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Abstract
The first purpose of this paper is to propose a theoretically new robust filter method to
estimate non-observable macroeconomic indicators. The second purpose is to apply
the proposed method to estimate the Hungarian potential GDP in 2000–2021. The
novelty of the proposed filter method is that — unlike papers published so far — it
does not require the stability of the dynamic model, only a partial stability condition
must be satisfied. Moreover, such time-dependent uncertainties and nonlinearities can
arise in themodel that satisfy a general quadratic constraint. An important advantage of
the proposed robust filter method over the traditional Kalman filter is that no stochastic
assumptions is needed that may not be valid for the problem at hand. The proposed
filter method has never been applied to estimate the potential GDP. To estimate the
Hungarian potential GDP, the proposed method is applied using uni-, bi- and trivariate
models. Estimations up to 2021 has not been published yet for theHungarian economy.
The examined period includes both the financial world crisis and the Covid-19 crisis.
The results of the different models are consistent. It turned out that the economic
policy was very procyclical after 2012, and the GDP gap was still positive during and
also after the Covid-19 crisis.
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1 Introduction

The concept of potential GDP (Gross Domestic Product) is of great importance for
both economic analysts and economic policy makers. It refers to the maximum value
added of the national economy that is sustainable in the sense that it does not accelerate
inflation. If current GDP is persistently above potential, the economy needs to be
cooled; if it is below potential, it needs to be stimulated according to the principles of
counter-cyclical policy. Since the potential GDP is not a measurable indicator, it can
only be estimated based on some kind of model calculation. The determination of the
potential GDP requires a trend-cycle decomposition, where the trend is the potential
GDP. In practice, different models are used, but they raise different methodological
problems, and their application may lead to significantly different results.

Each model can be grouped in different ways (see e.g. Alpysbaeva et al. (2021),
Apokin et al. (2016), Bhoi et al. (2017), Brand et al. (2021), Cerra et al. (2000), EU
(2019), Pauna et al. (2021), Sallam et al. (2019), St-Amant et al. (1997)). Models can
be distinguished according to whether they include only GDP itself as a variable or
whether they also include other variables that are theoretically relevant to the evolu-
tion of potential GDP. The other variables are usually unemployment and inflation,
which are used to interpret the sustainable evolution of the GDP. Univariate models
usually use some form of trending or decomposition method, the most common in
practice being the standard Hodrick-Prescott filter (see e.g. Bhoi et al. (2017), Mohr
(2005), IMF (2014), Harvey et al. (1993), St-Amant et al. (1997)). The advantage of
this is that it is technically easy to use, but its applicability is greatly reduced by the
fact that the estimate becomes uncertain at the end of the period under consideration,
whereas the method should provide a guide to the potential level for economic policy
as it approaches the present. Multivariate models rely on the relationships between
variables: typically unemployment and inflation are represented in the models to inter-
pret sustainability (maximum output with non-accelerating price and wage inflation).
They are therefore also called structured models. A typical form of structured models
is based on macro-level production functions (e.g. Cerra et al. (2000), Konuki (2010)).
A major drawback of this method is that it requires a choice of different types of pro-
duction functions and it is difficult to provide reliable data for parameter estimation.
Filter models are often used to calculate potential GDP (e.g. Cuche et al. (1999),
Enders et al. (2015), Guillén et al. (2014), Konuki (2010), St-Amant et al. (1997)).
Here, the Kalman filter, well known from engineering applications, is applied to a
stochastic dynamical system given in a state-space representation. This provides a
way to estimate the unobservable variables of the dynamical equations in such a way
that the observable output variable of the system is matched as closely as possible
to the actual measured data. However, to apply the Kalman filter, we need to make
certain stochastic assumptions that are not necessarily satisfied.

The contribution of this paper is twofold:
(a) a theoretically new robust filter method is developed to determine the potential

GDP, which is exempt from stochastic assumptions,
(b) the proposed method is applied to determine the Hungarian GDP.
The paper is organized as follows. Section 2 is the problem statement. Section 3

presents new robust models to estimate the potential GDP. The new theoretic results
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are presented in Sect. 4. Section 5 discusses the results of the application of themodels,
while Sect. 6 draws the conclusions.

Notations: Standard notations are used. In particular, AT and A−1 denote the
transpose and the inverse of matrix A. A > 0 (A < 0) means that the matrix A
is symmetric and positive (negative) definite. In denotes the n × n identity matrix,
0n×m denotes the n × m zero matrix. The symbol ∗ denotes a symmetric structure in
the matrix. Norms of discrete-time functions { f (t) : t ∈ N → Rp} are defined as
‖ f ‖2∞ = supt∈N

{
f (t)T f (t)

}
, ‖ f ‖22 = ∑∞

t=0 f (t)T f (t). Function f is of class �2,
if ‖ f ‖2 < ∞.

2 Problem statement

In the literature, various types of filter models are used to estimate directly unobserv-
able variables like the potential GDP. Some authors tend to present their models as
universal models, often applying the same model for different economies, although
the consideration of specificities is essential both for the choice of the model type and
for the calibration of the parameters.

When choosing the model, different aspects should be taken into consideration.
The inclusion of the unemployment and/or the inflation raises the problem that the
different variables are measured on different scales, and this is hardly discussed in
the literature. The applied models are sometimes presented as universal ones that
can be applied for different economies using practically the same coefficients. The
sign of the coefficients can be expected the same based on practice and theory, but
the magnitude obviously depends on the chosen scales. In the dynamic equation of
the unemployment, the coefficient of the cyclical component of the GDP is often
interpreted as the Okun-parameter (see e.g. Evans (2018), Melolinna et al. (2019))
and it is calibrated around −0.5 as the Okun’s law suggests. It is sometimes used then
for cross-country comparisons, although the other variable in the dynamic equation,
i.e. the GDP is measured on a different scale, and this latter scale (currency and unit)
can vary by country. Thismeans that themultivariate dynamicmodels used for filtering
cannot be universal, the coefficients should be calibrated for each country; there is no
universal Okun-parameter. Moreover, practice has also proven that the Okun’s law is
far from being universal, it has never been derived from any theory; the relationship
between the potential GDP and the unemployment may be different across economies
of similar model and development level. Similar problem emerges, if the inflation is
included in the dynamic model. It is suitable to use multivariate models for filtering, if
it is possible to give a reliable estimation of these coefficients by some external method
for the examined period. One of the advantages of the proposed robust filtering is that,
at least in a restricted way, it is suitable to treat such estimation uncertainties, i.e. to
take into consideration the imperfect knowledge of the dynamics.

