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A B S T R A C T   

This article aims to quantify the impact of different energy consumption sources on greenhouse gas (GHG) 
emissions for three major economies: the United States of America (USA), China, and the European Union (EU). 
To achieve this, energy consumption and GHG emissions data were obtained from “Our World in Data” for the 
period 1965–2021. Then, two machine learning techniques were utilized. Gradient Boosting (GB) was used to 
identify the major energy consumption sources contributing to GHG. While Artificial Neural Network (ANN) was 
used to quantify the effects of these major energy consumption sources on GHG emissions. The findings have 
significant implications for policymakers, as they suggest that effective strategies to reduce GHG emissions must 
be tailored based on the energy utilization sources of each country. Specifically, for the USA it was found that 
reducing coal consumption could be the most effective strategy to reduce GHG emissions, as increasing coal 
consumption by 25% would result in a 13% increase in GHG emissions. In contrast, increasing nuclear con-
sumption by 25% in China would result in an 11% decrease in GHG emissions due to the displacement of fossil 
fuel-based energy sources. Increasing wind energy consumption by 25% in China would result in a 3% decrease 
in GHG emissions. In the EU, the study found that increasing oil consumption has a minor effect on GHG 
emissions while increasing coal consumption by 25% would result in an 11% increase in GHG emissions, 
highlighting the importance of reducing coal consumption. This study’s originality lies in the use of machine 
learning techniques to identify the key energy consumption sources driving GHG emissions in the three major 
economies, as well as its specific recommendations for reducing emissions.   
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1. Introduction 

Greenhouse gases (GHG) are well known for their harmful impacts 
on our planet [1]; Carbon dioxide contributes to rising global temper-
atures, altered precipitation patterns, and sea level rise. Methane exac-
erbates climate change and ground-level ozone formation. While nitrous 
oxide has a high warming potential and poses risks to ecosystems and 
human health. The growing rates of GHG emissions have imposed sub-
stantial risks to human life and the overall environment [2]. Starting 
from the first industrial revolution, a gradual, but significant increase in 

average annual temperature that is associated with extreme weather 
events and severe temperatures was observed. This change has directly 
impacted agriculture as well as some other sectors [3–5]. The issue was 
exacerbated as the effects of climate change have become more serious 
with an average increase in global temperature between 0.5 and 1 ◦C 
over the past decade [5]. One of the reasons for this temperature rise is 
the high levels of GHG emissions associated with manufacturing and 
economic activities [3,6]. The United States (US), China, and the Eu-
ropean Union (EU) are together responsible for more than half of the 
world’s total GHG emissions; Accounting for 28% of the global emis-
sions, China is the world’s largest emitter of GHGs, followed by the US as 
contributing for 15% of global GHG emissions, while the EU contributed 
to 9% of the global emissions [7]. For these economies, energy con-
sumption is one of the most contributors to GHG emissions, as over 
two-thirds of GHG emissions related to human activities are produced by 
energy sources highlighting the need for cleaner and more sustainable 
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energy sources [8]. 
To reduce GHG emissions and mitigate the impact of climate change, 

low-carbon transition solutions can be beneficial [9]. In the energy 
sector, promoting such a transition requires either reducing energy 
consumption, increasing the utilization of low-carbon energy sources, or 
improving energy efficiency [10]. Reducing energy usage is a hard and 
complicated task as the growth in energy demand is normally a result of 
economic and population growth [11]. Yet, decoupling energy from 
economic growth is a hot topic that is gaining attention [12]. Utilizing 
low-carbon energy on the other hand might offer a more feasible solu-
tion [13]. Driven by cultivating renewable technologies such as Photo-
voltaic (PV) and wind turbines, it is possible to produce green energy 
with a marginal carbon footprint. On the other hand, improving energy 
efficiency offers relatively marginal benefits [14]. Current solutions for 
reducing GHG emissions have largely focused on interventional solu-
tions such as carbon pricing and renewable energy subsidies [15]. 
However, the effectiveness of these solutions can vary depending on the 
level of energy consumption diversity in different economies. 

