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Abstract

Accurate photovoltaic (PV) and wind energy forecasting are crucial for grid stability

and energy security. There are various modeling techniques and methods to design

forecasting models, each leading to different accuracy. In this research, datasets were

collected from a 546 kWp grid-connected PV farm and a 2 MW wind turbine for one

full year. These data were used to train and test artificial neural network models to

forecast day-ahead PV and wind energy utilizing time-series input data with 15-, 30-,

and 60-min resolutions. The models were able to forecast the PV energy accurately,

while the same models trained for wind showed poor performance. Higher input data

resolutions lead to slightly better forecasting performance for the PV farm. Utilizing

data with higher resolution can improve the forecast by 1%–5%. While for wind

energy forecasting, the resolution has very minor effects, although the 30-min reso-

lution shows a slightly better forecasting performance.
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1 | INTRODUCTION

The reliance on fossil fuels and their derivatives for energy generation

might have serious consequences on the environment. Issues such as

climate change, greenhouse effect, and deforestation can increasingly

be linked to fossil fuel dependency.1 Moreover, fossil fuel is a

depleted source that is not distributed evenly around the globe.

Hence, inequality in the distribution of energy consumption and

reserves is another problem for current energy systems.2

Fossil fuel dependency problems can be reduced by renewable

sources. Energy generation from solar, wind, tidal wave, or biomass

can offer a reliable and cost-effective solution. These renewable

resources are expected to have significant advantages over their con-

ventional counterparts.3

Since photovoltaic (PV) equipment can be easily installed almost

everywhere and operates efficiently in different geographical regions

with low maintenance required, solar energy is considered to be an

effective environmentally friendly technology for energy production.4

Another growing trend in renewable energy generation is the utiliza-

tion of wind resources. Wind technologies offer reliable, eco-friendly,

simple, and low-maintenance methods for energy generation.5

Despite all the attractive advantages of utilizing solar and wind

technologies, some major challenges limit their wider applicability and

impact national strategies and policies of renewables. The fluctuations
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in wind and solar resources create ambiguities in the produced

energy.6 Uncertainties in energy production affect energy security,

economic performance, and most importantly, grid stability (in case of

grid-connected solutions). These issues are further exposed when

considering them in a regulatory context, especially from an interna-

tional perspective.7

Most regions and jurisdictions have their own regulations regard-

ing production, trade, and distribution of electricity—such as the

“Clean Energy for All” package of the European Union that affects

28 member states.8 National policies also need to address market

realities and have to keep up with the rapid change induced by the

integration of an increasing ratio of renewable-based power.9

The core of most rules focuses on scheduling processes and

related services such as day-ahead and intraday scheduling and balan-

cing. Consequently, the accuracy of production prediction has become

crucial. Policy handling of this complex setting, such as incentives or

pricing does impact investment calculations for the long run and pro-

duction control for the short term (e.g., the case of Germany10).

Hence, effective ways of integrating these intermittent resources with

electricity grids are needed. Renewable energy integration issues

influence the formulation of regulations regarding renewable energy

production, trade, and distribution.

Renewable regulations have regularly been augmented and modified

to keep up with the need to contain market abuses and keep grid opera-

tions safe. Some of the integrating methods use energy storage systems

to stabilize the power. Yet, using storage units is impractical for large

applications. In addition, storage units like batteries have limited usage

cycles and it has to be replaced after a certain time adding extra costs.11

Another method for better integration is forecasting energy pro-

duction.12 Accurate energy forecasting models do not only provide

value through reduced imbalance penalties (incurred due to the differ-

ence between the scheduled and actually delivered energy) but also

lead to increased competitiveness by providing advanced knowledge

in real-time energy market trading.

Since renewables are erratic, difficult to predict, and challenging

to integrate with the existing systems, implementing circumspection

and improving energy policy should be vital parts of this energy

transition.

Given that forecasting models are able to address the complex

patterns of energy production based on renewable resources and can

also handle the typical uncertainties of energy demand, sustainable

energy policies and scenarios should consider such models.13 Low

error production predictions improve the construction, operations,

and maintenance planning of energy projects.14 Forecasting of renew-

able energy generation is also a vital part and the base to plan, design,

and manage the energy supply policy.15 This means that good fore-

casting tools would positively impact both the cost and integration of

wind and solar farms.

