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ABSTRACT
We revise Krein’s extension theory of positive symmetric operators.
Our approach using factorization through an auxiliary Hilbert space
has several advantages: it can be applied to non-densely defined
transformations and it works in both real and complex spaces. As
an application of the results and the construction we consider pos-
itive self-adjoint extensions of the modulus square operator T∗T of
a densely defined linear transformation T and bounded self-adjoint
extensions of a symmetric operator. Krein’s results on the uniqueness
of positive (respectively, normpreserving) self-adjoint extensions are
also revised.
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1. Introduction

The complete description of positive self-adjoint extensions of a densely defined positive
operator T (acting in a complex Hilbert space H) was done in the seminal work [1] of
M. G. Krein. Krein not only showed that such an operator always has a positive self-adjoint
extension, but that these extensions form an (unbounded) operator interval [TN ,TF] with
respect to the form order, also introduced by Krein. The smallest element TN of that inter-
val is called the Krein-von Neumann extension, while the largest one TF is known as the
Friderichs extension. In this paper, our primary goal is to revise Krein’s classical results
(including his uniqueness criteria) and extend the extension theory to operators that are
not necessarily densely defined. It is also a novelty that our procedure does not use the
spectral theory of symmetric operators, so all our results remain valid in realHilbert spaces.

The factorization procedure we use goes back to the article by the first author and
Stochel [2]. Taking advatage of that treatment we revise Krein’s uniqueness criterion [1]
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(cf. also [3, Theorem 4.7] for the case of positive linear relations). An additional ben-
efit of generalizing Krein’s results to non-densely defined operators will be apparent
when considering the positive self-adjoint solvability of the operator equation XA = B
(see Corollary 2.3 below). Another immediate application is the interesting fact that the
‘modulus square’ operator T∗T of an arbitrary densely defined operator T always has a
positive self-adjoint extension. (Surprisingly, this is not the case with TT∗: it can be even
non-closable, see [4]).

In the second half of our article, we deal with bounded extensions. First, in Theorem 7.1
we provide a refinement of [5, Theorem 1] characterizing positive operators having
bounded positive extensions.With the help of that result, a simple proof can be given for the
existence of the transformation called ’shorted operator’ by Krein [1] (see also [6–8]). On
the other hand, Theorem 7.1 also enables us to investigate the norm preserving self-adjoint
extensions of bounded symmetric operators and to revise Krein’s uniqueness condition.
The main ingredient in our proof is a formula describing the range space of the square
root of the shorted operator Theorem 7.4.

The following notations will be used throughout the paper. Let H and K be a real or
complex Hilbert space and let T : H → K be a linear operator. In this last statement, we
mean that the domain of T (in notation: domT) is a linear subspace ofH, while the range
space (in notation: ranT) is a (linear) subspace ofK. IfH = K and T satisfies

〈Tf , g〉 = 〈f ,Tg〉, f , g ∈ domT,

then T is called symmetric. If in addition the quadratic form of T is non-negative, that is,

〈Tf , f 〉 ≥ 0, f ∈ domT,

then T is called positive. If the underlying Hilbert spaceH is complex then every operator
T having real quadratic form is automatically symmetric. Nevertheless, in this note we do
not restrict ourselves to complex spaces, so when speaking about positive operators, we
always assume the symmetry of the transformation in question.

We recall the adjoint of a densely defined operator T which is defined on its domain

domT∗ := {k ∈ K : (∀ f ∈ domT) : 〈Tf , k〉 = 〈f , k∗〉 for some k∗ ∈ H}
by letting

T∗k := k∗.
As it is well known, a densely defined operator T : H → H is symmetric if and only if
T ⊂ T∗, i.e. T∗ extends T. We call T self-adjoint if T is densely defined and T∗ = T. Recall
also that the linear operator T : H → K is closed if its graph

G(T) := {(f ,Tf ) : f ∈ domT}
is a closed linear subspace of the product Hilbert space H × K. T is closable if it has a
closed extension. The minimal closed extension of a closable operator T is denoted by T̄
and its graph is given by

G(T̄) = G(T).

The adjoint of a densely defined operator is always closed. In particular, every self-adjoint
operator is closed. It is also well known that the closure of a densely defined operator T is
just its second adjoint T∗∗.
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If T is closed then a linear subspaceD of domT is called a core for T if

G(T|D) = G(T).

Throughout the paper, we shall frequently use a fundamental theorem due to von Neu-
mann [9] which says that T∗T and TT∗ are both positive and self-adjoint operators
provided that T : H → K is densely defined and closed. In that case, D := domT∗T is
a core for T (cf. also [25]). The unique square root of a positive self-adjoint operator A
will be denoted by A1/2. If T is densely defined and closed, then the domain of (T∗T)1/2

is identical with domT. We mention here that the existence of the square root can be eas-
ily verified using the spectral theorem. An elementary treatment that also applies for real
Hilbert spaces can be found in [10].

2. Positive self-adjoint extensions of positive symmetric operators

LetH be a real or complex Hilbert space. In what follows, we fix a positive and symmetric
operator T : H → H whose domain domT is a linear subspace ofH. We do not assume
domT to be dense or closed. Our first result below provides various sufficient and neces-
sary conditions on T under which it extends to a positive and self-adjoint operator T̃. The
cornerstone of those characterizations is the linear subspace

D∗(T) := {g ∈ H : sup{|〈Th, g〉|2 : h ∈ domT, 〈Th, h〉 ≤ 1} < +∞}. (1)

Clearly, g ∈ D∗(T) holds if and only if there is a constant mg ≥ 0 (depending only on g)
such that

|〈Th, g〉|2 ≤ mg〈Th, h〉, (∀ h ∈ domT).

From the Cauchy-Schwarz inequality applied to the form (h, k) �→ 〈Th, k〉 it follows that

domT ⊆ D∗(T). (2)

Theorem 2.1: Let T : H → H be a positive symmetric operator. Then the following state-
ments are equivalent:

(i) T has a positive self-adjoint extension,
(ii) D∗(T) ⊆ H is dense,
(iii) D∗(T)⊥ ⊆ ran(I + T),
(iv) D∗(T)⊥ ∩ ranT = {0},
(v) For every sequence (hn) of domT such that 〈Thn, hn〉 → 0 and Thn → f it follows that

f = 0,
(vi) There exists a Hilbert space E and a densely defined linear operator V : H → E with

domV ⊃ domT such that V(domT)⊥ = {0} and

〈Vg |Vh〉E = 〈g,Th〉, g ∈ domV , h ∈ domT. (3)
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Proof: (i)⇒(ii): Let T̃ be any positive self-adjoint extension of T then it is easy to see that

dom T̃1/2 ⊆ D∗(T).

For if g ∈ dom T̃1/2 then it follows that

|〈Th, g〉|2 = |〈T̃1/2h, T̃1/2g〉|2 ≤ ‖T̃1/2g‖2〈Th, h〉, h ∈ domT,

whence g ∈ D∗(T), indeed.
(ii)⇒(iii): This implication is obvious.
(iii)⇒(iv): Take any vector g ∈ D∗(T)⊥ then there exists h ∈ domT such that

g = h+Th by (iv). Then h ∈ D∗(T) as well and thus

0 = 〈g, h〉 = 〈h, h〉 + 〈Th, h〉,

which yields h = 0 due to positivity of T.
(iv)⇒(v): Let (hn) and f ∈ H be as in (v). Clearly, f ∈ ranT. On the other hand, for

every g ∈ D∗(T) we have

|〈Thn, g〉|2 ≤ mg〈Thn, hn〉,
so letting n → +∞ implies 〈f , g〉 = 0. Hence f ∈ D∗(T)⊥ and therefore f = 0 by (iv).

