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Abstract
We examine the problem of reducing the control set in a dynamical system so that
the solution set and the attainable sets remain essentially unchanged. We cite some
classical results to exhibit the problem and promote a set-valued approach.A necessary
condition is formulated by using a concept of set-valued derivative, which can be
regarded as an extension of the classical Relaxation theorem.
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1 Control systems

Let [0, T ] be the time interval and let X and Y be real Euclidean spaces (with dimen-
sions n and m respectively), where X is the state space, while Y is the control space
of the system. Let x0 ∈ X be given, the initial state of the system at the instant t = 0.

Consider a fixed nonempty convex, compact subset U ⊂ Y , the control set of the
system. Then the set of admissible controls is given by

U =
{
u ∈ L2[0, T ] : u(t) ∈ U a. e. t ∈ [0, T ]

}

Consider a continuously differentiable function f : X ×Y → X . By a control system
we mean the system of differential equations

x ′(t) = f (x(t), u(t)) x(0) = x0 and u ∈ U (1)

for a. e. t ∈ [0, T ] and starting from the initial state x0.

B Peter Tallos
tallosp@gmail.com

1 Department of Mathematics, Corvinus University of Budapest, Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-023-00850-8&domain=pdf


P. Tallos

Consider the control system (1) and introduce the following notations. Let AC[0, T ]
denote the space of all absolutely continuous functions on [0, T ], moreover

SU (x0) = {x ∈ AC[0, T ] : ∃u ∈ U , x is a solution to the system(1)}

which is the collection of all trajectories of the system, and

AU (t, x0) = {x(t) : x ∈ SU (x0)}

which is the set of all states attainable from the initial state x0 at time t ∈ [0, T ].
In this paper we address the following question. How can we find a tighter control

set V ⊂ U with the following properties:

• The attainable set remains unchanged, i.e. AV (t, x0) = AU (t, x0) for every t ∈
[0, T ], moreover.

• The set of trajectories remains essentially unchanged, i.e. SV (x0) is dense in the
set SU (x0) (with respect to the C-norm).

2 Linear systems

The above question admits a known solution in the case of linear systems.
In particular, let A and B n × n and n × m matrices respectively, and consider the

linear system

x ′(t) = Ax(t) + Bu(t) x(0) = x0 and u ∈ U (2)

for a. e. t in [0, T ]. Denote by exU the set of extremal points of U , then we have

exU =
{
u ∈ L2[0, T ] : u(t) ∈ exU a. e. t ∈ [0, T ]

}
(3)

where on the left-hand side extremal points are meant in the vector space L2[0, T ].
The elements of this set are called extremal controls of the system.

One direction of equality (3) is simple, the other direction is far from being trivial.
In fact, it is the consequence of the so-called measurable selection theorem due to
Kuratowski andRyll-Nardzewski (1965), see Theorem8.1.3 inAubin and Frankowska
(1992), or Theorem 4.7 in Kánnai et al. (2014). This theorem states that a measurable
set-valued map with nonempty closed values possesses a measurable selection.

Equality (3) allows us to formulate the following theorem, called the "Bang-bang
principle".

Theorem 1 Introduce the notation V = exU. Then for the linear system (2) we have

AV (t, x0) = AU (t, x0) ∀t ∈ [0, T ]

and SV (x0) is a dense subset of SU (x0) with respect to the C-norm.

123



How to tighten the control set?

The Bang-bang principle is due to LaSalle and Olech in the early sixties of the last
century, for a comprehensive treatment we refer to (Kánnai et al. 2014). Basically, the
proof relies on the following facts:

• Solutions to linear systems can be expressed explicitely by the Cauchy-formula,
• Lyapunov’s theorem on the convexity of the range of vector measures.

3 Nonlinear systems

For nonlinear systems there is no such result like theBang-bangprinciple. For example,
if U = [−1, 1] and x0 = 0, then the following simple one dimensional system

x ′(t) = u(t)2

is kept in the origin by the control u = 0. However, this obviously cannot be done by
extremal controls.

On the other hand, now consider the linear system

x ′(t) = u(t)

with the same control set and initial state, and put V = exU . It is easy to see that
SV (x0) = SU (x0) is not true, since for the solution of the original system x = 0
we clearly have 0 /∈ SV (x0). However, the constant zero function can be arbitrarily
approximated by piecewise straight lines with alternating slopes of −1 and +1, and
hence SV (x0) is a dense subset of SU (x0) with respect to the C-norm. This example
tells us that equality of the solution sets cannot be expected even in the case of linear
systems.