The estimation of the potential GDP by filtering is done for a past period, but the
most important result for economic policy is whether the output gap is positive or
negative at the end of the period under consideration, i.e. in the present. The most
commonly used trend calculation method for estimating potential GDP in practice is
the Hodrick-Prescott (HP) filter. Unfortunately, this method gives uncertain results
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just at the end of the period, as the last point will be overweighted in determining the
trend. Another advantage of robust filtering, on the other hand, is that the estimation
error converges to zero as time progresses, so that more reliable results are obtained
at the end of the filtering period. In robust filtering, depending on the choice of the
starting point of the filter, the first few periods may have larger deviations.

Different methods can be used to estimate the parameters of the dynamic equations.
Some authors apply the maximum-likelihood approach with Monte-Carlo simulation,
see e.g. Arouba et al. (2013), Basistha (2007), Bulligan et al. (2019), Busetti et al.
(2016), González-Astudillo et al. (2021), Guillén et al. (2014), IMF (2014), Kuttner
(1994), Melolinna et al. (2019), Morley et al. (2003). Another applicable approach
is the use of structural equations treated by the least squares method, see e.g. Brand
et al. (2021), Lee (2019), Margirier (2018), Sallam et al. (2019). AR/VAR models are
applied in e.g. Alpysbaeva et al. (2021), Apokin et al. (2016), Perron et al. (2009),
St-Amant et al. (1997). The cycle parameters can be based on spectral analysis, see
Harvey et al. (1993). The parameters can be based also on expert opinions, see e.g.
Konuki (2010), Malecek et al. (2021), which are not necessarily based on model
calculations. Any of these methods can be used to estimate the model parameters,
but the result is always subject to uncertainty. If the different methods provide only
certain intervals for the parameters, the energy-to-peak filter for the uncertain system
can be applied, which is free from any stochastic considerations, and can treat the
uncertainties of different nature.

The filtering models for estimating potential GDP frequently apply the Kalman
filter (see e.g. Alpysbaeva et al. (2021), Apokin et al. (2016), Arouba et al. (2013),
Basistha (2007), Cerra et al. (2000), Clark (1987), Cuche et al. (1999), Guillén et al.
(2014), Konuki (2010), Kuttner (1994), Malecek et al. (2021), Melolinna et al. (2019),
Us (2018)), i.e. the dynamic equations are considered to be stochastic, the error terms
are assumed to be normally distributed with known covariance matrices. When the
Kalman-filter is applied, each of the model parameters is supposed to follow normal
distribution with zero mean and known variance matrix. Considering the nature of
the problem, the assumption of a symmetric distribution may not be a well-based
assumption. The basic idea of the robust approach is that uncertainties can be taken
into consideration without any stochastic assumptions. The uncertainties stemming
from the imperfect knowledge of system dynamics can be modelled by nonlinear
deterministic functions, for which only certain boundedness assumptions are made.
In this case, the specific forms of the nonlinear uncertainties are not supposed to be
known, only the class of functions is specified. The exogenous disturbances affecting
the dynamics are also modelled by deterministic functions of class l2. Two possible
approaches of modelling uncertainties could be applied here. If the linear parameter-
varying (LPV) models are used, the set of systems parameters may be anywhere in a
polytope. Another usual approach is to define the set of admissible uncertainties by
certain bounding conditions. The new model proposed here is of this latter type, pro-
viding a flexibleway to capture uncertainties avoiding the possible numerical problems
of the LPV systems, which may not be tractable numerically, if the constraining poly-
tope has too many vertices. The method proposed by this paper, employs the special
structure of dynamics of the problem. We consider all nonlinearities and uncertainties
of the model together, and assume that they are quadratically bounded.
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The focus of this paper is to use measured data i.e. the output of a given dynam-
ical system to estimate unobservable variables: the potential GDP, the natural rate
of unemployment and the reference level of inflation for a past period. To solve this
problem, we propose a new robust filter method, where both nonlinear uncertainties
and exogenous disturbances are taken in consideration in the systems dynamics. The
first contribution of this paper is to propose a new robust energy-to-peak filter method,
which is suitable to estimate non-observable economic indicators such as the potential
GDP. The method proposed to estimate the potential GDP is itself theoretically new,
since it does not assume the stability of the nominal (i.e. the uncertainty-free) system,
which is a usual assumption in previously published papers (with the only exception
of Gyurkovics et al. 2022 (cf. the references therein)). Moreover, the nonlinear terms
that appear in the model are not assumed to be known, as e.g. in de Souza (2019). The
second contribution is the estimation of the Hungarian potential GDP for the Hungar-
ian economy. The examined period includes both the financial crisis in 2008–2012
and the Covid-19 crisis in 2020–2021. Such calculations have not been published yet.

3 Models to estimate the potential GDP

We propose here a class of models to estimate the potential GDP by filtering. With
appropriate specification, these dynamic systems may have nonlinear terms and non-
identified parametric uncertainties, which may depend on time.

All these models are based on the multiplicative relation Yt = Yp,t Yc,t , where t
denotes the time, Yt is the observed GDP, Yp,t is the directly non-observable trend
component, i.e. the potential GDP, and Yc,t is the cyclical component. Taking the
logarithm of both sides, the basic identity y(t) = yp(t) + yc(t) is obtained. Applying
this transformation we consider the following trivariate model.

yp(t + 1) = yp(t) + g(t) + w(yp)(t), (1)

g(t + 1) = g(t) + w(g)(t), (2)
[

yc(t + 1)
y∗

c (t + 1)

]
= �

[
cosω − sinω

sinω cosω

] [
yc(t)
y∗

c (t)

]
+

[
w

(yc)
� (t)

w
(y∗

c )
� (t)

]

, (3)

u p(t + 1) = u p(t) + w(u p)(t), (4)

uc(t + 1) = u p(t) + γu yc(t) + ϕu (t, yc) + w(uc)(t), (5)

πp(t + 1) = πp(t) + w(πp)(t), (6)

πc(t + 1) = πp(t) + γπ yc(t) + ϕπ (t, yc) + w(πc)(t), (7)

y(t) = yp(t) + yc(t), (8)

u(t) = u p(t) + uc(t), (9)

π(t) = πp(t) + πc(t), (10)

where g(.) is the logarithm of the growth rate of the potential GDP, y∗
c (.) is an auxiliary

variable to generate the cycle, u p(.) is the natural rate of unemployment, uc(.) is
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a cyclical component, πp(.) is the natural or reference rate of inflation, πc(.) is a
cyclical component, while u(.) and π(.) are the unemployment rate and the inflation,
respectively. The termsw(.) are the uncertain inputs that are assumed to be �2 functions
in this and later models. The numerical parameters �, ω, (or a1 = � cosω and a2 =
� sinω), γu, γπ are not supposed to be known exactly, but some sets will be specified
to which they belong. The nonlinear functions ϕu (t, yc) and ϕπ (t, yc) represent the
unidentified uncertainties.