(v)⇒(vi): Consider the following inner product 〈· | ·〉E on the range space ranT of T:

〈Tf |Th〉E := 〈Tf , h〉, f , h ∈ domT.

From (v) it follows that 〈· | ·〉E is indeed a well defined inner product: for if 〈Th, h〉 = 0
for some h ∈ domT then the sequence hn := h clearly satisfies the conditions of (v) with
f = Th hence Th = 0. Let ET denote the ‘energy space’ of T, that is the completion of the
prehilbert space so obtained. Let us denote by JT the natural embedding of ranT ⊆ ET into
H defined via

JT(Th) := Th, h ∈ domT. (4)

Clearly, JT : ET → H is densely defined and condition (v) expresses just that JT is closable.
Furthermore, for every f , h ∈ domT one has

〈JT(Th), f 〉 = 〈Th, f 〉 = 〈Th |Tf 〉E ,

whence we conclude that domT ⊆ dom J∗T and

J∗Tf = Tf ∈ ET , f ∈ domT. (5)

As a consequence we see that J∗T(domT) = ranT ⊆ ET is dense,

〈J∗Tg | J∗Th〉E = 〈J∗Tg |Th〉E = 〈g,Th〉, g ∈ dom J∗T , h ∈ domT,

which means that V := J∗T fulfils every condition of statement (vi).
(vi)⇒(i): Consider a linear operator V : H → E satisfying all the properties stated in

(vi). We are going to show that T̃ := V∗V∗∗ is then a positive self-adjoint extension of T.
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With (3) in mind, it will follow immediately if we show that V(domT) ⊆ domV∗. Take
therefore g ∈ domV and h ∈ domT then

〈Vg |Vh〉E = 〈g,Th〉.
This implies Vh ∈ domV∗. �

Remark 2.1: Let us make some comments about Theorem 2.1:

(1) A densely defined positive symmetric operator T always has a positive self-adjoint
extension. This follows immediately from inclusion (2).

(2) Condition (v) was called positive closability by Ando and Nishio in [11].
(3) The equivalence between (i) and (ii) was established in [2, Theorem 1]. Conditions

(iii), (iv) and (vi) are refinements of that result.
(4) Every positive symmetric operator (or relation) can be extended to a positive self-

adjoint linear relation (i.e. amultivalued operator), see e.g. [12]. Formore information
about the extension theory of positive linear relations we refer the reader to [13], and
also to [3], whose procedure is close to that of this article.

(5) An immediate calculation shows that

D∗(T) = dom J∗T , (6)

whence one obtains

D∗(T) = dom(J∗∗
T J∗T)1/2,

where A1/2 denotes the square root of the positive self-adjoint operator A.

A transformation having a positive and self-adjoint extension must apparently be clos-
able. For this reason, from the point of view of self-adjoint extendibility, it is not a serious
restriction if we assume the operator in question to be closable. Under this additional
assumption condition (iii) of Theorem 2.1 can be weakened as follows:

Corollary 2.2: Assume that the positive symmetric operator T is closable. Then the following
condition is still equivalent with the conditions (i)–(vi) of Theorem 2.1:

(vii) D∗(T)⊥ ⊆ ran(I + T).

Proof: It is clear that (vii) is formally weaker than condition (iv). Hence it is enough
to prove that a closable positive operator T which fulfils (vii), has a positive self-adjoint
extension. To do so we prove first that

D∗(T) = D∗(T̄),

where T̄ denotes the closure of T. It is clear that D∗(T̄) ⊆ D∗(T). For the converse, let
g ∈ D∗(T) and h ∈ dom T̄, and choose a (hn) from domT such that hn → h, Thn → T̄h.
Then

|〈T̄h, g〉|2 = lim
n→∞ |〈Thn, g〉|2 ≤ lim

n→∞mg · 〈Thn, hn〉 = mg · 〈T̄h, h〉,
hence g ∈ D∗(T̄), as it is claimed.
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We prove now that (vii) implies (i). It is clear that T has a positive and self-adjoint
extension if and only if T̄ does. By Theorem 2.1, this is equivalent to inclusion

D∗(T̄) ⊆ ran(I + T̄). (7)

As we saw above, D∗(T̄) = D∗(T). On the other hand, I + T̄ is a closed and bounded
below operator, thus we have

ran(I + T̄) = ran(I + T̄) = ran(I + T).

The equivalence between (vii) and (7) is now obvious. �

As an immediate application of Theorem 2.1 the positive self-adjoint solvability of
operator equations of type

XA ⊇ B

is considered in the following result:

Corollary 2.3: Let H and K be real or complex Hilbert spaces and let A,B : K → H be
(not necessarily densely defined or closable) linear operators such that domB ⊂ domA. The
following statements are equivalent:

(i) there exists a positive self-adjoint operator S such that

SA ⊇ B,

(ii) 〈Bh,Ah〉 ≥ 0 for every h ∈ domB and the set of those vectors g such that

sup{|〈Bh, g〉| : h ∈ domB, 〈Bh,Ah〉 ≤ 1} < +∞

is dense inH,
(iii) for every sequence (hn) of domB such that 〈Bhn,Ahn〉 → 0 and Bhn → f it follows

that f = 0.

Proof: Every operator S that satisfies SA ⊆ B is an extension of the operator

T : ranA → H, T(Ax) := Bx.

Hence, (i) is equivalent to the positive self-adjoint extendibility of T. The equivalence
between (i)-(iii) follows from Theorem 2.1 in a straightforward way. �

Remark 2.2: We emphasize that in the proof of Corollary 2.3, we made significant use of
themain advantage of Theorem2.1, according towhich the operatorT under consideration
does not have to be densely defined.
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3. The Krein-von Neumann extension

Let T : H → H be a (not necessarily densely defined) positive symmetric operator that
fulfils any (hence all) of the equivalent conditions of Theorem 2.1. Then the operator JT :
ET → H is densely defined and closable and it turned out from the proof of Theorem 2.1
that

TN := J∗∗
T J∗T

is a positive self-adjoint extension of T. In this section, we are going to show that TN is the
smallest among all positive self-adjoint extensions of T, hence we shall call it the Krein-
von Neumann extension of T. The minimality of TN is understood with respect to the so-
called form order ‘�’, which is a partial ordering among the set of all positive self-adjoint
operators, defined by

S1 � S2
def⇐⇒ (I + S2)−1 ≤ (I + S1)−1. (8)

It can be proved that

S1 � S2 ⇐⇒
{
dom S1/22 ⊆ dom S1/21 ,
‖S1/21 g‖2 ≤ ‖S1/22 g‖2, g ∈ dom S1/22 ,

where S1/2i stands for the unique positive self-adjoint square root of Si (see e.g. [14]).
Let now S be a positive self-adjoint extension of T; we are going to prove that

TN � S.

An easy calculation shows that dom J∗T = D∗(T) from which one concludes the identity

domT1/2
N = dom(J∗∗

T J∗T)1/2 = D∗(T).