4 Set-valued approach

A possible approach is the following. We do not consider the control functions explic-
itly, only their collection is important from the problem’s point of view. Therefore, we
introduce the set-valued mapping F this way:

F(x) = { f (x, u) : u ∈ U }

from X into the subsets of X and consider the relation

x ′(t) ∈ F(x(t)) x(0) = x0 (4)

which is called a differential inclusion. An absolutely continuous function x ∈
AC[0, T ] is said to be a solution, if this relation is fulfilled almost everywhere. The
notations SF (x0) and AF (t, x0) are interpreted analogously.

Theorem 2 Under the conditions above the solution sets of the differential inclusion
(4) and the control system (1) coincide.
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One direction is trivial, the other is hard, but ultimately, it is again the consequence
of the measurable selection theorem. This theorem is known as “Filippov’s implicit
function lemma”, we refer to (Aubin and Frankowska 1992) for the proof and more
details.

Consider a set-valued map F defined on X with nonempty compact values in X .
We say that F is locally Lipschitz-continuous, if at every point z ∈ X there exists an
ε > 0 and a λ > 0 such that

D(F(x), F(y)) ≤ λ‖x − y‖

for every x, y ∈ z + εB. Here B is the unit ball in X , and D denotes the Hausdorff-
distance.

The theorem below is called the Filippov-Wazewski relaxation theorem (see (Aubin
and Frankowska 1992)). The notation co K stands for the convex hull of the set K .

Theorem 3 Let us denote by SF (x0) and Sco F (x0) the solution sets for the set-valued
maps F and co F respectively in the differential inclusion (4). Assume that F is locally
Lipschitz-continuous with nonempty compact values in X. Then Sco F (x0) is closed
with respect to the C-norm, and

cl SF (x0) = Sco F (x0)

Moreover AF (t, x0) = Aco F (t, x0) for every t ∈ [0, T ].
We may be tempted to think that this theorem answers our problem: it might be

enough to focus on the extremal points of the set f (x,U ). However, extremal points
have bad continuity properties: the extremal points of a Lipschitz-continuousmapmay
fail even to be continuous.

5 A necessary condition

Now we examine the opposite question: if the attainable sets coincide, what can we
say about the mappings on right-hand side of the differential inclusion?

The basic idea comes from the classical theory of ordinary differential equations. If
F is a locally Lipschitz-continuous single valued map, then d/dt AF (0, x) = F(x).
If we want to adapt this observation to set-valued systems, we should introduce the
derivative of the set-valued map AF . In classical analysis the derivative at a given
point is the linear map, whose graph (a linear subspace) is tangent to the graph of the
function.

For set-valued maps such a tangent space does not necessarily exist. However, the
subspace can be replaced by the tangent cone. The tangent cone to a set K ⊂ X at
point x ∈ K is defined by

TK (x) =
{
v ∈ X : lim inf

h→0+
1

h
dK (x + hv) = 0

}
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where dK (y) is the distance of the point y from the set K .

Definition 1 The derivative of the set-valued map AF at the point (t, x) ∈ graph AF

is the set-valued map DAF whose graph is the tangent cone to the set graph AF at the
point (t, x). In other words

graph DAF (t, x) = Tgraph AF (t, x)

The proof of the following theorem can be found in Joó and Tallos (1999).

Theorem 4 If F is locally Lipschitz-continuous with nonempty compact values, then

F(x) ⊂ DAF (0, x) ⊂ co F(x)

for every x ∈ X.

The following proposition can be verified by a straightforward calculation.

Lemma 1 Let F and G be compact valued maps, and assume that AG(t) is a dense
subset of AF (t) for every t ∈ [0, T ]. Then

DAG(0, x) = DAF (0, x)

for each x ∈ X.

As a consequence of our results we formulate an extension of the Relaxation
theorem.

Theorem 5 Let F and G be locally Lipschitz-continuous set-valued maps, and assume
that F has nonempty convex, compact values,whileG has compact valueswithG(x) ⊂
F(x) for every x ∈ X. Then SG(x) is a dense subset of SF (x) (with respect to the
C-norm) if and only if

coG(x) = F(x)

at each point x ∈ X.

Proof In view of Theorem 4 and Lemma 1 we obtain

F(x) ⊂ DAF (0, x) = DAG(0, x) ⊂ coG(x)

for every x ∈ X . This completes the proof. 
�
Basically, our theorem tells us that any tighter control set must contain all extremal

points of the original control set. However, this condition is by far not sufficient. The
problem of finding the appropriate conditions for the sufficiency is still open.
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