Equations (1)–(7) describe the dynamics of the process, while (8)–(10) represent
the measured output.

Specifically, Eqs. (1)–(3) describe the dynamics of the two components of the GDP,
namely of the trend and of the cyclical component. The trend component is identified
as the potential GDP. It increases more or less at the same rate in every time period, see
(1)–(2). The cyclical component is captured by trigonometric terms, where 0 < ω < π

is the cycle frequency, and 0 < ρ < 1 is the damping parameter, see (3).
In Eqs. (4)–(5), the dynamics of the unemployment rate is modelled. To include the

unemployment in the dynamicmodel is a natural idea, since the potentialGDP is a level
of value added that is sustainable in that sense that it does not accelerate the inflation.
Theory suggests that there is a level of unemployment that does not accelerate price
andwage dynamics (the non-accelerating inflation rate of unemployment—NAIRU, or
the non-accelerating wage rate of unemployment—NAWRU). The dynamic equations
describing the relationship between unemployment and potential GDP are based on
(the often debated) various forms of Okun’s law, which theoretically shows howmuch
GDP is below its potential level if unemployment is 1% above its natural rate. By
Okun’s law we may assume that parameter γu is negative, but its value cannot be
derived directly from any form of the Okun’s law. Given the qualitative nature of this
law, it is reasonable to assume that u p depends on yp nonlinearly, but the exact way of
this dependence is unknown. This is represented by the uncertain nonlinear function
ϕu (t, yc) satisfying certain growth conditions specified below.

Equations (6)–(7) describe the dynamics of the inflation rate. Given the definition
of potential GDP, it is logical to include inflation as a separate variable in the model.
For this type of model, authors mostly refer to the Phillips curve, although the the-
oretical problems with this have been discussed for decades. Following Melolinna
et al. (2019), we present inflation in a similar way to unemployment. This means that
we also interpret the natural or reference rate of inflation, which we assume to be a
low inflation rate that does not distort economic processes, but is still far enough away
from the deflationary danger zone. In the dynamic equation of the inflation, the cyclical
component of GDP is also the explanatory variable, but here the coefficient is theoret-
ically positive: in theory, an increase is associated with an increase in the inflation rate,
while a fall is associated with its decrease. This means that the modelling of inflation
is formally analogous to that of the unemployment, but parameter γπ is supposed to
be positive. Its value has to be calibrated, as well. Similarly to the modelling of the
unemployment, it is reasonable to allow an uncertain nonlinear dependence on yp

described by ϕπ (t, yc) , which also satisfies certain growth conditions defined below.
Papers Apokin et al. (2016), Bhoi et al. (2017), Brand et al. (2021) Cerra et al.

(2000), González-Astudillo et al. (2021), IMF (2014), Melolinna et al. (2019), St-
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Amant et al. (1997), Us (2018) apply similar, but more specific models assuming fully
linear models with given constant numerical parameters.

Remark 1 As mentioned in Harvey (1985), representation (3) can be rewritten also as
an AR(2) process

yc(t + 1) = φ1yc(t) + φ2yc(t − 1) + εc
y

with φ1 = 2ρcosω and φ2 = −ρ2. Though the two representations are equivalent, we
apply here the explicit model of the cyclical process, although the proposed method
could be applied to the AR(2) form, too.

In what follows, we shall investigate models with different complexity that will be
referred to as Model 1, Model 2 and Model 3 as follows.

Model 1 is univariate model including only the GDP. It is given by Eqs. (1)–(3)
and (8). Papers Alqarelleh (2019), Bulligan et al. (2019), Harvey et al. (2003), Mohr
(2005) considered the more specific case with constant � and ω.

Model 2 is bivariate, which includes only two variables: the GDP and the unem-
ployment rate. This means that this model includes Eqs. (1)–(5) and (8)–(9). Papers
Evans (2018), González-Astudillo et al. (2021), Margirier (2018) investigated this
model with constant parameters �, ω, γu, and with ϕu (t, yc) ≡ 0 and ϕπ (t, yc) ≡ 0.

Model 3 is the trivariate model given by Eqs. (1)–(10).

Assumption 1 The numerical parameters of the models that may be time-independent
or time varying, have known bounds, while the uncertain nonlinearities satisfy the
condition

ϕu (t, yc) (ϕu (t, yc) − θu yc) ≤ 0, ϕπ (t, yc) (ϕπ (t, yc) − θπ yc) ≤ 0, (11)

where θu and θπ are given numbers.

The uncertain nonlinearity satisfying (11) is referred to as Lur’e-type uncertainty.

4 Robust energy-to-peak filtering

4.1 General problem formulation

In this paper two types of uncertain discrete-time systems will be considered:

S1 : x(t + 1) = Ax (α)x(t) + Bx (α)w(t), (12)

y(t) = Cy(α)x(t) + By(α)w(t), (13)

z(t) = L(α)x(t), (14)

and

S2 : x(t + 1) = Ax x(t) + Hx px (t) + Bxw(t), qx (t) = Aq x(t) + Gx px (t),
(15)
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y(t) = Cy x(t) + Hy py(t) + Byw(t), qy(t) = Cq x(t) + G y py(t),
(16)

z(t) = Lx(t). (17)

In both systems, x ∈ Rnx is the state, w ∈ Rnw is the exogenous disturbance, which
belongs to �2, y ∈ Rny is the measured output, z(t) ∈ Rnz is the signal to be estimated,
and all matrices are of appropriate dimension.

System S1 represents a polytopic uncertain system, having coefficient matrices that
are assumed to belong to the polytope


 = {
Ax (α), Bx (α), Cy(α), By(α), L(α)

} =
σ∑

i=1

αi

{
A(i)

x , B(i)
x , C (i)

y , B(i)
y , L(i)

}

(18)

where α ∈ � = {
α : ∑σ

i=1 αi = 1, αi ≥ 0
}
, and σ is the number of vertices of the

polytope. The current values of the parameters are not assumed to be available for
computations.

In S2, the system matrices are assumed to be known, and all systems non-
linearities/uncertainties are represented by the uncertain input functions px , py,

possibly depending on t , x, and by the the uncertain output functions qx , qy . Denote

p = [
pT

x pT
y

]T ∈ Rl p , and q = [
qT

x qT
y

]T ∈ Rlq . According to the different kinds
of uncertainties/nonlinearities that may arise, p and q are divided into s ≥ 1 subcom-
ponents p = (pT

1 , . . . , pT
s )T , q = (qT

1 , . . . , qT
s )T and matrix G = diag

{
Gx , G y

}

assumed to have a corresponding block-diagonal structure G = diag {G1, . . . , Gs}.
The only available information about p and q is that their values are constrained by
the set

� =
{[

p
q

]
∈ Rl p+lq :

[
pi

qi

]T [
Q0i S0i

ST
0i R0i

] [
pi

qi

]
≥ 0, i = 1, . . . , s

}

, (19)

where l p = l p1 + · · · + l ps , lq = lq1 + · · · + lqs . For i = 1, . . . , s, Q0i = QT
0i ,

R0i = RT
0i ≥ 0 and S0i are constant matrices of appropriate dimension. The set (19)

will be called the set of admissible nonlinearities/uncertainties. It has to be pointed out
that— in contrast to de Souza (2019)— the nonlinearities that may occur in (15)–(16)
are not supposed to be known.