Different sources of energy consumption have varying impacts on 
GHG emissions [16]. Coal, oil, and gas are reported as the most widely 
used sources of energy worldwide, which consequently sets them as the 
highest global contributors to GHG emissions [16]. Although Nuclear 
energy does not emit GHG emissions during operation which makes it 
seem like a low-carbon energy source [17], the life-cycle emissions of 
nuclear energy rely on high-carbon dependent factors such as uranium 
mining, fuel enrichment, and waste disposal [18]. That is in addition to 
the subsequent safety, waste management, and nuclear proliferation 
issues, which might make nuclear energy a less appealing option in 
certain scenarios [16]. Similarly, renewable energy sources, such as 
solar, wind, and hydro, have low GHG emissions, as they do not emit any 
GHGs during operation. Yet, their life-cycle emissions are still present 
and can vary widely depending on the production methods used [19]. 

Machine learning algorithms such as Artificial neural networks 
(ANN) and gradient boosting (GB) have shown superiority over tradi-
tional statistical methods in studying energy GHG emissions [20,21]. 
These algorithms have the ability to model complex nonlinear re-
lationships, which is not reliable with traditional statistical methods 
[22]. Moreover, ANN and GB are highly adaptable and can learn from 
new data over time, making them useful for predicting future GHG 
emissions [23]. 

Even though the literature review on energy and GHG emissions 
covers a wide range of topics such as energy efficiency, renewable en-
ergy, carbon capture and storage, and climate change mitigation [24]; a 
noticeable scarcity of investigational research addressing the diversity of 
energy consumption sources’ impact on GHG is apparent. Some of the 
previous studies focused on the relationship between one source of en-
ergy consumption such as PV, wind, hydropower, bioenergy, and GHG 
emissions as in Refs. [25,26]. Other studies only focus on one sector of 
energy consumption such as the transportation sector [27]. While some 
studies focus on energy consumption technologies like Carbon Capture 
and Storage (CCS) [28], energy storage [29], and smart grids [30,31]. 
Yet, there is a need for a comprehensive approach to address GHG 
emissions, including studying various energy consumption sources, 
practical solutions, and policy recommendations to reduce emissions. In 
this work, we investigate the energy consumption sources with the 
highest impact on GHG, tailored to each country/region, given the 
different utility landscapes of energy sources of the three major econo-
mies, i.e. the US, China, and the EU. This work contributes to the existing 
literature through its original estimation methodology along with its 
practical policy applications in the field of energy policy. This is done by 
developing region-specific machine learning predictive models to 
analyze the relationship between energy consumption and greenhouse 
gas (GHG) emissions. With the aim of providing region specific energy 
policy recommendations on the utility of energy sources with the highest 
reduction impact on GHG emissions. 

2. Methods 

To achieve the aims of this study, the method depicted in Fig. 1 was 
employed. First data was collected and processed as in section 2.1. Then, 
two machine learning techniques (ANN and Gradient Boosting) were 
utilized as described in section 2.2. Finally, based on the machine 
learning analyses the results and recommendations are derived as in 
sections 3 and 4. 

The artificial neural network was implemented using Matlab 
R2023a, while gradient boosting was implemented using Python Jupiter 
environment. For both methods, the data was split into 80% for training 
and 20% for testing. Additionally, the data were subjected to 3 k-folds 
validation to ensure the robustness of the models. 

2.1. Data collection and processing 

The data collected and analyzed in this study pertains to energy 
consumption and greenhouse gas emissions of three major global 
players - the United States of America, China, and the European Union. 
The data collection process involved sourcing data from the “Our World 
in Data” database covering the period from 1965 to 2021. Specifically, 
the study focused on two key datasets: energy consumption by source 
and greenhouse gas emissions. The energy consumption by source 
dataset measured primary energy consumption in terawatt-hours 
(TWh). The dataset comprises nine different sources; i.e. geo biomass, 
biofuels, solar, wind, hydro, nuclear, gas, coal, and oil. On the other 
hand, the greenhouse gas emissions dataset comprises the emissions of 
carbon dioxide, methane, and nitrous oxide from all sources combined, 
in metric tons. 