Furthermore, from the density of ranT in the energy space ET (with respect to the inner
product 〈· | ·〉E ) it follows that

‖T1/2
N g‖2 = 〈J∗Tg | J∗Tg〉E

= sup{|〈J∗Tg |Th〉E |2 : h ∈ domT, 〈Th |Th〉E ≤ 1}.
Hence, using the identity

〈J∗Tg |Th〉E = 〈g,Th〉
we gain the useful formula

‖T1/2
N g‖2 = sup{|〈g,Th〉|2 : h ∈ domT, 〈Th, h〉 ≤ 1}. (9)

Recall that the self-adjoint operator S does not have any proper self-adjoint extension.
Hence above procedure with S instead of T gives S = SN and also that

dom S1/2 = D∗(S) ⊆ D∗(T).

In particular, equality (9) applies to S = SN and gives
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‖S1/2g‖2 = sup{|〈g, Sh〉|2 : h ∈ dom S, 〈Sh, h〉 ≤ 1}
≥ sup{|〈g,Th〉|2 : h ∈ domT, 〈Th, h〉 ≤ 1}
= ‖T1/2

N g‖2,
which means that

TN � S.

What has just been proven can be summarized in the following result:

Theorem 3.1: If the positive symmetric operator T : H → H has any positive self-adjoint
extension (i.e. T fulfils any of the equivalent conditions of Theorem 2.1) then TN := J∗∗

T J∗T is
the smallest positive self-adjoint extension of T.

In what follows, we are going to establish the converse of Theorem 3.1. Namely, it will
be proved that a positive self-adjoint operator S satisfying TN � Smust be an extension of
T. The precise statement is given in the next result:

Theorem 3.2: Assume that the linear operator T (acting in the real or complex Hilbert space
H) satisfies the equivalent conditions of Theorem 2.1. For a given positive self-adjoint operator
S the following statements are equivalent:

(i) S is an extension of T,
(ii) (a) TN � S,

(b) domT ⊆ dom S1/2,
(c) ‖S1/2f ‖2 ≤ 〈Tf , f 〉 for every f ∈ domT.

Proof: Assume first that S is a positive self-adjoint extension of T. Then TN � S by
Theorem 3.1. On the other hand, domT ⊆ dom S ⊆ dom S1/2 and

〈Tf , f 〉 = 〈Sf , f 〉 = ‖S1/2f ‖2

for every f ∈ domT.
To prove the converse direction suppose that the positive self-adjoint operator S satisfies

conditions (ii) (a)–(c). Introduce the semi inner product p on dom S1/2 as

p(f , g) := 〈S1/2f , S1/2g〉 − 〈T1/2
N f ,T1/2

N g〉, f , g ∈ dom S1/2.

By (a) and (c) we have p(f , f ) = 0 for f ∈ domT, thus

p(g, f ) = 0, f ∈ domT, g ∈ dom S1/2,

according to the Cauchy-Schwarz inequality. Consequently,

〈S1/2g, S1/2f 〉 = 〈T1/2
N g,T1/2

N f 〉 = 〈g,Tf 〉
for every f ∈ domT and g ∈ dom S1/2. From this last identity we see that S1/2f ∈ dom S1/2
(or equivalently, f ∈ dom S) and also Sf = S1/2(S1/2f ) = Tf . This in turn means that S is
an extension of T. �
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As an immediate consequence we obtain the following statement (see [15, Corollary
10]):

Corollary 3.3: Let T : H → H be a positively closable symmetric operator and let R, S :
H → H be positive self-adjoint operators. Suppose that T ⊂ R and TN � S � R, then also
T ⊂ S.

Proof: From the assumptions, it follows that

domT ⊆ domR ⊆ domR1/2 ⊆ dom S1/2,

and also

〈Tf , f 〉 = ‖R1/2f ‖2 ≥ ‖S1/2f ‖2

for every f ∈ domT. By Theorem 3.2 we conclude that T ⊂ S. �

We close the section by providing a necessary and sufficient condition on a positive
self-adjoint operator S to be equal to the Krein-von Neumann extension of T:

Theorem 3.4: Let T be a (not necessarily densely defined) positive operator in the Hilbert
space H and let S be a positive self-adjoint extension of T. The following statements are
equivalent:

(i) TN = S,
(ii) ranT1/2

N = ran S1/2.

Proof: Let S be a self-adjoint extension of T satifying range identity (ii). Consider the
energy space ES associated with S. We prove first that ranT is dense in ES (with respect to
the scalar product 〈· | ·〉S induced by S). To do so it suffices to prove that dom J∗∗

S ⊆ ranT
where the closure is taken with respect to 〈· | ·〉S. Consider a vector ξ ∈ dom J∗∗

S . Then
J∗∗
S ξ ∈ ran S1/2 = ranT1/2

N , hence there is a sequence (fn) in domT such that

〈T(fn − fm), fn − fm〉 → 0 and Tfn → J∗∗
S ξ ∈ H.

Since we have T ⊂ S, it follows that Tfn = Sfn and therefore

〈S(fn − fm) | S(fn − fm)〉S → 0 and J∗∗
S (Sfn) → J∗∗

S ξ .

Consequently, Tfn = Sfn → ζ ∈ ES, hence ζ ∈ dom J∗∗
S and J∗∗

S ζ = J∗∗
S ξ . By injectivity of

J∗∗
S we get ξ = ζ which in turn shows that ξ belongs to the closure of ranT in ES. Since
dom J∗∗

S is a dense subspace in ES, so is ranT.
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Let us denote by J0 the restriction of J∗∗
S to ranT:

J0 := J∗∗
S |ranT .

By the first part of the proof we see that J0 : ES → H is densely defined acting by

J0(Tf ) = Tf , f ∈ domT.

It is easy to see that J∗∗
0 J∗0 is a positive self-adjoint extension of T. Besides, an argument

similar to the calculation presented at the beginning of this section shows that

dom (J∗∗
0 J∗0 )

1/2 = dom J∗0 = D∗(T) = dom J∗T ,

and that

‖(J∗∗
0 J∗0 )

1/2g‖2 = ‖(J∗∗
T J∗T)1/2g‖2, g ∈ D∗(T),

whence J∗∗
0 J∗0 = J∗∗

T J∗T = TN . This identity shows that

ker J∗∗
0 = ker J∗∗

S = {0} and ran J∗∗
0 = ranT1/2

N = ran J∗∗
S .

Since J∗∗
0 ⊂ J∗∗

S , it follows that J∗∗
0 = J∗∗

S and therefore

TN = J∗∗
0 J∗0 = J∗∗

S J∗S = S,

as claimed. �

4. The Friedrichs extension

In his classical paper [16] K. Friedrichs proved that a densely defined positive symmetric
operator has at least one positive self-adjoint extension. In [1] Krein proved that the exten-
sion constructed by Friedrichs is the largest possible extension of T (with respect to the
form order (8)) and that the positive self-adjoint extensions of T form an ‘operator inter-
val’ [TN ,TF]. Here, TN is the Krein-von Neumann extension of T while TF is the so called
Friedrichs extension of T which will be investigated below in detail.

In this section, we are going to construct the largest extension TF in a way that is com-
pletely different from Friedrichs’ original approach. In fact, our procedure is more in line
with the reasoning of [17] and uses a factorization method through the energy space ET .
However, the proof given here is somewhat shorter and simpler.