Set Q0 = diag {Q01, . . . , Q0s} , R0 =diag {R01, . . . , R0 s} , S0 = diag
{

S01, . . . ,
S0 s

}
. The following condition will be required for �.

Assumption 2 R0 ≥ 0, Q0 + GT ST
0 + S0G + GT R0G < 0.

Observe that Assumption 2 assures the well-posedness of system (15)–(16), and
that the origin is an equilibrium point of the unperturbed uncertain/nonlinear system.

It is worth noting that the considered model of uncertainties involves several types
of uncertainties frequently investigated in the literature. For example, by appropriate
choice of Q0, S0 and R0, one can describe norm bounded and Lur’e type uncertainties
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of the previous section, as well as linear fractional, generalized positive real and sector
bounded uncertainties.

The aim is to find a filter F

F : x̂(t + 1) = Âx̂(t) + Ĥ y(t),

ẑ(t) = Ĵ x̂(t) + K̂ y(t),

where x̂(t) ∈ Rnx , ẑ(t) ∈ Rnz so that the following conditions hold for any α ∈ �:
1. The error e(t) = z(t) − ẑ(t) satisfies condition limt→∞ e(t) = 0, if w(t) ≡ 0.
2. A prescribed disturbance attenuation level γ is guaranted for all nonzero w(t) ∈

�2, i.e. for zero initial value

‖e‖2∞ < γ 2 ‖w‖22 . (20)

Then filterF is said to be a filter with a guaranteed robust energy-to-peak performance
bound γ.

The robust filter design methods proposed in the literature (with the only exception
of Gyurkovics et al. (2022)) can only be applied, if the magnitude of the eigenvalues
of matrix Ax is strictly less then 1, which is not satisfied for the models of Sect, 2.
Similarly to the paper Gyurkovics et al. (2022), it will be shown, how the requirement
of asymptotic stability of the unperturbed system can be relaxed in order to apply the
robust filtering to estimate the potential GDP.

Condition 1 (Relaxed stability condition.) There are nx1 variables which are not
affected by uncertainties, i.e. with possible renaming of variables, x can be parti-
tioned as xT = [

xT
1 , xT

2

]
, (x1 ∈ Rnx1 , x2 ∈ Rnx2 ) and the coefficient matrices can

be written as

Ax =
[

A11 A12
0 A22

]
, Cy = [

C1 C2
]
, L = [

L1 L2
]
,

Hx =
[

Hx1
Hx2

]
, Aq = [

0 Aq2
]
, Cq = [

0 Cq2
]
,

where matrices A12, A22, C2 and L2 may depend on the parameter α, if system S1 is
considered. Moreover, the magnitude of the eigenvalues of A22 is less than 1.

Considering the analogous partition of the filter data, the matrices of the filter are
chosen to satisfy

Â11 = A11 − Ĥ1C1, Â21 = −Ĥ2C1 and Ĵ1 = L1 − K̂ C1. (21)
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4.2 Robust filtering result for the polytopic systemS1

In order to formulate the design conditions, define a matrix �(m, n) ∈ Rn×m :
�(m, n) = In , if n = m,

�(m, n) =
[

In

0

]
, if n < m, �(m, n) = [

Im 0
]
, if n > m.

Theorem 1 Consider systemS1, and suppose that Condition 1 is satisfied. Let the data
of the filter F satisfy (21). If for given scalar parameters β, c1, b j , d j , ( j = 1, . . . , 6),
there exist matrices Pi = PT

i , Ri , Si , U , V , X ∈ Rncl×ncl , Wi , Y ∈ Rnw×ncl ,

(i = 1, . . . , σ ), F1 ∈ Rnx1×nx1 , F2 ∈ Rnx2×nx2 , A12 ∈ Rnx1×nx2 , A22 ∈ Rnx2×nx2 ,

H1 ∈ Rnx1×ny , H2 ∈ Rnx2×ny , K̂ ∈ Rnz×ny Ĵ2 ∈ Rnz×nx2 such that the following
linear matrix inequalities (LMIs) admit a solution:

⎡

⎣
−Pi ∗ ∗
0 −I ∗

L(i) D(i) −γ 2 I

⎤

⎦ < 0, i = 1, . . . , σ, (22)

[
�(i) + ϒ�

(i)
2 + �

(i)
2

T
ϒT ∗

β�T + �
(i)
2 −β

(
F + FT

)

]

< 0, i = 1, . . . , σ, (23)

where

L(i) =
[

L1 − K̂ C1 L2 − K̂ C (i)
2 L2 − K̂ C (i)

2 − Ĵ2
]
, D(i) = −K̂ B(i)

y ,

�(i) = �(i) + ��
(i)
1 + �

(i)
1

T
�T ,

�(i) =

⎡

⎢⎢
⎣

Pi 0

0 −Pi

Ri 0

Si 0

∗ 0 W T
i

Wi 0

⎤

⎥⎥
⎦ , � =

⎡

⎢⎢
⎣

U
V
X
Y

⎤

⎥⎥
⎦ , ϒ =

⎡

⎢⎢⎢
⎣

ϒ1

ϒ2

ϒ3

ϒ4

⎤

⎥⎥⎥
⎦

,

�
(i)
1 =

⎡

⎢
⎣

−I 0 0

0 −I 0

0 0 −I

A11 A(i)
12 A(i)

12

0 A(i)
22 A(i)

12

0 0 0

−I 0 0

0 −I 0

0 0 −I

B(i)
x1

B(i)
x2

0

⎤

⎥
⎦ ,

�
(i)
2 =

[
0 0 0
0 0 0

H1C1 H1C (i)
2 H1C (i)

2 + A12

H2C1 H2C (i)
2 H2C (i)

2 + A22

0 0 0
0 0 0

H1B(i)
y

H2B(i)
y

]

,

ϒ1 =
⎡

⎣
b1 Inx1

d1N
b2M d2 Inx2

b2M d2 Inx2

⎤

⎦ , ϒ2 =
⎡

⎣
b3 Inx1

d3N
b4M d4 Inx2

b4M d4 Inx2

⎤

⎦ , ϒ3 =
⎡

⎣
b5 Inx1

d5N
b6M d6 Inx2

b6M d6 Inx2

⎤

⎦ ,

ϒ4 = c1M1, M = �
(
nx2 , nx1

)
, N = �

(
nx1 , nx2

)
, M1 = �(nw, nx ) ,
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� = �I + ϒG, I =
[−Inx1

0 0
0 −Inx2

Inx2

]T

, F =
[

F1 0
0 F2

]
,

then F is a filter with a guaranteed robust energy-to-peak performance bound γ . If
(22) and (23) are feasible, then the filter matrices can be obtained by

Â12 = F−1
1 A12, Â22 = F−1

2 A22, Ĥ1 = F−1
1 H1, Ĥ2 = F−1

2 H2, (24)

and (21).

