 10.00
Events 43.12 53.70 26.61 15.74 21.30 10.00
Gatherings 44.44 53.70 38.89 29.91 27.10 24.00
Workplaces 38.53 26.61 38.89 40.74 37.96 40.00
Stay Home 23.15 15.74 29.91 40.74 48.60 42.42
Movement 24.07 21.30 27.10 37.96 48.60 43.43
Transport 10.00 10.00 24.00 40.00 42.42 43.43

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.

Table 7: Percent of Countries Implementing a Policy Pair within 5 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 66.97 58.33 57.80 39.81 41.67 26.00
Events 66.97 64.81 44.95 34.26 34.26 23.00
Gatherings 58.33 64.81 52.78 44.86 44.86 35.00
Workplaces 57.80 44.95 52.78 52.78 50.00 48.00
Stay Home 39.81 34.26 44.86 52.78 60.75 51.52
Movement 41.67 34.26 44.86 50.00 60.75 56.57
Transport 26.00 23.00 35.00 48.00 51.52 56.57

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.
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Table 8: Percent of Countries Implementing a Policy Pair within 7 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

School Closure 76.15 67.59 71.56 50.00 53.70 39.00
Events Cancelled 76.15 70.37 55.96 44.44 49.07 29.00
Gathering Limit 67.59 70.37 65.74 57.94 58.88 44.00
Workplace Closure 71.56 55.96 65.74 62.96 60.19 54.00
Stay Home Order 50.00 44.44 57.94 62.96 67.29 58.59
Movement Restricted 53.70 49.07 58.88 60.19 67.29 64.65
Public Transport Closed 39.00 29.00 44.00 54.00 58.59 64.65

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.

Table 9: Percent of Countries Implementing a Policy Pair within 9 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 85.32 75.93 77.98 55.56 60.19 49.00
Events 85.32 74.07 66.06 52.78 56.48 41.00
Gatherings 75.93 74.07 72.22 65.42 63.55 53.00
Workplaces 77.98 66.06 72.22 70.37 68.52 65.00
Stay Home 55.56 52.78 65.42 70.37 70.09 64.65
Movement 60.19 56.48 63.55 68.52 70.09 70.71
Transport 49.00 41.00 53.00 65.00 64.65 70.71

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.

Table 10: Number of Countries Implementing both Policies of a Policy Pair.

School Event Gather Work Transp’t Stay H Move

Schools 109 108 109 100 108 108
Events 109 108 109 100 108 108
Gatherings 108 108 108 100 107 107
Workplaces 109 109 108 100 108 108
Transport 100 100 100 100 99 99
Stay Home 108 108 107 108 99 107
Movement 108 108 107 108 99 107

Notes
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A.2 Timing of Distancing Policy Interventions by Country

Figures 8 and 9 show the time of the first distancing interventions relative to the day of the first reported
COVID-19 case. These figures demonstrate that there is a sufficiently large variation in the adoption
times of distancing interventions to make their effects feasible to identify with panel econometric methods.
It is also apparent from the figures that many countries implemented their first distancing interventions
before they even had a confirmed COVID case within their borders.

Figure 8: First Place Restrictions by Countries
Early Adopters Late Adopters
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Figure 9: First Mobility Restrictions by Countries
Early Adopters Late Adopters

A.3 Validation of the Calculation of Reproduction Numbers

Here I compare my definition for Rt to an estimation of Rt using the methodology of Cori et al. (2013).
It is a parametric calculation for which I use the following parameters: mean SI = 6, standard deviation
of SI = 3, aimed posterior CV = .3, length of time-steps = 7, number of steps estimated = 1, posterior
mean=5, posterior st.d. = 5. I input new case incidence data for each country from Wahltinez et al.
(2020). For my definition of Rt I calculate RI

t first, than normalize it by its within country mean and
multiply it by the within country mean of Cori et al. (2013).24

24This renormalization does not harm my conclusions as it is based on Rt ∝ RI
t .

29



Figure 10: Validation of Rt by Cori et al. (2013) – Germany
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Figure 11: Validation of Rt by Cori et al. (2013) – Italy
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Figure 12: Validation of Rt by Cori et al. (2013) – France
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Figure 13: Validation of Rt by Cori et al. (2013) – Spain
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Figure 14: Validation of Rt by Cori et al. (2013) – UK
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A.4 COVID-19 Aggregated Mobility Research Dataset

Description The Google COVID-19 Aggregated Mobility Research Dataset contains anonymized mobil-
ity flows aggregated over users who have turned on the Location History setting, which is off by default.
This is similar to the data used to show how busy certain types of places are in Google Maps — helping
identify when a local business tends to be the most crowded. The dataset aggregates flows of people from
region to region, which is here further aggregated at the level of NUTS3 areas, weekly.