It is easy to check that the set of positive self-adjoint extensions of a non-densely defined
positive operator cannot have the largest element. For this reason, throughout the remain-
der of this section we assume that the positive operator T : H → H is densely defined.
Recall that the Krein-von Neumann extension of such an operator T automatically exists
according to Remark following Theorem 2.1.

Keeping in mind the notations of Section 2 one concludes that

domT ⊆ D∗(T) = dom J∗T .

Hence the restriction QT of J∗T to domT is a densely defined (and necessarily closable)
operator. By formula (3), QT : domT ⊆ H → ET acts by

QTf = Tf , f ∈ domT. (10)
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The closure Q∗∗
T of QT can be described as

{g ∈ H : gn → g, 〈T(gn − gm), gn − gm〉 → 0 for some (gn) ⊂ domT}. (11)

From formulas J∗∗
T ⊂ Q∗

T and (10) it follows that

TF := Q∗
TQ

∗∗
T

is a positive and self-adjoint extension of T. Our claim is to show that TF is equal to the
largest extension of T, that is, S � TF holds for every positive self-adjoint extension S of T.

For let S be a positive self-adjoint extension of T. By repeating the above procedure with
S instead of T we get

S = SF = Q∗
SQ

∗∗
S . (12)

As a consequence, dom S1/2 = domQ∗∗
S . Hence S ⊃ T implies

dom S1/2 = {g ∈ H : gn → g, 〈S(gn − gm), gn − gm〉 → 0 for some (gn) ⊂ dom S}
⊇ {g ∈ H : gn → g, 〈T(gn − gm), gn − gm〉 → 0 for some (gn) ⊂ domT}
= domT1/2

F .

On the other hand, for g ∈ dom S1/2 we have

‖S1/2g‖2 = lim
n→+∞ 〈Sgn, gn〉

with gn ∈ dom S, gn → g and 〈S(gn − gm), gn − gm〉 → 0 because

‖S1/2g‖2 = lim
n→+∞ 〈Q∗∗

S gn,Q∗∗
S gn〉S = lim

n→+∞ 〈Sgn, gn〉.

Similarly, for g ∈ domT1/2
F we have

‖T1/2
F g‖2 = lim

n→+∞ 〈Tgn, gn〉 = lim
n→+∞ 〈Sgn, gn〉 = ‖S1/2g‖2

with gn ∈ domT, gn → g and 〈S(gn − gm), gn − gm〉 → 0. Hence

‖T1/2
F g‖2 = ‖S1/2g‖2, g ∈ domT1/2

F , (13)

and therefore S � TF , as it is claimed.
With the above considerations, we have just proved the following result:

Theorem 4.1: If T : H → H is a densely defined positive symmetric operator, then TF :=
Q∗
TQ

∗∗
T is the largest positive self-adjoint extension of T. The domain domT1/2

F of T1/2
F con-

sists of those vectors g for which there exists a sequence (gn) ⊂ domT such that gn → g and
〈T(gn − gm), gn − gm〉 → 0. In that case,

‖T1/2
F g‖2 = lim

n→∞ 〈Tgn, gn〉.
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CombiningTheorems 3.1, 4.1, andCorollary 3.3we conclude the following revised form
of a fundamental result by Krein [1]:

Corollary 4.2: The positive self-adjoint extensions of a densely defined positive self-adjoint
operator T (acting in a real or complex Hilbert spaceH) form an operator interval

[TN ,TF] = {S = S∗ : TN � S � TF}, (14)

where TN = J∗∗
T J∗T is the Krein-von Neumann extension, while TF = Q∗

TQ
∗∗
T is the Friedrichs

extension of T.

5. Krein’s uniqueness criterion

In this section, we are going to investigate the problem of uniqueness of the positive self-
adjoint extensions. It is easy to check that uniqueness can occur only in the densely defined
case. As we have seen in the preceding sections, positive self-adjoint extensions of a densely
defined positive symmetric operator T form an operator interval (14), where TN is the
Krein-von Neumann extension, while TF is the Friedrichs extension of T. Thus T has a
unique positive self-adjoint extensions if and only if its minimal and maximal extension
coincide, i.e. TN = TF .

In the present section our main goal is to revise Krein’s uniqueness condition. To do so
we are going to present the first formula for a positive self-adjoint operator S to agree with
the Friedrichs extension of T:

Theorem 5.1: Let T be a densely defined positive symmetric operator in the real or com-
plex Hilbert space H and let S be a positive self-adjoint extension of T. Then the following
statements are equivalent:

(i) S = TF,
(ii) ker(I + T∗) ∩ dom S1/2 = {0}.

Proof: Before we start proving the desired equivalence, let us make a few observations.
Consider the energy space ES of S and the linear operator QS : dom S → ES satisfying

QSf = Sf , f ∈ dom S.

Let Q0 denote the restriction of QS to domT. Then Q0 is closable and satisfies

Q0f = Tf , f ∈ domT,

and an easy calculation shows that Q∗
0Q

∗∗
0 = TF . It follows therefore that identity TF = S

is equivalent to identity Q∗∗
0 = Q∗∗

S .
Let us now turn to the proof of the equivalence between (i) and (ii). Assume thatTN �= S,

or equivalently thatQ∗∗
0 � Q∗∗

S . Then there is a non-zero vector g ∈ domQ∗∗
S = dom S1/2

such that (g,Q∗
Sg) in the graph of Q∗

S is orthogonal to the graph of Q∗∗
0 . Then

0 = 〈(g,Q∗
Sg), (f ,Q0f )〉G(Q∗∗

S )

= 〈g, f 〉 + 〈Q∗
Sg |Tf 〉E
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= 〈g, f 〉 + 〈g,Tf 〉
= 〈g, f + Tf 〉

for every f ∈ domT. Consequently, g ∈ ran(I + T)⊥ = ker(I + T∗). Hence ker(I + T∗) ∩
dom S1/2 �= {0} proving that (ii) implies (i).

Let us assume now that TF = TN and consider a vector g ∈ ker(I + T∗) ∩ dom S1/2.
Then g ∈ domT1/2

F according to our hypothesis. By Theorem 4.1 there exists a sequence
(gn) from domT such that

gn → g and 〈T(gn − gm), gn − gm〉 → 0.

In particular, T1/2
F gn → T1/2

F g and thus

−‖g‖2 = 〈T∗g, g〉 = lim
n→∞ 〈T∗g, gn〉

= lim
n→∞ 〈g,Tgn〉 = lim

n→∞ 〈T1/2
F g,T1/2

F gn〉 = ‖T1/2
F g‖2 ≥ 0,

whence g = 0. Consequently, (i) implies (ii). �

Using the preceding result we are able to establish the following generalization of Krein’s
uniqueness criterion [1] (cf. also [3, Theorem 4.7]):

Corollary 5.2: Let T be a densely defined positive symmetric operator in the real or complex
Hilbert spaceH. The following statements are equvalent:

(i) T has a unique positive self-adjoint extension, i.e. TN = TF,
(ii) ker(I + T∗) ∩ D∗(T) = {0},
(iii) for every non-zero vector g ∈ ker(I + T∗) one has

sup{|〈f , g〉|2 : f ∈ domT, 〈Tf , f 〉 ≤ 1} = +∞.