Many renewable energy forecasting methods have been used

over the years. Physical models based on numerical weather predic-

tions (NWPs), statistical and probabilistic models, and artificial intelli-

gence (AI) models based on machine learning (ML) are among the

main utilized techniques.16

Moreover, each forecasting method has different techniques that

can be used to forecast renewable energy production, especially for

wind and solar. For instance, statistical Seasonal Autoregressive Inte-

grated Moving Average (SARIMA) model was presented by Vagropou-

los et al.17 to predict the performance of a grid-connected PV farm.

But statistical methods might not be the best approach to support

decision-makers as these models are very complex and the prediction

accuracy decreases for longer horizons.18

To offer an alternative to statistical prediction approaches in

order to overcome their weaknesses, machine learning

(ML) forecasting models based on deep learning have been proposed.

ML has several modeling algorithms like supervised, unsupervised,

and meta-learning algorithms, each used for specific learning tasks.19

Artificial neural networks (ANN) is one of the supervised ML algo-

rithms, which can be used to solve complex nonstationary and non-

linear problems.

ANN can be defined as a set of connected units called artificial

neurons arranged into structural layers. The connection network

between the neurons is similar to the synapses in a biological brain.

Each neuron can receive, transmit, and process signals from and to

other neurons connected to it (that are usually located in a different

layer).

Some ANN forecasting models show very good abilities in pre-

dicting solar and wind energy with minimum errors and lowered

uncertainties compared to other ML algorithms.16 Yet, forecasting the

potential of wind and solar energy is not an easy task as many factors

impact performance and forecasting accuracy.

Besides the modeling techniques and algorithms applied, the data

forming the input to the models as well as the forecasting horizon and

resolution might also affect the performance of these models.20

Depending on the input data (i.e., explanatory variables) utilized by

the forecasting models (including ANN), there are three main methods

for building the forecasting models21,22: (1) in the structural method

forecasting models utilize geographical and meteorological parameters

(such as wind speed, ambient temperature, humidity, and so on); (2) in

the time-series method only past power values are utilized by the

models as inputs; (3) in the hybrid method both meteorological vari-

ables and past power values are utilized by the forecasting models.

In order to create accurate energy plans and stabilize energy

infrastructures, many studies have developed renewable energy fore-

casting models based on time-series input. For instance, Reikard23 ran

experiments on six data sets at resolutions of 5, 15, 30, and 60 min

using the global horizontal component of solar radiation to forecast

PV energy utilizing different models. It was found that the ARIMA

method has better abilities in capturing the diurnal cycle more effec-

tively than other methods tested. Chang used an ANN with a radial

basis function to forecast wind power.24 Heinermann and Kramer25

used the decision tree and the support vector machine techniques to

build a heterogeneous ML model ensemble for predicting wind power.

The suggested method shows better results than state-of-the-art

machine learning methods.

According to the time horizon of the forecast, energy forecasting

can be divided into four major types: very short-term (few seconds to
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30 min), short-term (30 min–6 h), medium-term (6 h–1 day), and long-

term forecasting (days, weeks, etc). It should be noted here, that time-

scale classification of forecasting models in the literature is relatively

vague.26 Owing to simplicity and high accuracy, many existing works

focus on very short-term or short-term energy forecasting.27 Gener-

ally, regardless of the modeling technique or data utilization method

used, forecasting accuracy is expected to decrease for longer

horizons.28

Moreover, the input data resolution (frequency of the input vari-

ables per time unit) is also affecting the accuracy of the forecast.29

Generally, past energy production data are collected with high sam-

pling resolution, such as 10 min,30 15 min,31 and 1 h.32 When a longer

prediction horizon is required, the original high-resolution data are

usually averaged to build up low-resolution data.33 Unfortunately, the

process of averaging will lead to a lot of information losses as the

rapid fluctuations in original high-resolution data will be neglected.34

While it has been established that different forecasting horizons

lead to different accuracies, the impact of input data resolution could

bear some clarification. Considering the above challenges and options,

the research reported here developed ANN-based energy forecasting

models for both PV and wind renewable energy technologies. The

goal was to investigate and compare the performance of ANN time-

series forecasting models of both PV and wind energy for 24-h (day-

ahead) horizons under different input data resolutions. Testing was

aimed at finding the input data resolution that leads to the best accu-

racy for a 24-h forecasting horizon, leading to improved day-ahead

energy scheduling and for consideration in policy expectations con-

cerning delivery scheduling.