In this study, the collected data on energy consumption and green-
house gas emissions by the USA, China, and EU were first normalized to 
eliminate the effects of different measurement units and scales on the 
analysis results. Without such, variables with larger ranges and magni-
tudes will dominate the analysis, while smaller variables may be 
ignored. Furthermore, normalization enhances the stability and 
robustness of machine learning models by avoiding issues such as 
gradient explosion and vanishing [32]. 

Regarding the validity of the data, “Our World in Data” calculates 
these emissions using data from Jones et al. [33] as per the Intergov-
ernmental Panel on Climate Change (IPCC) methodology [34]. Recently, 
the IPCC has released an update to its methodology that improves 

Fig. 1. General method flowchart.  
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transparency and reporting by ensuring that the methodology used to 
determine these inventories is based on the latest science. It also ad-
dresses gaps in the science that were identified, new technologies and 
production processes have emerged, or for sources and sinks that were 
not included in the earlier IPCC guidelines. 

Note that the primary objective is to evaluate the impact of various 
energy sources on greenhouse gas (GHG) emissions. Hence, the study 
concentrates on the total annual emissions and energy consumption data 
of each source, which provides valuable insights into the relative con-
tributions of different energy sources to GHG emissions, without 
necessitating a detailed utilization of the carbon life cycle of each in-
dividual source. 

2.2. Machine learning models 

In this study, two machine learning techniques, ANNs and GB were 
employed. The main objective of these techniques was to improve the 
accuracy of predictions and gain a deeper understanding of the factors 
that drive energy consumption and greenhouse gas emissions. We first 
trained and tested three separate ANN models for each region to forecast 
GHG emissions based on energy consumption data. Meanwhile, the 
Gradient Boosting method was utilized to identify the three most 
important sources among the nine collected energy consumption sources 
that affect GHG emissions. These most important sources were further 
investigated using the trained ANN models to simulate the effects of 
increasing their consumption from current levels (i.e. 2021) with 0.5% 
increments up to 25%, while controlling for all other sources, to isolate 
the target source impact for quantification. 

2.2.1. Artificial neural network (ANN) 
Feedforward ANN with Levenberg-Marquardt backpropagation al-

gorithm was utilized as can be seen in Fig. 2. 
During training, the input data is fed forward through the network 

using the following equations: 

a(1)= x (1)  

a(l)= σ(h(l)) (2)  

a(l)= σ(w(l − 1)a(l − 1)+ b(l − 1)) (3)  

where x is the initial input data that is propagated forward through the 
network to produce the output. (l) is the activation vector of layer l, ℎ(l) 
is the weighted input vector of layer l, w(l− 1) is the weight matrix 
connecting layer l− 1 to layer l, b(l− 1) is the bias vector of layer l− 1, and 
σ is the activation function. 

After the feedforward pass, the output of the network is compared to 
the target output, and the error is calculated. The weights and biases are 
then updated using the backpropagation with the Levenberg-Marquardt 
algorithm, which involves propagating the error back through the 
network and adjusting the weights and biases. 

The delta rule is used to calculate the error at each layer: 

δ(L)=∇h(L)L ⊙ σ′(h(L)) (4)  

δ(l)= ((w(l))Tδ(l+ 1)) ⊙ σ′(h(l)) (5)  

where ∇h(L)L is the gradient of the loss with respect to the output of 
the network, ⊙ represents element-wise multiplication, and σ′ is the 
derivative of the activation function. Note that δ(L) represents the error 
at the output layer, while δ(l) represents the error at layer l where l can 
range from 1 (the input layer) to L − 1 (the layer before the output 
layer). The weights and biases are then updated using the following 
equations: 

wl := wl − Δwl (6)  

bl := bl − Δbl (7) 

The weight and bias updates for layer l are then calculated using 
regularized Gauss-Newton equations to determine the tradeoff between 
the gradient descent and Gauss-Newton steps: 

Δwl =
(
JT J + λI

)− 1JT δl+1( al)T (8) 