Proof: Keeping in mind the identity domT1/2
N = D∗(T), the equivalence between (i) and

(ii) follows from the preceding theorem. Furthermore, for a vector g ∈ ker(I + T∗) one
has

|〈f , g〉|2 = |〈f ,−T∗g〉|2 = |〈Tf , g〉|2, f ∈ domT,

whence we see that g ∈ domD∗(T) if and only if the supremum in (iii) is finite. This proves
the equivalence between (ii) and (iii). �

From all that we have seen so far it is clear that if a positive operator T is essentially
self-adjoint (i.e. T∗ = T∗∗), then one has

TN = TF . (15)

Nevertheless, from equality (15) it is still not obvious whether T could not have further
‘indefinite’ self-adjoint extensions. Let us recall that a positive operator T : H → H is
called bounded from below if it satisfies

〈Tf , f 〉 ≥ ε‖f ‖2, f ∈ domT (16)
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for some constant ε > 0. Based on our constructions of TN and TF we are going to prove
that a bounded below positive operator T satisfying (15) must be essentially self-adjoint.

As a first step, we prove the following Lemma:

Lemma 5.3: Let T be a densely defined positive symmetric operator, then

(a) dom(TN) ∩ dom (T1/2
F ) = dom(TN) ∩ dom (TF) = dom (J∗∗

T Q∗∗
T ),

(b) G(TN) ∩ G(TF) = G(J∗∗
T Q∗∗

T ).

Proof: Recall that QT = J∗T |domT and that TN = J∗∗
T J∗T , while TF = Q∗

TQ
∗∗
T . Consider f ∈

dom (J∗∗
T Q∗∗

T ), then

J∗∗
T Q∗∗

T f = Q∗
TQ

∗∗
T f = TNf , and J∗∗

T Q∗∗
T f = J∗∗

T J∗Tf = TFf ,

which imply f ∈ dom(TN) ∩ dom (TF). On the converse, if f ∈ dom(TN) ∩ dom (T1/2
F ),

then f ∈ domQ∗∗
T , henceQ∗∗

T f = J∗Tf and f ∈ dom J∗∗
T J∗T imply f ∈ dom (J∗∗

T J∗T). As above,

J∗∗
T Q∗∗

T f = TFf = TNf .

From these, statements (a) and (b) already follow. �

Theorem 5.4: Suppose that the densely defined positive symmetric operator T is bounded
from below. Then T∗∗ = J∗∗

T Q∗∗
T .

Proof: From Lemma 5.3(b) it is clear that T ⊂ J∗∗
T Q∗∗

T and also that the latter operator is
closed. Hence

T∗∗ ⊂ J∗∗
T Q∗∗

T .

Assume towards a contradiction that the inclusion above is proper. Then there is a non-zero
vector g ∈ dom (J∗∗

T Q∗∗
T ) that is orthogonal to the graph G(T) of T. Then

0 = 〈(f ,Tf ), (g, J∗∗
T Q∗∗

T g)〉 = 〈f , g〉 + 〈Tf , J∗∗
T Q∗∗

T g〉
for every f ∈ domT. From that we infer J∗∗

T Q∗∗
T g ∈ domT∗ and

T∗J∗∗
T Q∗∗

T g = −g. (17)

Observe now that (16) impies that Q∗∗
T : domQ∗∗

T → ET is invertible with everywhere
defined bounded inverse. Indeed, it satisfies

‖QTf ‖2ET = 〈Tf , f 〉 ≥ ε‖f ‖2, f ∈ domT,

and its range space contains the dense set ranT ⊆ ET . Note also that we have JTQT = T
due to (10) and (5). We claim that

T∗ = Q∗
TJ

∗
T . (18)

For let k ∈ domT∗ = dom (JTQT)∗ and f ∈ domT, then

〈JT(Tf ), k〉 = 〈(JTQT)Q−1
T (Tf ), k〉 = 〈Tf | (Q−1

T )∗(JTQT)∗k〉E ,
whence k ∈ dom J∗T and J∗Tk = (Q−1

T )∗(JTQT)∗k. This yields (18), indeed.
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Putting now (18) and (17) together we obtain

−‖g‖2 = 〈Q∗
TJ

∗
TJ

∗∗
T Q∗∗

T g, g〉 = ‖J∗∗
T Q∗∗

T g‖2,
whence g = 0, a contradiction. �

Corollary 5.5: Let T : H → H be a densely defined positive symmetric operator which is
bounded from below in the sense of (16). Then dom (TN) ∩ dom (T1/2

F ) = domT∗∗ and

G(T∗∗) = G(TN) ∩ G(TF).

In particular, if TN = TF then T is essentially self-adjoint.

We remark here that the self-adjoint extensions T1 and T2 of T are called disjoint if they
satisfy domT1 ∩ domT2 = domT∗∗. Using this wording, the above Corollary can also be
rephrased by saying that TF and TN are disjoint extensions of T (cf. e.g. [3, Proposition
4.3]).

6. Extensions of themodulus square of a linear operator

In this section, we are going to apply the foregoing results to the ‘modulus square’ opera-
tor T∗T of a given densely defined linear operarator T : H → K. (Here, and everywhere
below,H andK denote real or complex Hilbert spaces.) Clearly, T∗T is positive and sym-
metric, but not necessarily self-adjoint. In [18] it was proved that T∗T always has a positive
self-adjoint extension, regardless of whetherT is closable or not. (In the former case,T∗T∗∗
is apparently a positive self-adjoint extension of T∗T.) Using the results of Section 2 we can
provide a brief and simple proof of this fact:

Theorem 6.1: If T : H → K is a densely defined linear operator, then T∗T has a positive
self-adjoint extension.

Proof: By Theorem 2.1 it suffices to prove thatD∗(T∗T) is dense inH. However, from the
identity

D∗(T∗T) = {g ∈ H : sup{|〈T∗Th, g〉|2 : h ∈ dom (T∗T), ‖Th‖2 ≤ 1} < +∞}
it is readily seen thatD∗(T∗T) contains the dense set domT, henceD∗(T∗T) itself is dense.

�

In the next statement the issue of uniqueness of positive self-adjoint extendibility ofT∗T
is treated. As it has been noticed in the preceding section, uniquenessmay only occur when
we have dom (T∗T)⊥ = {0}. We will therefore only discuss that non-degenerate case:

Theorem6.2: Let T : H → K be a densely defined linear operator such thatdom (T∗T)⊥ =
{0} and let T0 denote the restriction of T to dom (T∗T). Then the following statements are
equivalent:

(i) T∗T has a unique positive self-adjoint extension,
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(ii) ran(I + T∗T)⊥ ∩ ranT∗
0 = {0}.

Proof: Assume first that T∗T has a unique positive self-adjoint extension. Consider a
vector k ∈ dom (T∗T) such that T∗

0k ∈ ran(I + T∗T)⊥, then

sup{|〈f ,T∗
0k〉|2 : f ∈ dom (T∗T), ‖Tf ‖2 ≤ 1}

= sup{|〈Tf , k〉|2 : f ∈ dom (T∗T), ‖Tf ‖2 ≤ 1} ≤ ‖k‖2.
Hence Theorem 5.2 implies T∗k = 0 and therefore (i) implies (ii).