Although there are claims stated that if the data resolution is

higher, the model developed in any way will perform better, this arti-

cle clarifies in detail the effects of utilizing different input data resolu-

tions on several forecasting models' performance measures for both

PV and wind farms. This article also clarifies that utilizing input data

with higher data resolutions might not always lead to better forecast-

ing accuracy compared with lower resolutions.

To present the findings, the paper is organized as follows: the

article starts with an introduction, that includes a background review

on renewable energy prediction models with a special focus on ANN.

Section 2 then presents the model-building process along with data

sources, model details, and indicators used in the comparison. This is

followed by a presentation of the results and a discussion of the find-

ings. The paper closes with conclusions, limitations, and directions for

future research.

2 | DESIGN OF THE EXPERIMENT, DATA
COLLECTION, MODELS, AND EVALUATION
METHODS

To address the above objective, two sets of ANN time series forecast-

ing models were designed, built (i.e., trained), and tested to forecast

wind and PV out power for 24 h ahead, each set utilizing input data

with resolutions of 15, 30, and 60 min. Once the six models were

trained, their accuracy was then calculated. Subsequently, a compara-

tive analysis was conducted to determine the best settings leading to

the best performance.

The input to the time-series ANN models are past energy values,

therefore, to train the ANN models, both actual PV and wind past

energy values were collected covering a bit more than 13 months.

Data collection started on May 1, 2019, and lasted till June 13, 2020.

PV data were collected from a 546 kWp grid-connected solar farm

located in Hungary. While wind data were collected from a 2 MW

wind turbine located also in Hungary. All data were collected in 15-,

30-, and 60-min resolutions.

Figure 1 shows the overview of the methodology. The process

starts by collecting the past generation data for the PV farm and wind

turbine. The data are used in its original resolution as collected, thus,

data were not averaged to build up lower resolutions. Then six ANN

forecasting models were designed and trained: ANN models were

built to forecast PV and wind energy both with 15-, 30-, and 60-min

resolutions. The target horizon of the forecast is 24-h ahead. The out-

puts (forecasted values of PV and wind energy) were then stored.

After 24-h delay, when the real generation values have become avail-

able (as the real production values are always lagging 24 h behind the

forecasted ones), the performance of each model was calculated. The

output data are used to update the historical records and then to con-

tinue the training of the models.

Figure 2 shows a simple diagram of ANN with n number of inputs

and one output. The input variables arrive from the bottom (input

layer) and can pass through the middle layer(s) to reach the succeed-

ing ones, while the forecasted variable(s) (output) are at the top layer

(the output layer). Neural networks may possibly include one or more

hidden layers with hidden neurons (generally called nodes). The func-

tion of such nodes is to perform a nonlinear transformation on the

input data entering that hidden neuron (as can be seen in Figure 3).

This way hidden neurons receive inputs from the nodes of the previ-

ous layer and deliver the calculated result to nodes in the next layer.

Neurons in a given layer may be fully or partially connected to each

neuron in the next layer. Additionally, the error of the output is calcu-

lated and then utilized to tune the network.

The ANN structure where the direction of information flows from

the bottom up to the top layers in one direction is known as multilayer

feed-forward neural network (MLFFNN). Using the MLFFNN network

structure has many advantages for this particular research context

such as the ability to solve complex nonlinear problems or the ability

to achieve good accuracy with smaller data sets. MLFFNN works well

with big data and can provide quick results after training.35,36 There-

fore, regarding the prediction models reported here, a MLFFNN was

designed.