Proof. The proof is given in Gyurkovics et al. (2022).

4.3 Robust filtering result for the uncertain/nonlinear systemS2

Consider now system S2 with filter F . For the variable x̄ = [
xT x̂T

]T
one can write

the closed-loop system as

x̄(t + 1) = Āx̄ x̄(t) + H̄x̄ p(t) + B̄w(t), (25)

qx̄ (t) = Āq̂ x̄(t) + Gp(t), (26)

z̄(t) = z(t) − ẑ(t) = [
L Ĵ

]
x̄(t), (27)

where

Ā =
[

A 0
ĤCy Â

]
, H̄ =

[
Hx 0
0 Ĥ Hy

]
, B̄ =

[
Bx

Ĥ By

]
, Āq =

[
Aq 0
Cq 0

]
.

Let us introduce a new system of coordinates by the definition

ξ = [
(x1 − x̂1)T (x2 − x̂2)T x̂T

2 (x1 + x̂1)T
]T

,

and take the partition ξ = [
ξ T
1 ξ T

2

]T
, ξ1 ∈ Rncl , ξ2 ∈ Rnx1 (ncl = nx1 + 2nx2 ). Per-

forming the corresponding transformation on (25)–(27), one obtains the error system
E as follows:

E :
[
ξ1(t + 1)
ξ2(t + 1)

]
=

[ A 0
A21 A22

] [
ξ1(t)
ξ2(t)

]
+

[ H
H2

]
p(t)

[ B
B2

]
w(t), (28)

q(t) = [Aq 0
] [

ξ1(t)
ξ2(t)

]
+ Gp(t), (29)

e(t) = [L 0
] [

ξ1(t)
ξ2(t)

]
+ Dw(t), (30)
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where

A =
⎡

⎣
A11 − Ĥ1C1 A12 − Ĥ1C2 A12 − Ĥ1C2 − Â12

−Ĥ2C1 A22 − Ĥ2C2 A22 − Ĥ2C2 − Â22

Ĥ2C1 Ĥ2C2 Â22 + Ĥ2C2

⎤

⎦ ,

A21 = [
Ĥ1C1 A12 + Ĥ1C2 A12 + Ĥ1C2 + Â12

]
, A22 = A11,

H =
⎡

⎣
Hx1 −Ĥ1Hy

Hx2 −Ĥ2Hy

0 Ĥ2By

⎤

⎦ , B =
⎡

⎣
Bx1 − Ĥ1By

Bx2 − Ĥ2By

Ĥ2By

⎤

⎦ , Aq =
[
0 Aq2 Aq2
0 Cq2 Cq2

]
,

H2 = [
Hx1 Ĥ1Hy

]
, B2 = [

Bx1 + Ĥ1By
]
,

L = [
L1 − K̂ C1 L2 − K̂ C2 L2 − K̂ C2 − Ĵ2

]
, D = −K̂ By .

One can see that the subspaceH = {
ξ ∈ R2nx : ξ1 = 0

}
is invariant for E, ifw(t) ≡ 0,

and e(t) → 0 as t → ∞, if the distance d(ξ(t),H) → 0 as t → ∞. Therefore, it is
sufficient to investigate the behavior of the error system E with respect to this subspace.

Before formulating the filter design conditions for system E , some further notations
are needed. For any positive numbers εi , τi , i = 1, . . . , s, let

τ = diag{τ1 Il p1 , . . . , τs Il ps }, τ = diag{τ1 Ilq1 , . . . , τs Ilqs },
ε = diag{ε1 Il p1 , . . . , εs Il ps }, ε = diag{ε1 Ilq1 , . . . , εs Ilqs }.

Theorem 2 Consider system S2, and suppose that Assumption 2 and Condition 1
are satisfied. Let the data of the filter F satisfy (21). If for given scalar param-
eters β, ci , (i = 1, 2, 3), b j , d j , ( j = 1, . . . , 6), there exist matrices P =
PT , Ri , Si , Zi , Ui , Vi , (i = 1, 2), X j , Y j , ( j = 1, . . . , 7), F1, F2, A12, A22,

H1, H2, K̂ , Ĵ2 and positive numbers εi , τi , ( i = 1, . . . , s), such that the follow-
ing linear matrix inequalities (LMIs) admit a solution:

⎡

⎢⎢⎢
⎣

−P + AT
q εR0Aq ∗ ∗ ∗
0 −I ∗ ∗(

εS0 + GT εR0

)
Aq 0 εQ0 + GT ST

0 ε + εS0G + GT εR0G ∗
L D H −γ 2 I

⎤

⎥⎥⎥
⎦

< 0,

(31)
[
� + ��1 + �1

T �T − ϒ�2 − �2
T ϒT ∗

β(�I + ϒ F)T + �2 −β
(
F + FT

)
]

< 0,

(32)
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where

� =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

P ∗ ∗ ∗
0 −P ∗ ∗

RT
1 ST

1 0 ∗
0 0 Z1 −I

∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗
∗
∗
∗

0 0 U1 0
0 0 V1 0

τ Q0 ∗
ST
0 τ τ R0

∗
∗

RT
2 ST

2 0 Z T
2 U T

2 V T
2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, � =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

X1 Y1
X2 Y2
X3 Y3
X4 Y4
X5 Y5
X6 Y6
X7 Y7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, ϒ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ϒ1
ϒ2
ϒ3
ϒ4
ϒ5
ϒ6
ϒ7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(33)

�1 =

⎡

⎢⎢⎢⎢
⎣

−I 0 0 A11 A12 A12 −I 0 0 Bx1 Hx1 0 0 0 0 0
0 −I 0 0 A22 A12 0 −I 0 Bx2 Hx2 0 0 0 0 0
0 0 −I 0 0 0 0 0 −I 0 0 0 0 0 0 0
0 0 0 0 Aq2 Aq2 0 0 0 0 Gx 0 −I 0 −I 0
0 0 0 0 Cq2 Cq2 0 0 0 0 0 G y 0 −I 0 −I

⎤

⎥⎥⎥⎥
⎦

,

�2 =
[
0 0 0 H1C1 H1C2 H1C (i)