Assume now (ii) and consider a vector g ∈ ker(I + T∗T)∗ ∩ D∗(T∗T). Then there is a
constant C>0 such that

|〈T∗Tf , g〉|2 ≤ C‖Tf ‖2, f ∈ domT∗T,

from which with (T∗T)∗g = −g we obtain that

|〈f , g〉|2 ≤ C‖T0f ‖2, f ∈ domT0. (19)

Inequality (19) expresses that the linear functional φ : ranT0 → K,

φ(T0f ) := 〈f , g〉, f ∈ domT0

is well-defined and continuous. The Riesz representation theorem yields a vector k ∈ K
such that

〈T0f , k〉 = 〈f , g〉, f ∈ domT0

which means that k ∈ domT∗
0 and T

∗
0k = g. As a consequence we see that g ∈ ranT∗

0 and
thus g = 0 by assumption (ii). By Corollary 5.2, T∗T has a unique positive self-adjoint
extension. �

If T is closable, then the most natural positive self-adjoint extension of T∗T is T∗T∗∗. In
what follows, we examine the relationship of that operator with the extreme extensions of
T∗T. To do so we recall that a vector subspaceD is called a core for a closed linear operator
S ifD ⊆ dom S and

G(S|D) = G(S).

In other words, the graph of the restriction of S toD is dense in the graph of S.

Theorem 6.3: Let T be a densely defined and closable operator betweenH andK. Then the
following statements are equivalent:

(i) dom (T∗T) is a core for T∗∗,
(ii) T∗T∗∗ is identical with the Friedrichs extension of T∗T.

Proof: First note that dom (T∗T) is dense because it is the core for a densely defined
closed operator. Hence the Friedrichs extension of T∗T exists. According to Theorem 5.1,
T∗T∗∗ = (T∗T)F if and only if

domT∗∗ ∩ ran(I + T∗T)⊥ = {0}. (20)
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(Here we used the identities dom (T∗T∗∗)1/2 = domT∗∗ and ker(I + T∗T)∗ = ran(I +
T∗T)⊥.)

Assume first that dom (T∗T) is a core for T∗∗. Consider a vector g from the set on the
left-hand side of (20). Then for every f ∈ domT∗T,

0 = 〈g, (I + T∗T)f 〉 = 〈g, f 〉 + 〈T∗∗g,Tf 〉,

which means that (g,T∗∗g) is orthogonal to the graph of T|domT∗T . This proves (20).
Assume on the contrary that T∗T∗∗ is identical with the Friedrichs extension of T∗T, or

equivalently that T fulfils (20). Take a vector g ∈ domT∗∗ such that (g,T∗∗g) is orthogonal
to G(T|domT∗T). Then

0 = 〈(g,T∗∗g), (f ,Tf )〉 = 〈g, f 〉 + 〈T∗∗g,Tf 〉 = 〈g, f + T∗Tf 〉

for every f ∈ dom (T∗T). By (20), (g,T∗∗g) = 0 which in turn means that dom (T∗T) is a
core for T∗∗. �

Remark 6.1: We notice that the ‘density assumption’

G(T|dom(T∗T)) = G(T∗∗)

already involves the closability of T. In fact, for every densely defined linear operator T, the
restricted operator T0 := T|dom(T∗T) is automatically closable. For let (fn) be a sequence
from dom (T∗T) such that

fn → 0 and T0fn → k (21)

for some k ∈ K. Then k ∈ domT∗ because T0fn ∈ domT∗. On the other hand,

〈k, g〉 = lim
n→∞ 〈T0fn, g〉 = lim

n→∞ 〈fn,T∗g〉 = 0

for every g ∈ domT∗, whence k ∈ (domT∗)⊥. Thus k = 0 and T0 is closable, accordingly.

Corollary 6.4: Let T be a densely defined linear operator such that

ranT ⊆ domT∗.

Then T is closable and T∗T∗∗ is identical with the Friedrichs extension of T∗T.

The following Corollary gives a formula for the Friedrichs extension of the square S2
of a symmetric operator S (cf. [19, Theorem 3.1]) and simultaneously corrects the false
assertion of [20, p.181, Corollary].

Corollary 6.5: Let S : H → H be a symmetric operator such that D := dom S2 is dense.
Then

(S2)F = (S|D)∗(S|D)∗∗.

Furthermore, (S2)F = S∗S∗∗ if and only if dom S2 is core for S∗∗.
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Proof: For brevity’s sake let us introduce the restricted operator T := S|D . It is clear that
T∗T = S2 and that ranT ⊆ domT∗, therefore

(S2)F = (T∗T)F = T∗T∗∗,

according to Corollary 6.4.
If dom S2 is core for S∗∗ then S∗∗ = T∗∗ and T∗ = S∗ hence (S2)F = S∗S∗∗ according to

the first part of the proof. Suppose on the converse that S∗S∗∗ is identical with the Friedrichs
extension of S2, then

S∗S∗∗ = T∗T∗∗.

In particular, dom S∗∗ = domT∗∗ which implies S∗∗ = T∗∗ because T ⊂ S. This in turn
means thatD is a core for S∗∗. �

We close this section with a characterization of essentially self-adjoint operators by
means of the square of the adjoint. For similar characterizations we refer the reader
to [10,21,22].

Lemma 6.6: Let T be a densely defined and closed linear operator between H and K and
letD be a dense linear subspace of domT. Letting S be a restriction of T toD, the following
assertions are equivalent:

(i) D is core for T, i.e. S = T,
(ii) dom S∗T ⊂ dom S∗∗
(iii) ker(I + S∗T) = {0}.

Proof: (i)⇒(ii): If S∗∗ = T, then dom S∗T = dom S∗S∗∗ ⊆ dom S∗∗.
(ii)⇒(iii): Assume that dom (S∗T) ⊂ dom S∗∗ and take a vector g ∈ ker(I + S∗T). Then

0 = 〈g + S∗Tg, g〉 = ‖g‖2 + 〈S∗Tg, g〉 = ‖g‖2 + 〈Tg, S∗∗g〉 = ‖g‖2 + ‖Tg‖,
hence g = 0.

(iii)⇒(i): Assume finally that S∗∗ �= T. Then there exists 0 �= g ∈ domT such that
(g,Tg) ∈ G(S)⊥, whence

0 = 〈(f , Sf ), (g,Tg)〉G(T) = 〈f , g〉 + 〈Sf ,Tg〉
for every f ∈ dom S. This implies Tg ∈ dom S∗ and g + S∗Tg = 0, that is, g ∈ ker(I +
S∗T). �

Corollary 6.7: For a densely defined symmetric operator S, the following assertions are
equivalent:

(i) S is essentially self-adjoint,
(ii) dom (S∗)2 ⊂ dom S∗∗,
(iii) ker((I + (S∗)2) = {0},
(iv) (S∗)2 is positive.

Proof: Apply the preceding Lemma with T := S∗. �
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7. Extensions of bounded symmetric operators

In this section, we are going to analyse the bounded self-adjoint extensions of symmetric
operators. The main goal is to reprove Krein’s fundamental result according to which a
contractive symmetric operator S can always extend to an everywhere defined contrac-
tive self-adjoint operator S̃. What is more, those extensions form an operator interval
[Sm, SM]. In contrast to Krein’s approach our starting point is a result of bounded positive
extendibility (see also [2,5]) which in fact is an easy consequence of Theorem 2.1:

Theorem 7.1: Let H be a real or complex Hilbert space and let T be a positive symmetric
operator defined on a linear subspaceD ofH. Then the following statements are eqiuivalent:

(i) T can be extended to a bounded positive operator toH,
(ii) D∗(T) = H,
(iii) there exists a constant γ > 0 such that

‖Tf ‖2 ≤ γ · 〈Tf , f 〉, (∀ f ∈ D).