In any given MLFFNN layer, each neuron combines its inputs

using a weighted linear combination as shown in Equation 1 where

v1,v2,… vn are that neurons' inputs coming from each neuron in the

previous layer, ws is the weighted sum, w1,w2,…wn are the weights

corresponding to the inputs, and b is the bias:

ALSHAFEEY AND CSAKI 3 of 11
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F IGURE 1 Flowchart
providing a general overview of
the methodology

F IGURE 2 A neural network
with n inputs and one output
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ws ¼w1�v1þw2�v2þ…þwn�vnþb ð1Þ

Although in this experiment fully connected layers are used, one

must note, that in case of non-fully connected structures, some

weights might be set to zero constant (depending on some structuring

principle). The weighted sum equation can be written with matrices as

in Equation (2)37:

ws ¼wvþb ð2Þ
where w and v are defined as:

w¼ w1w2w3……wn½ � and v¼

v1
v2
v3
:

:

:

vn

2
666664

3
777775

ð3Þ

Then, a nonlinear transfer function modifies the results as in

Equation (4), where X is the neurons' output:

X¼φ wsð Þ ð4Þ

Different transfer functions might be used, yet, the sigmoid func-

tion is among the most used38 as can be seen in Equation (5):

φ wsð Þ¼ 1
1þe�ws

ð5Þ

Tansig transfer function was used instead of the sigmoid in case

of negative values are found in the output as in Equation (6):

φ wsð Þ¼1�e�2ws

1þe�2ws
ð6Þ

The equations above illustrate the mathematical representation

for a single neuron. Notice that each neuron has its specific set of

weights and biases (see Equations 1 and 2). Initially, each (hidden

and output) neuron's weights are set to random values. Then, train-

ing data are fed to the input layer of the ANN. The data then move

bottom-up through the layers, getting modified and adjusted as illus-

trated in the equations, until it finally reaches the output layer

significantly transformed. Then, as mentioned earlier, an error is cal-

culated and used to train the network by modifying the weights and

the biases. In this research the back-propagation algorithm applied is

based on the minimization of the mean square error (MSE) between

the real and the output data. In MLFFNN, the MSE is minimized in

proportion to the input value(s) and the output value(s) as can be

seen in Equation (7)39:

Min MSEð Þ¼ min
1
n
�
Xn

i¼1
yt�ptð Þ2

� �
ð7Þ

The changes in weights and biases are calculated according to

Equations (8) and (9), respectively39:

Δwn ¼ γ yn�pnð Þ ð8Þ

Δbn ¼ γ yn�pnð Þ ð9Þ

where Δwn and Δbn is the change of the weight and bias, respec-

tively, for the nth neuron, and γ is the learning rate. Consequently, the

adjusted weight (wadjusted) and bias (badjusted) can be calculated accord-

ing to Equations (10) and (11) correspondingly:

wadjusted ¼wþΔw ð10Þ

badjusted ¼ bþΔb ð11Þ

One cycle of the above-mentioned process (when training data

are fed to the input layer of the ANN and pass forward through the

succeeding layers and then weights of each neuron are adjusted based

on the MSE of the resulting output) is called an epoch. Such epoch

loops will continue until the MSE reaches the lowest possible limit

(generally when the MSE value does not change for several epochs) or

when a given number of epochs is reached.

In this research, PV and wind forecasting models using fully con-

nected MLFFNNs were built and tested with three different resolu-

tions. This implies a differing number of input neurons for each

resolution tested. The number of input neurons, therefore, are 96, 48,

and 24 for the 15, 30, and 60 input resolutions, respectively, for both

PV and wind. Another important parameter for ANN is the number of

hidden neurons. Few hidden neurons might affect the ability of ANN

F IGURE 3 Flow of
information in an artificial neuron

ALSHAFEEY AND CSAKI 5 of 11
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to generate a proper function that solves the forecasting problem,

while in the contrast, adding more hidden neurons might result in

over-fitting of the training set and, therefore, lowering the ability of

generalization.40 Hence, the number of hidden neurons was set to be

33% (one-third) of the number of inputs. In addition, instead of a time

limit, the number of Epochs was set to a limit to control running time.