To produce this dataset, machine learning is applied to logs data to automatically segment it into
semantic trips https://www.nature.com/articles/s41467-019-12809-y. To provide strong privacy guaran-
tees, all trips were anonymized and aggregated using a differentially private mechanism
https://research.google/pubs/pub48778/ to aggregate flows over time

(see https://policies.google.com/technologies/anonymization). This research is done on the resulting
heavily aggregated and differentially private data. No individual user data was ever manually inspected,
only heavily aggregated flows of large populations were handled.

All anonymized trips are processed in aggregate to extract their origin and destination location and
time. For example, if users traveled from location a to location b within time interval t, the corresponding
cell (a, b, t) in the tensor would be n ± err, where err is Laplacian noise. The automated Laplace
mechanism adds random noise drawn from a zero mean Laplace distribution and yields (ϵ, δ)-differential
privacy guarantee of ϵ = 0.66 and δ = 2.1 × 10 − 29 per metric. Specifically, for each week W and each
location pair (A,B), we compute the number of unique users who took a trip from location A to location
B during week W . To each of these metrics, we add Laplace noise from a zero-mean distribution of scale
1/0.66. We then remove all metrics for which the noisy number of users is lower than 100, following the
process described in https://research.google/pubs/pub48778/, and publish the rest. This yields that each
metric we publish satisfies (ϵ, δ)-differential privacy with values defined above. The parameter ϵ controls
the noise intensity in terms of its variance, while δ represents the deviation from pure ϵ-privacy. The
closer they are to zero, the stronger the privacy guarantees.

Limitations These results should be interpreted in light of several important limitations. First, the
Google mobility data is limited to smartphone users who have opted in to Google’s Location History
feature, which is off by default. These data may not be representative of the population as whole, and
furthermore their representativeness may vary by location. Importantly, these limited data are only
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viewed through the lens of differential privacy algorithms, specifically designed to protect user anonymity
and obscure fine detail. Moreover, comparisons across rather than within locations are only descriptive
since these regions can differ in substantial ways.

Data Availability The Google COVID-19 Aggregated Mobility Research Dataset used for this study
is available with permission from Google LLC.

A.5 Covariates of the First Stage

Table 11: Effect of News Components in the First Stage

Cases t−1 -0.005
(0.003)∑7

s=2Cases t−s -0.070***
(0.016)∑14

s=8Cases t−s -0.067***
(0.023)

Deaths t−1 -0.266
(0.183)∑7

s=2Deaths t−s -2.000**
(0.811)∑14

s=8Deaths t−s -3.029***
(0.885)

Neighbors’ Cases t−1 0.015
(0.016)∑7

s=2N’s’ Cases t−s -0.055*
(0.032)∑14

s=8N’s’ Cases t−s 0.180***
(0.054)

Neighbors’ Deaths t−1 -0.895*
(0.457)∑7

s=2N’s’ Deaths t−s -3.400**
(1.441)∑14

s=8N’s’ Deaths t−s -3.117*
(1.844)

Neighbors’ Place R’s t−1 0.343***
(0.102)∑7

s=2N’s’ Place R’s t−s -0.278
(0.199)∑14

s=8N’s’ Place R’s t−s -0.046
(0.241)

Neighbors’ Mobility R’s t−1 -0.130
(0.083)∑7

s=2N’s’ Mobility R’s t−s -0.598***
(0.108)∑14

s=8N’s’ Mobility R’s t−s 0.435**
(0.167)

Observations 50,036
R-squared 0.685

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors clustered at country level in parenthesis. Dependent
variable is changes in activity relative to a five week benchmark period from before the epidemic. Homeland Cases
and Deaths are reports from day t− 1 published on day t in country i, Neighbors’ Cases and Deaths are sum of
reports from countries sharing a land border with i. All reports measured in case per 10 000 citizens.
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A.6 Second Stage Daily Event Study

Figure 15: Effects of Distancing Policies on the Reproduction Number on the Same Day
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A.7 Sensitivity to latency parameter

Table 12: Effect of Distancing Policies on Reproduction Number l days later.

(1) (2) (3) (4)
latency parameter l 7 9 11 13

Place Restrictions t−4 -0.274* -0.315** -0.309** -0.271**
(0.149) (0.144) (0.149) (0.135)

Mobility Restriction t -0.568*** -0.556*** -0.552*** -0.580***
(0.128) (0.121) (0.127) (0.133)

Voluntary Activity t 0.138*** 0.143*** 0.142*** 0.144***
(0.042) (0.043) (0.047) (0.048)

Observations 26,151 26,151 26,151 26,151
Countries 109 109 109 109
Preventive Policies • • • •
Country and Day FE’s • • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parenthesis allowing for country level clustering.
Dependent variable is instantaneous reproduction number RI

i,t+l. • = included ◦ = excluded. Controlled for daily
weather conditions and weekly seasonality.
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