In any case, the Krein-von Neumann extension TN of T is bounded with ‖TN‖ ≤ γ .

Proof: (i)⇒(ii): Let T̃ ∈ B(H) be a bounded positive extension of T. Then

|〈Tf , g〉|2 = |〈T̃f , g〉|2 ≤ 〈T̃f , f 〉〈T̃g, g〉 = 〈Tf , f 〉〈T̃g, g〉
for f ∈ D and g ∈ H. HenceD∗(T) = H.

(ii)⇒(iii): Taking into account of identityD∗(T) = dom J∗T , assumption (ii) means that
J∗T is a bounded operator by the closed graph theorem. Consequently, TN = J∗∗

T J∗T is a
bounded positive extension of T and thus

‖Tf ‖2 = ‖TNf ‖2 ≤ ‖TN‖〈TNf , f 〉 = ‖TN‖〈Tf , f 〉, f ∈ D,

so (iii) holds true with γ = ‖TN‖.
(iii)⇒(i): For every f ∈ D and g ∈ H one has

|〈Tf , g〉|2 ≤ γ · ‖g‖2 · 〈Tf , f 〉,
because of (iii). Consequently,D∗(T) = H. �

The above theorem is also of key importance for the introduction of the concept of the
’shorted operator’ (see e.g. [8]): ifT ∈ B(H) is a positive operator andD is a (closed) linear
subspace ofH then

T − (T|D)N

is called shortening ofT to the subspaceD. (Here (T|D)N denotes the Krein-vonNeumann
extension of T|D .) Its characteristic properties are described in the following lemma:

Lemma 7.2: Let H be a real or complex Hilbert space and let S,T ∈ B(H) be positive
operators such that S ≤ T. IfD ⊆ H is any linear subspace such that ran S ⊆ D⊥, then

S ≤ T − (T|D)N .
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Proof: According to the assumption posed on S we have D ⊂ ker S, hence T|D ⊂ T − S.
Consequently, T − S ≥ (T|D)N . �

As a consequence of the construction of the Krein-von Neumann extension one readily
obtains a formula for the quadratic form of the shorted operator (see e.g. [6,7]):

Lemma 7.3: Let T : D → H be a linear operator possessing a bounded positive extension to
H. Then every bounded positive extension S of T satisfies

‖(S − TN)1/2h‖2 = inf
f∈D

〈S(f + h), f + h〉, h ∈ H. (22)

Proof: In accordance with the construction of TN we have

0 = inf
f∈D

‖J∗Th + Tf ‖2T = inf
f∈D

{〈TNh, h〉 + 〈h,Tf 〉 + 〈Tf , h〉 + 〈Tf , f 〉}

= 〈TNh, h〉 + inf
f∈D

{〈h, Sf 〉 + 〈Sf , h〉 + 〈Sf , f 〉},

hence

−〈TNh, h〉 = inf
f∈D

{〈Sh, f 〉 + 〈Sf , h〉 + 〈Sf , f 〉}.

Thus

‖(S − TN)1/2h‖2 = 〈Sh, h〉 − 〈TNh, h〉
= 〈Sh, h〉 + inf

f∈D
{〈Sh, f 〉 + 〈Sf , h〉 + 〈Sf , f 〉}

= inf
f∈D

〈S(f + h), f + h〉,

as claimed. �

In the next theorem,we provide an explicit formula for the range space of the square root
of the shorted operator. In addition to being a sharpening ofKrein’s formula (2.1) this result
also plays a fundamental role in the proof of Krein’s uniqueness criterion (Theorem 7.7):

Theorem 7.4: Let T : D → H be a linear operator possessing a bounded positive extension
toH. For every bounded positive extension S of T we have

ran(S − TN)1/2 = ran S1/2 ∩ D⊥. (23)

Proof: For brevity’s sake let us introduce notation Z := (S − TN)1/2.
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It is clear that

‖Zh‖2 ≤ ‖S1/2h‖2

for all h ∈ H, hence ranZ ⊆ ran S1/2 follows by the Douglas factorization theorem [23].
On the other hand,

(S − TN)f = 0, f ∈ D,

because S andTN agree onD. Consequently,D ⊆ kerZwhich in turn implies ranZ ⊆ D⊥.
This proves inclusion

ranZ ⊆ ran S1/2 ∩ D⊥.

To show the opposite subspace inclusion take any g ∈ ran S1/2 ∩ D⊥, g = S1/2k. For every
f ∈ D and h ∈ H,

|〈g, h〉|2 = |〈g, f + h〉|2 = |〈S1/2k, f + h〉|2 ≤ ‖k‖2 · 〈S(f + h), f + h〉,
so that

|〈g, h〉|2 ≤ ‖k‖2 · inf
f∈D

〈S(f + h), f + h〉 = ‖k‖2 · ‖Z1/2h‖2,

according to Lemma 7.3. Then by Theorem 2.1 we get g ∈ ran(Z1/2)∗ = ranZ1/2. �

At this point we note that the operation ’S �→ SN ’ is not monotone, that is,

S|D ≤ T|D � (S|D)N ≤ (T|D)N , (24)

as the following counter-example demonstrates. Consider the Hilbert spaceH := C × C,
and the one-dimensional subspace D := C × {0} in it. Let us introduce the positive
operators S,T : D → H by letting

S(z, 0) := (z, 0), T(z, 0) := (z, z), (z ∈ C).

Clearly, both S and T can be extended to positive operators onto C2, and also S ≤ T onD.
Hence T−S is a (bounded) positive symmetric operator whose self-adjoint extensions are
of the form [

0 1
1 t

]
, t ∈ R.

The counterexample above thus shows that the Neumann extension does not preserve the
partial ordering. However, the condition S ≤ T together with an additional range space
inclusion already implies the inequality SN ≤ TN :

Proposition 7.5: Let S,T : D → H be linear operators possessing bounded positive exten-
sions. Then the following two statements are equivalent:

(i) SN ≤ TN,
(ii) (a) 〈Sf , f 〉 ≤ 〈Tf , f 〉, (∀ f ∈ D),

(b) ran S1/2N ⊆ ranT1/2
N .
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Proof: It is clear that (i) implies (ii). For the converse, observe first that (ii) (b) is equivalent
to range inclusion

ran J∗∗
S ⊆ ran J∗∗

T .

By the Douglas factorization theorem, there exists a bounded linear operatorD : ET → ES
such that J∗∗

S = J∗∗
T D. Equivalently, we have J∗S = D∗J∗T

‖D∗‖2 = sup
f∈D,〈Tf ,f 〉≤1

〈D∗(Tf ),D∗(Tf )〉ES

= sup
f∈D,〈Tf ,f 〉≤1

〈D∗J∗Tf ,D
∗J∗Tf 〉ES

= sup
f∈D,〈Tf ,f 〉≤1

〈J∗S f , J∗S f )〉ES

= sup
f∈D,〈Tf ,f 〉≤1

〈Sf , f )〉 ≤ 1,

because of (i) (b). Consequently, we get

SN = J∗∗
T DD∗J∗T ≤ J∗∗

T J∗T = TN ,

hence (ii) implies (i). �

In the remaining of the sectionwe are going to consider bounded self-adjoint extensions
of symmetric operators. First of all we provide a short and simple proof of Krein’s funda-
mental theorem stating that a bounded symmetric operator always has a norm-preserving
(bounded) self-adjoint extension.