Table 1 shows all settings of ANN parameters depending on input

data resolution.

For all ANN models trained here, the data were split into three

segments: 70% for the training set, 15% for the validation set, and

15% for the test set. During each epoch, the training set is used to

train the models and update the network weights and biases. While

TABLE 1 ANN parameters

Parameter Description

Value for each resolution

15 30 60

Number of inputs Number of input data variables 96 48 24

Number of outputs Number of output forecasted variables 1 1 1

Number of hidden neurons Number of hidden neurons 32 16 8

Maximum Epochs Max. number of training iterations before training is stopped 1000 1000 1000

Maximum training time Max. time before training is stopped ∞ ∞ ∞

Performance Goal The min. target value of MSE 0 0 0

F IGURE 4 PV energy forecasting model performance utilizing (a) 15-; (b) 30-; and (c) 60-min input data resolution

6 of 11 ALSHAFEEY AND CSAKI
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the validation set is used to monitor the errors during the training pro-

cess. The training error normally decreases during each epoch, and

this applies to the validation set error as well. However, when the net-

work begins to overfit the data, the error on the validation set

typically begins to increase. The network weights and biases are saved

at the minimum value of the validation set error to ensure that no

overfitting has occurred. The test set error is not used during training,

but it is used to compare the performance of each epoch. In this work,

F IGURE 5 Wind energy forecasting model performance utilizing (a) 15-; (b) 30-; and (c) 60-min input data resolution

TABLE 2 Performance measures comparison

Performance measures

Model COD MAE MSE

PV forecasting 15-min resolution 0.75 9.72 300.13

30-min resolution 0.76 10.00 297.81

60-min resolution 0.74 10.13 312.73

Average 0.75 9.95 303.55

Wind forecasting 15-min resolution 0.05 119.69 21040.5

30-min resolution 0.07 116.29 20607.7

60-min resolution 0.05 116.80 20964.0

Average 0.06 117.59 20870.7

ALSHAFEEY AND CSAKI 7 of 11
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the performance of each tested model was calculated during the train-

ing and testing period, that is, using 85% of the original dataset.

To calculate the performance of the resulting forecasting models,

one or more evaluation methods are needed. Evaluation methods

such as mean absolute error (MAE), MSE, and coefficient of determi-

nation (COD) can be used to evaluate the performance of forecasting

models,20 as can be seen in Equations (12)–(14), where n is the num-

ber of observations, yt is the observed (real) output power at time t, pt

is the forecasted output power at time t, and ŷ is the average of the

observed values:

MAE¼1
n
�
Xn

i¼1
j yt�pt j ð12Þ

MSE¼1
n
�
Xn

i¼1
yt�ptð Þ2 ð13Þ

COD¼
Pn

i¼1 yt�ptð Þ2Pn
i¼1 yt� ŷð Þ2

ð14Þ

MAE value is used to measure the closeness between the pre-

dicted and measured (real) values. While MSE measures the average

squared difference between the predicted values and the measured

(real) values. Hence, MSE implies how far the predictions are spread

from the measured (real) values. COD (also known as R2) shows the

closeness between the predicted output from the measured (real) data

line as a fitted regression. Better modeling accuracy means MAE, and

MSE should be closer to zero, while the COD value should be closer

to 1. As different measures reflect different views on performance, in

this experiment all of the three measures were calculated and com-

pared to evaluate the three PV and three wind models.

3 | RESULTS AND DISCUSSION

The performance of each model was calculated during the training

and testing period (one full year). Additionally, as it is difficult to visu-

alize the performance of each tested model for 1 year, the perfor-

mance of each forecasting model was visualized for the last week of

the testing which covers the period June 7–13, 2020 as can be seen

in Figure 4 (solar) and Figure 5 (wind).

In Figure 4a, it can be seen that the PV forecasting model utilizing

15 min of input data resolution has good prediction abilities, yet some

errors can be observed. Specifically, large errors can be observed on June

8, when the model failed to predict the sudden dip that happened in the

afternoon. As the input variables and the forecasted values have high reso-

lution, the small fluctuations in the real energy production can be detected.