2 + A12 0 0 0 H1By 0 H1Hy 0 0 0 0
0 0 0 H2C1 H2C2 H2C (i)

2 + A22 0 0 0 H2By 0 H2Hy 0 0 0 0

]

,

ϒ1 =
⎡

⎣
b1 Inx1

d1N
b2M d2 Inx2

b2M d2 Inx2

⎤

⎦ , ϒ2 =
⎡

⎣
b3 Inx1

d3N
b4M d4 Inx2

b4M d4 Inx2

⎤

⎦ , ϒ3 =
⎡

⎣
b5 Inx1

d5N
b6M d6 Inx2

b6M d6 Inx2

⎤

⎦ ,

ϒ4 = c1M1, ϒ5 = c2M2, ϒ6 = c3M3, ϒ7 = c3M3,

M = �
(
nx2 , nx1

)
, N = �

(
nx1, nx2

)
, M1 = �(nw, nx ) , M2 = �

(
l p, nx

)
,

M3 = �
(
lq , nx

)
,

I =
[−Inx1

0 0 0 0
0 −Inx2

Inx2
0 0

]T

, F =
[

F1 0
0 F2

]
, (34)

then F is a filter with a guaranteed robust energy-to-peak performance bound γ for
system S2. If (31) and (32) are feasible, then the filter matrices can be obtained by
(21) and (24).

Proof The proof follows a similar line, as it frequently can be seen in the literature, one
has only to use a Lyapunov function defined in a way usual at stability of sets. Indeed,
let P ∈ Rncl×ncl be positive definite, and define V by V (ξ) = ξ T

[
Incl0

]T
P

[
Incl0

]
ξ.

Then there are positive numbers μ1, μ2 such that μ1‖ξ1‖2 ≤ V (ξ) ≤ μ2‖ξ1‖2. On
the other hand,

V (ξ(t + 1)) − V (ξ(t)) − w(t)T w(t)

=
⎡

⎣
ξ1(t)
w(t)
p(t)

⎤

⎦

T ⎡

⎣
I 0 0
0 I 0
A B H

⎤

⎦

T ⎡

⎣
−P 0 0
0 −I 0
0 0 P

⎤

⎦

⎡

⎣
I 0 0
0 I 0
A B H

⎤

⎦

⎡

⎣
ξ1(t)
w(t)
p(t)

⎤

⎦ . (35)


�
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If (pT , qT )T ∈ �, then for any positive numbers τi , (i = 1, . . . , s),

0 ≤ (∗)(∗)

[
τ Q0 τ S0
∗ τ R0

] [
0 0 I
Aq 0 G

] ⎡

⎣
ξ1(t)
w(t)
p(t)

⎤

⎦ . (36)

Adding (36) to (35), and introducing the notation

� = (∗)

⎡

⎢⎢⎢⎢
⎣

−P 0 0 0 0
0 −I 0 0 0
0 0 P 0 0
0 0 0 τ Q0 τ S0
0 0 0 ST

0 τ τ R0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

I 0 0
0 I 0
A B H
0 0 I
Aq 0 G

⎤

⎥⎥⎥⎥
⎦

, (37)

one can immediately see that

V (ξ(t + 1)) − V (ξ(t)) − w(t)T w(t) ≤
⎡

⎣
ξ1(t)
w(t)
p(t)

⎤

⎦

T

�

⎡

⎣
ξ1(t)
w(t)
p(t)

⎤

⎦ , (38)

therefore, if� < 0, then the left hand sideof (38) is less than−μ3
(‖ξ1(t)‖2 + ‖w(t)‖2

+‖p(t)‖2) with some μ3 > 0. This implies that, for any admissible uncertainty,
‖ξ1(t)‖ → 0 and ‖e(t)‖ → 0 when t → ∞, if w(t) ≡ 0. By summing up, it follows
from (38) and � < 0 that, for ξ1(0) = 0,

V (ξ(t)) <

t−1∑

k=0

w(k)T w(k). (39)

By using Schur complement to inequality (31), applying congruence with[
ξ1(t)T w(t)T p(t)T

]T
, and observing that inequality (36) remains valid, if τi -s are

replaced by arbitrary positive εi -s, one can verify that

e(t)T e(t) ≤γ 2
(

V (ξ(t)) + w(t)T w(t)
)

. (40)

Now, (39) and (40) immediately imply (20).
In what follows, we prove that inequality (32) implies � < 0.
Inequality � < 0 can equivalently be written as

�0⊥
T
�0�0⊥ < 0, with

�0 =

⎡

⎢⎢⎢⎢
⎣

P ∗ ∗ ∗ ∗
0 −P ∗ ∗ ∗
0 0 −I ∗ ∗
0 0 0 τ Q0 ∗
0 0 0 ST

0 τ τ R0

⎤

⎥⎥⎥⎥
⎦

, �0⊥ =

⎡

⎢⎢⎢⎢
⎣

A B H
I 0 0
0 I 0
0 0 I
Aq 0 G

⎤

⎥⎥⎥⎥
⎦

. (41)
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The application of Finsler’s lemma (see e.g. in Appendix) gives that (41) is equivalent
to the existence of a matrix �0 such that

�0 .=�0 + �0�0 + �0T
�0 < 0, (42)

where

�0 =
[−I A B H 0
0 Aq 0 G 0

]
, �0 =

[
RT
1 ST

1 Z T
1 U T

1 V T
1

RT
2 ST

2 Z T
2 U T

2 V T
2

]T

.

One can check with an immediate calculation that (42) can be written as

�0 =�T⊥��⊥ < 0, (43)

where � is given in (33), and

�⊥ =

⎡

⎢⎢⎢⎢
⎣

I 0 −I 0 0 0 0
0 I AT 0 0 0 AT

q
0 0 BT I 0 0 0
0 0 HT 0 I 0 GT

0 0 0 0 0 I −I

⎤

⎥⎥⎥⎥
⎦

T

.

Then

� =
[−I A −I B H 0 0
0 Aq 0 0 G −I −I

]
.

With the application of Finsler’s lemma ii) and iii) it follows that�0 < 0 is equivalent
to the existence of a � given in (33) such that

� + �� + �T � < 0. (44)

Set � as the sum � = �1 + I�̃2, where �1 is given by (34), and �̃2 is defined by

�̃2 =
[

Ĥ1 Â12

Ĥ2 Â22

] [
0 0 0 C1 C2 C2 0 0 0 By 0 Hy 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0

]
,

then (44) can be rewritten in the form of

� + ��1 + �T
1 � + �I�̃2 + �̃T

2 IT �T < 0. (45)

Let F andϒ bematrices defined in the theorem.Add and subtract thematrixϒ F�̃2 and
its transpose to the left hand side of inequality (45), and introduce the new variables
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A12 = F1 Â12, A22 = F2 Â22, H1 = F1 Ĥ1 H2 = F2 Ĥ1. Then one obtains that
�2 = F�̃2, and (45) can equivalently be written as

� + ��1 + �1
T �T − ϒ�2 − �2

T ϒT + (�I + ϒ F) �̃2 + �̃T
2 (�I + ϒ F)T < 0.