Theorem 7.6: Let D ⊆ H be a linear subspace of H and let S : D → H, ‖S‖ = 1 be a
symmetric operator. Then

Sm := (I + S)N − I and SM := I − (I − S)N (25)

are self-adjoint extensions of S having norm 1. Moreover,

[Sm, SM] = {̃S ∈ B(H) : S̃∗ = S̃, ‖̃S‖ = 1, S ⊂ S̃}.

Proof: First of all observe that the positive symmetric operators I ± S satisfy the following
inequalities:

‖(I ± S)f ‖2 ≤ 2〈(I ± S)f , f 〉, f ∈ D.

By Theorem 7.1 the corresponding Krein-von Neumann extensions (I ± S)N exist and
have norm at most 2. Accordingly, both Sm and SM in (25) are bounded self-adjoint exten-
sions of S having norm 1. Now, if S̃ ∈ B(H) is any self-adjoint extension of S having norm
1, then I ± S̃ are positive extensions of I ± S, respectively. Consequently,

(I ± S)N ≤ I ± S̃

by the minimality of the Krein-von Neumann extension. Thus SM ≤ S̃ ≤ Sm.
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Take now any self-adjoint operator S̃ ∈ B(H) such that Sm ≤ S̃ ≤ SM . Then 0 ≤ SM −
S̃ ≤ SM − Sm, whence

|〈(SM − S̃)f , h〉|2 ≤ 〈(SM − Sm)f , f 〉〈(SM − Sm)h, h〉 = 0, f ∈ D, h ∈ H,

because of theCauchy-Schwarz inequality. Thus S̃f = SMf = Sf so that S̃ extends S. Finally,
we have 1 = ‖S‖ ≤ ‖Sm‖ ≤ ‖̃S‖ ≤ ‖SM‖ = 1 that completes the proof. �

We close the paper by reproving Krein’s uniqueness formula norm preserving
self-adjoint extensions. Our proof is based on Theorem 7.4 and essentially differs from the
original proof of [1]. Another elegant argument may be found in [13, Proposition 3.19].

Theorem 7.7: The bounded symmetric operator S : D → H, ‖S‖ = 1 has a unique self-
adjoint norm 1 extension toH if and only if for every g ∈ D⊥ one has

sup{|〈Sf , g〉|2 : f ∈ D, ‖f ‖2 − ‖Sf ‖2 ≤ 1} = +∞. (26)

Proof: Before starting the proof of the claimed equivalence, let us introduce the self-
adjoint operator

S̃ := 1
2
(Sm + SM). (27)

It is easy to check that S ⊂ S̃ and that ‖̃S‖ = 1. We also remark that

(I − S̃) − (I − S)N = SM − S̃ = S̃ − Sm = (I + S̃) − (I + S)N = SM − Sm
2

. (28)

Hence, according to Theorem 7.4,

ran(SM − Sm)1/2 = ran(I − S̃)1/2 ∩ D⊥ = ran(I + S̃)1/2 ∩ D⊥, (29)

and therefore clearly

ran(SM − Sm)1/2 = ran(I − S̃)1/2 ∩ ran(I + S̃)1/2 ∩ D⊥. (30)

In the light of Theorem 7.6, S has a unique norm-one self-adjoint extension if, and only
if Sm �= SM , that is, when the set on the right-hand side of (30) consists only of the zero
vector.

Assume first that Sm �= SM and take any nonzero vector

0 �= g ∈ ran(I − S̃)1/2 ∩ ran(I + S̃)1/2 ∩ D⊥.

Choose, accordingly, k, l ∈ H such that

g = (I + S̃)1/2k = (I − S̃)1/2l.

Using the identities

(I − S̃2)1/2 = (I + S̃)1/2(I − S̃)1/2 = (I − S̃)1/2(I + S̃)1/2

we calculate
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2〈Sf , g〉 = 2〈f , S̃g〉 = 〈f , (I + S̃)g〉 − 〈f , (I − S̃)g〉
= 〈f , (I + S̃)(I − S̃)1/2l〉 − 〈f , (I − S̃)(I + S̃)1/2k〉
= 〈f , (I − S̃2)1/2(I + S̃)1/2l − (I − S̃2)1/2(I − S̃)1/2k〉
= 〈(I − S̃2)1/2f , (I + S̃)1/2l − (I − S̃)1/2k〉.

Thus, with α := ‖(I + S̃)1/2l − (I − S̃)1/2k‖2 we get
4|〈Sf , g〉|2 ≤ γ · ‖(I − S̃2)1/2f ‖2 = γ · [‖f ‖2 − ‖Sf ‖2]

proving that the supremum in (26) is finite.
Let us suppose now that

|〈Sf , g〉|2 ≤ α · [‖f ‖2 − ‖Sf ‖2], f ∈ D (31)

holds for some non-zero g ∈ D⊥ and α > 0 (depending only on g). Consider again the
self-adjoint operator S̃ := 1

2 (Sm + SM) and introduce the following semi-norm

p(h) := ‖h‖2 − ‖̃Sh‖2, h ∈ H.

From (31) it follows that

1√
α

|〈Sf , g〉| ≤ p(f ) ≤ ‖f ‖, f ∈ D.

By the Hahn-Banach theorem combined with the Riesz representation theorem, there
exists a (unique) vector h0 ∈ H, ‖h0‖ ≤ √

α, such that

〈Sf , g〉 = 〈f , h0〉, f ∈ D,

and

|〈h, h0〉|2 ≤ α · [‖h‖2 − ‖̃Sh‖2] = α · ‖(I − S̃2)1/2‖2, h ∈ H.

By [24, Theorem 1] we obtain that h0 ∈ ran(I − S̃2)1/2 and hence

h0 ∈ ran(I − S̃)1/2 ∩ ran(I + S̃)1/2.

Observe on the other hand that

〈f , h0 − S̃g〉 = 〈Sf , g〉 − 〈Sf , g〉 = 0, f ∈ D,

thus

h0 − S̃g ∈ D⊥.

Consequently,

(I − S̃)g + h0 = g + (h0 − S̃g) ∈ D⊥

and

−(I + S̃)g + h0 = (h0 − S̃g) − g ∈ D⊥,
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but also

(I − S̃)g + h0 ∈ ran(I − S̃) + ran(I − S̃)1/2 ⊆ ran(I − S̃)1/2,

and similarly, −(I + S̃)g + h0 ∈ ran(I + S̃)1/2. Summing up, we have{
(I − S̃)g + h0 ∈ ran(I − S̃)1/2 ∩ D⊥,
−(I + S̃)g + h0 ∈ ran(I + S̃)1/2 ∩ D⊥.

(32)

Using identities (29) it follows that

0 �= 2g = (I − S̃)g + h0 − [−(I + S̃)g + h0] ∈ ran(SM − Sm)1/2,

which apparently implies SM �= Sm. �
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