For instance, days June 9 and 10 show fast fluctuations in the produced

energy. The forecasting model was partially able to predict these sudden

fast fluctuations, yet it could not accurately predict steep movements.

Figure 4b shows the performance of the PV forecasting model

utilizing 30 minutes of input data. This model also shows good predic-

tion abilities. Yet again, some errors can be observed especially on

June 8. It can be noticed here that the sudden production fluctuations

can still be detected but smaller fluctuations could not be detected as

frequently as in the previous model of higher input data resolution.

Figure 4c shows the performance of the PV forecasting model utiliz-

ing a 60-min resolution of input data. It can be seen that this model

has higher forecasting errors for the June 12, 2020. Also, as the input

and forecasted data have a lower resolution than the two previous

models, production fluctuations appear more smoothly.

Generally, it can be observed from Figure 4 that using ANN fore-

casting models that only utilize past energy data (time-series past gen-

eration data) leads to good forecasting performance. Still, the sudden

F IGURE 6 Performance measures
comparison of PV energy forecasting
utilizing different input data resolutions
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fluctuations in energy production could not be accurately predicted.

This can be explained by the nature of ANN time-series forecasting:

models are trained using 1-year past generation data, while the input

of the models is the past 24-h data. Based on the trained model and

model inputs, each ANN model will forecast the next 24-hour energy

generation. As weather fluctuations occur within less than a 24-h win-

dow, it is generally hard to accurately predict sudden dips. Forecasting

a sudden dip requires either lower forecasting window (lower than

the dip, i.e., 1-h forecasting horizon) or real-time dynamic forecasting

models where the model can correct the forecast based on the real-

time data. Real-time dynamic forecasting has its own applications

which are out of the scope of this article.

Moreover, different input data and forecast resolutions show dif-

ferent behavior in detecting and forecasting these fluctuations (as will

be discussed later in this section in comparison to wind forecasting).

Figure 5 shows the performance of the wind energy forecasting

models utilizing different input data resolutions. Generally, it can be

noticed that the ANN time-series forecasting model is not good

enough in predicting wind energy.

Figure 5a shows the performance utilizing input data of 15-min

resolutions. This wind model was not able to predict the energy accu-

rately, especially in the last few days of testing (June 9–13) when the

actual produced energy was zero most of the time. Utilizing input data

of 30 and 60 min did not improve the forecasting performance much

as can be seen in Figure 5b,c.

In the 15-min resolution forecasting model, the forecasted values

were fluctuating in a steeper manner than some of the real-generation

values. The steep fluctuations have still existed when utilizing 30-,

and 60-min resolutions but in a less-frequent manner.

As the designed ANN-forecasted model only relies on the past-

generation time-series data, the output forecasted values were greatly

deviating from the real values and huge errors were marked. This indi-

cates that catching seasonality and patterns of wind energy genera-

tion by ANN forecasting models requires additional input variables

compared to PV energy forecasting.

The results discussed above show a big variance in PV and wind

forecasting performance as represented in Table 2. ANN time-series

method was efficient in predicting the PV energy output with average

COD of 0.75. Also, the average MAE and MSE are 9.95 and 303.55,

respectively. The same method with the same data utilization

approach shows very poor abilities in forecasting wind energy with a

0.064 COD, 117.59 MAE, and 20870.79 MSE.

Table 2 also shows that ANN time-series method has in general

similar abilities in forecasting the PV output energy regardless of the

input data resolutions. Although all performance measures are very

close and comparable, the 60-min resolution shows higher values of

MAE and MSE, yet slightly lower COD. This indicates higher input

data resolutions lead to slightly better accuracy—and, interestingly,

30 min performs slightly better than 15 min in some performance

measures like COD and MSE. However, the MAE value decreases for

higher resolutions indicating slightly better prediction abilities.