(46)

The application of Lemma 2 verifies that inequalities (46) and (32) are equivalent,
which completes the proof.

5 Application to the estimation of the Hungarian potential GDP

In this section, it will be shown, how the robust filter design methods of the previous
section can be applied to the models of Sect. 3. First, the data of Model 3 will be given
in details.

The model variables of Sect. 3 and the variables of the general models of Sect. 4
can be identified as follows:

x(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

yp(t)
g(t)

u p(t)
uc(t)
πp(t)
πc(t)
yc(t)
y∗

c (t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, w(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

w(yp)(t)
w(g)(t)
w(u p)(t)
w(uc)(t)
w(πp)(t)
w(πc)(t)
w(yc)(t)
w(y∗

c )(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, y(t) =
⎡

⎣
y(t)
u(t)
π(t)

⎤

⎦ , z(t) =
⎡

⎣
yp(t)
u p(t)
πp(t)

⎤

⎦ .

(47)

(Emphasize that, in (47), — with a small abuse of notations - y(t) on the left hand
side denotes the measured output variable of the general model, while it is the GDP
on the right hand side!)

Then Model 3 can be given in matrix–vector notation form as

x(t + 1) = Ax x(t) + Hx px (t) + Bxw(t), qx (t) = Aq x(t), (48)

y(t) = Cy x(t), (49)

z(t) = Lx(t). (50)

where Hx ∈ Rnx ×0 and Aq ∈ R0×nx (i.e. empty matrices), if model S1 is considered
and they are given below for model S2. Further,
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Ax =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 γu 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 γπ 0
0 0 0 0 0 0 a1 −a2
0 0 0 0 0 0 a2 a1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Hx =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 −1
0 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

a1 = � cosω, a2 = � sinω,

Cy =
⎡

⎣
1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

⎤

⎦ , L =
⎡

⎣
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

⎤

⎦

If system S1 is considered, then a1, a2 are obtained as the convex combination of the
four vertices ai j

1 = �i cosω j , and ai j
2 = �i sinω j , with given (�i , ω j )(i, j = 1, 2),

while γu and γπ are taken to be fixed in order to avoid large computational burden.
If system S2 is considered, then Ax is taken with fixed parameters γu = γ 0

u ,

γπ = γ 0
π , a1 = a0

1 = �0 cosω0, and a2 = a0
2 = �0 sinω0, with given (�0, ω0).

Further, px 1(t) = ϕu
(
t, qx 1(t)

)
, qx 1(t) = δ̄1x7(t), and px 2(t) = ϕπ

(
t, qx 2(t)

) =
δ2(t)qx 2(t), qx 2(t) = δ̄2x7(t), px i (t) = δi (t)qx i (t), qx i (t) = δ̄i

[
x7(t) x8(t)

]T
,

(i = 3, 4), where δ̄ j ( j = 1, . . . , 4) are given positive numbers and |δi (t)| ≤ 1,
(i = 2, 3, 4). Thus

Aq = [
06×6 �̄

]
, with �̄ =

[
δ̄1 δ̄2 δ̄3 0 δ̄4 0
0 0 0 δ̄3 0 δ̄4

]T

, (51)

and Q01 = −1, S01 = b/2, R01 = 0, Q02 = −1, S02 = 0, R02 = 1, Q0i = −I2,
S0i = 02, R0i = I2, (i=3,4).

The data for Models 1 and 2 can be obtained by logically omitting variables, rows
an columns in matrices given above.

The quarterly potential GDP of Hungary has been determined for Hungary by
energy-to-peak robust filtering based on Theorem 1 and 2 for the period 2000–2021.
Calculations were carried out with all the three models introduced in Sect. 3. The cycle
has been modelled by dynamics (3). One can see that the relaxed stability condition
required to apply the robust filter (see Sect. 3) has been satisfied. In all model runs,
two different cycle lengths have been considered, when ω is around either 2π/80 (the
case of long cycle) or around 2π/30 (the case of short cycle). (Similar cycle lengths
have been considered in Bulligan et al. (2019) (30 and 85 quarters). Evans (2018)
considered 36–144 months, the average of which corresponds to our shorter cycle
length.) The numerical values of parameters are given in Table 1.

With the data given in Table 1, system S2 allows a wither range of the parameters’
variations, then S1.

OnFig. 1, the red rectangle and the polytopewith blue boundary depict the allowable
range of variations of the parameters a1 and a2 for systems S2 and S1, respectively.
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Fig. 1 Uncertainty domains for a1–a2: a the case of long cycle, b the case of short cycle

Fig. 2 GDP results for Model 1 with polytopic (S1) and quadratically bounded (S2) uncertainties

The contribution of yc to the right hand sides of Eqs. (5) and (7) is −0.03yc ≤
γ 0

u yc +ϕu (t, yc) ≤ −0.01yc and 0.005yc ≤ γ 0
π yc ≤ 0.015yc in the case of S2, while

it is −0.02yc and 0.01yc in the case of S1, respectively.
Consider now the results beginning with the simplest Model 1 and continuing with

the more involved Model 2 and Model 3.
Model 1 First, consider the results of the univariate Model 1. The application of

Theorem 1 resulted in the energy-to-peak performance bounds γ = 5.03 for the long
cycle case, and γ = 3.11 for the short cycle case, while Theorem 2 yielded γ = 4.22
for the long cycle case, and γ = 2.79 for the short cycle case. Considering either
system S1 or S2, the results are similar. The filtered and the actual values of the GDP
are very close to each other (see Fig. 2a, b), although the filter could dampen the
volatility, especially around the troughs of the two crises.

Even the multivariate models used to determine potential GDP are very simple in
terms of systems paramteres. The successful application strongly influenced by their
appropriate choice: the parameter values should be adjusted to the specifically exam-
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Fig. 3 GDP results for Model 2 with polytopic (S1) and quadratically bounded (S2) uncertainties

Fig. 4 Unemployment results forModel 2 with polytopic (S1) and quadratically bounded (S2) uncertainties

ined economy. Furthermore, not only the specific parameter values may be different,
but it cannot be expected that the samemodel would be equally successful for different
national economies.

Model 2 In this case we filtered for both the GDP and the unemployment rate.
The results for Model 2 are depicted on Fig. 4a, b. The application of Theorem 1
resulted in the energy-to-peak performance bounds γ = 5.03 for the long cycle case,
and γ = 2.69 for the short cycle case, while Theorem 2 yielded γ = 4.24 for the
long cycle case, and γ = 2.79 for the short cycle case. In the case of Hungary, the
experiments with Model 2 proved to be relatively stable. One can observe on Fig. 3a,
b that the dynamic character of the GDP and that of the filtered time-series are similar
if either cycle length is chosen.

The application of long cycle shows amore characteristic result, as there are greater
differences between theGDP and the filtered values. The financial world crisis affected
the Hungarian economy until 2012, when the measured values were lower than the
filtered ones. Since then, the Hungarian economic policy was procyclical until the
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Covid-19 crisis as Fig. 3a, b show, i.e., the GDP gap was positive. If system S2 was
considered (with quadratically bounded uncertainty), one can see on Fig. 3a, b that just
before the Covid-19 crisis, the GDP gap increased. In fact, the inflation rate increased,
and the external balance deteriorated. After the Covid-19 crisis, the economy bounced
back quickly, and the growth-focussed procyclical economic policy returned. Our
calculations show that — in spite of the Covid-19-induced relapse — the GDP gap
was still positive at the end of 2021. Figure4a, b show that the impact of the finan-
cial crisis on unemployment rate was significantly higher and longer than that of the
Covid-19. The measured unemployment became far higher than its natural rate as the
consequence of the financial crisis, and the difference was far lower from 2015, when
the GDP gap was positive. This is consistent with the calculated potential GDP. We
remark that the estimated values of coefficients of the models depend on the actual
economic policy measures of the examined economy. The dynamic equations of the
model formulate relationships of the market economy, while the measures might go
against or at least dampen the market reactions. This is also true for the γu in Model
2 (and in Model 3 below, as well). For example, in Hungary the unemployment has
been treated by an extensive public work program launched after 2010 that distorted
the unemployment rate in certain years before the Covid-19 crisis. The benefit period
is just three months in Hungary, which is exceptionally short in the European Union.
After it these people may be employed as public — or fostered — workers earning
well below the minimum wage for some low value-added work, but they are counted
as employed in the statistics. This means that the difference between the natural and
the actual rate of unemployment would be larger without such a measure.

Model 3 The results for Model 3 are depicted on Figs. 5a, 6 and 7b. The application
of Theorem 1 resulted in the energy-to-peak performance bounds γ = 5.03 for the
long cycle case, and γ = 2.69 for the short cycle case, while Theorem 2 yielded
γ = 4.24 for the long cycle case, and γ = 2.79 for the short cycle case. The results
of this model are consistent with those of Model 2 applying either type of uncertainty
and either cycle length. Again, the filtering of S2 with long cycle shows the procyclical
economy before and after the Covid-19 crisis (see Fig. 5b). The largest positive GDP
gap can be observed in 2017–2019, when the inflation increased and the external
balance began to deteriorate at a high rate of economic growth. The deep Covid-19
crisis did not the reduced the GDP gap for a longer time, while also the central budget
deficit became very high.

The difference between the actual unemployment rate and its filter value was high
during both crises, but in Model 3, the actual rates were almost equal to the filtered
values in the second half of the 2010s because of the expansive economic policy.
Corresponding to the procyclical, growth-focussed economic policy, the actual infla-
tion was always higher than its reference level, except in 2015, when the rate was
slightly below zero, see Fig. 7a, b. We remark however that Hungary is an extremely
open economy. In this case the inclusion of the inflation rate as formulated in Model 3
might distort the results. Namely, in case of economic downturn the way of adjustment
can be the weakening of the domestic currency, which may even raise the inflation,
i.e. the expected positivity of γπ may not hold true for certain periods.

Since past values can only be computed, but not observed by statistics, there is no
objective criterion for comparing the goodness of the results. All the experimental
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Fig. 5 GDP results for Model 3 with polytopic (S1) and quadratically bounded (S2) uncertainties

Fig. 6 Unemployment results forModel 3 with polytopic (S1) and quadratically bounded (S2) uncertainties

Fig. 7 Inflation results for Model 3 with polytopic (S1) and quadratically bounded (S2) uncertainties
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runs proved to be robust, model S2 with the longer cycle length provided the most
characteristic results, which can be justified in economic terms, too.

6 Conclusions

In this paper a new filter method is proposed, which is suitable to determine non-
observable economic indicators, e.g. the potential GDP, which is a crucial information
both for policymakers and for analysts. The main advantage of the proposed robust
filtermethod over the traditional Kalman filter is that we do not have tomake stochastic
assumptions that may not be valid for the problem at hand. Instead, we can take
into account the uncertainties of the dynamic system using unknown deterministic
parameters and/or nonlinear functions. This means that a new model, not yet used
in the literature, was applied to estimate the potential GDP. Uncertainties were taken
into account in two ways. One is the application of a linear parameter varying (LPV)
system, the other is the use of quadratically bounded uncertainties. In contrast to robust
filtering results known from the literature, certain partial stability of the nominal system
is sufficient for the proposed methods, which is a theoretically new result.

The proposed method was applied to estimate the Hungarian potential GDP based
on quarterly data. We tested uni-, bi- and trivariate to estimate the Hungarian potential
GDP in 2000–2021. Such estimation has not been published yet. The examined period
included both the financial world crisis and the Covid-19 crisis. Similarly to several
papers, two different cycle lengths have been taken into account. The results have been
consistent, but the most characteristic results were provided by the bi- and trivariate
models with quadratically bounded uncertainties with the longer cycle length. It turned
out that the economic policy was very procyclical after 2012, and the GDP gap was
still positive during and after the Covid-19 crisis.

Funding Open access funding provided by Corvinus University of Budapest.

Declarations

Conflict of interest Author ÉvaGyurkovics declares that she has no conflict of interest. Author Tibor Takács
declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed
by any of the authors.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


É. Gyurkovics, T. Takács

Appendix

For convenience of the readers, two lemmas needed for the proof of Theorem 2 is
given below.

Lemma 1 de Oliveira et al. (2001) (Finsler’ s lemma) Let x ∈ Rn, Q = QT ∈ Rn×n

andB ∈ Rm×n such that rank(B) < n. Then, the following statements are equivalent:

(i) xTQx < 0, ∀Bx = 0, x �= 0.

(ii) BT⊥QB⊥ < 0, where B⊥ is the kernel of B; i.e. BB⊥ = 0;
(iii) ∃X ∈ Rn×m : Q + XB + BTX T < 0.

Lemma 2 Chang et al. (2015) For scalar β and for matrices �, �, �, G of compatible
dimension the following statements are equivalent:

(i)

[
� ∗

β� + G� −β
(
G + GT

)
]

< 0,

(ii) � < 0, � + �� + �T �T < 0.
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