With respect to the effect of different input data resolutions on

the forecasting model accuracy, it was found that performance mea-

sures (as presented in Table 2) are similar to the ones found in the lit-

erature. However, this study took an integrated view. For example,

the MAE values for day ahead forecasting horizon varies between

7 and 12 depending on the input data and the technique utilized.41

Similarly, it was also confirmed from the literature that wind

F IGURE 7 Performance measures
comparison of wind energy forecasting
utilizing different input data resolutions
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forecasting models tend to have higher MAE values. Moreover, for

some models, the values of MAE do vary greatly between 1 (or even

less) up to even a few hundred.42 Our results are more specific, how-

ever, as most other studies only present percentage difference.

COD values are close for all tested resolutions, while some signifi-

cant differences can be seen between the different utilized resolutions,

especially between the 60-min and 15-min resolutions in MAE and MSE.

As can be seen from Figure 6, utilizing data with 30-min resolutions

instead of 60-min resolutions improved (decreased) MAE by 1.33% and

MSE by 4.77%. While utilizing data with 15-min resolutions instead of

60-min resolutions improved MAE by 4.10% and MSE by 4.03%. Utilizing

a 15-min resolution instead of 30 does not show any significant improve-

ment. Actually, COD and MSE measures show a deteriorated improve-

ment of 0.26% and 0.78%. Yet MAE shows a 2.81% improvement.

For wind energy forecasting, different input data resolutions

show some effects on the forecasting performance. The 30-min reso-

lutions show the lowest MAE and MSE. While higher values of MAE

and MSE were observed utilizing 15 min of input data resolution.

Interestingly, here 60 min perform better, than 15 min. But every res-

olution leads to weak performance in general.

As can be seen from Figure 7, utilizing data with 30-min resolu-

tions instead of 60-min resolutions improved COD by 31.68%. Note

that even after this huge improvement, COD values for both 30- and

60-min resolutions are still low. Utilizing data with 15-min resolutions

instead of 60-min resolutions improved COD by 1.18%, but MAE and

MSE did not improve. Utilizing a 15-min resolution instead of 30 does

not show any improvement. on the contrary, all the performance mea-

sures show deteriorated values.

The results indicate that for intraday renewable energy forecast-

ing, using a 15-min resolution might not lead to the best accuracy for

all forecasting purposes. The results also indicate that predicting wind

power utilizing the time-series data alongside with ANN method

might not lead to good forecasting accuracy at all. As was shown ear-

lier in this section, the ANN shows poor abilities in forecasting wind

power utilizing only time-series (past energy) data, while the same

method utilizing the same time-series data shows good forecasting

accuracy for PV power forecasting. Hence it can be concluded that

different renewable energy predictions might require different

models, methods, and input data settings. A powerful forecasting

method for one renewable energy resource does not necessarily mean

that this method is also powerful for forecasting other renewable

sources.

4 | CONCLUSION

This article clarified in detail the effects of utilizing different input

data resolutions on the performance measures of several forecasting

models for both PV and wind farms. The findings are results of

building and testing ANN-based PV and wind energy forecasting

models using different input data resolutions utilizing real site data.

Specifically, although there are claims that higher data resolution

leads to better forecasting performance, this article demonstrates

that utilizing input data with higher data resolutions might not

always lead to better forecasting accuracy compared with lower

resolutions.

It was found that ANN time-series model was efficient in predicting

the PV energy regardless of the input data resolution. In fact, input data

resolutions have only a small effect on the accuracy of the ANN time-

series PV forecasting model as forecasting measures are fairly close

when utilizing 15 or 30 min input data resolution. Yet, the 15-min resolu-

tion shows better forecasting performance compared to the 60-min res-

olution as it improves some performance measures by 1.3%–4.1%. The

same model approach shows poor performance in predicting wind

energy. ANN time-series wind forecasting model has huge errors in fore-

casting wind energy regardless of the input data resolution. Yet, the

30-min input data resolution shows a slightly better performance. Utiliz-

ing the 30 min improves some performance measures by 0.4%–31%.

These results show that forecasting energy production in a 15-min reso-

lution might not assure high prediction accuracy for all renewable

resources. Different renewable energy resources might need different

input data resolutions to attain better forecasting accuracy.
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