Fig. 2. A neural network with n inputs and one output.  
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Δbl =
(
JT J + λI

)− 1JT δl+1 (9)  

where Δwl and Δbl are the weight and bias updates, respectively for 
layer l. λ is the Levenberg-Marquardt parameter, and J is the Jacobian 
matrix, which is defined as: 

J(l)ij =
∂h(l)

i

∂w(l− 1)
ij

(10)  

=
∂

∂w(l− 1)
ij

(
∑

k
w(l− 1)

ik a(l− 1)
k + b(l− 1)

i

)

(11)  

= a(l− 1)
j (12)  

δ(L) = J(L)( f
(
h(L)) − y

)
(13)  

δ(l) =
(
J(l))T

(
J(l)( J(l))T

+ μI
)− 1

δ(l+1) (14)  

∂E
∂w(l)

ij

= a(l− 1)
j δ(l)

i (15)  

∂E
∂b(l)

i

= δ(l)
i (16)  

where δ(L) is the error vector at the output layer, J(l) is the Jacobian 
matrix of layer l, μ is a regularization parameter that controls the step 
size, and I is the identity matrix. The derivative of the cost function with 
respect to the weights and biases is calculated as follows: 

∂E
∂w(l)

ij

=
∂E

∂h(l)
i

∂h(l)
i

∂w(l)
ij

(17)  

= δ(l)
i a(l− 1)

j (18)  

∂E
∂b(l)

i

=
∂E

∂h(l)
i

∂h(l)
i

∂b(l)
i

(19)  

= δ(l)
i (20) 

The weights and biases are then updated using the following rules in 
each iteration: 

w(l)
ij := w(l)

ij − η ∂E
∂w(l)

ij

(21)  

b(l)
i := b(l)

i − η ∂E
∂b(l)

i

(22) 

Here, η denotes the learning rate, which controls the step size of the 
weight and bias updates. The algorithm is repeatedly applied until the 
error converges or a maximum number of epochs is reached. 

This study uses feedforward ANN with Levenberg-Marquardt back-
propagation as described in equations (1)–(22). Table 1 shows the values 
of the ANN parameters used, including the number of inputs, number of 
outputs, number of hidden layers and neurons, the maximum number of 
epochs, maximum training time, and performance goal. 

2.2.2. Gradient boosting (GB) 
Gradient boosting is a powerful machine learning technique that 

iteratively combines multiple weak models to create a strong model 
[35]. Fig. 3 shows the GB algorithm utilized in this study. The algorithm 
can be broken down into three main steps, and three substeps. 

The first main step is model initialization, in this step, the model is 
initialized with a constant random value that minimizes the loss func-

tion (L) as in equation (23). 

F0(x)= arg γ
∑n

i=1
L(yi, γ) (23)  

where the loss function L(yi, γ) measures the difference between yi 
(observed value) and γ (predicted value) from the first till the i − th 
observation. 

After the model is initialized, the second main step (model fitting) is 
performed. In this step, the model is fitted by iterating through M 
number of trees, starting from the first iteration (m = 1), till M. This step 
consists of three substeps:  

1. Compute pseudo-residuals (r) for the m − th iteration as in equation 
(24). 

rim = −

[
∂L(yi,F(x1))

∂F(xi)

]

F(x)=Fm− 1(x)− 1(x)
(24)  

where x is the input feature vector for a specific data point (i). 

-
[

∂L(yi ,F(x1))
∂F(xi)

]
is the negative gradient of the loss function. While Fm− 1(x) −

1(x) is the previous iteration’s prediction. 

2. Fit regression tree (T) to the pseudo-residuals by finding the struc-
ture that minimizes the loss function as in equation (25). 

Tm(x)= argmin(α, j, s)
∑n

i=1
L
(
yi,Fm− 1(xi)+ αI

(
xij ≤ s

))
(25)  

where xij is the value of the j − th feature for the i − th observation. 
I(xij ≤ s) is the penalty term which penalizes splits that do not improve 
the prediction accuracy. Note that to minimize the loss function L, the 
values of α, j, and s must be optimized. As the α value is the prediction 
assigned to each leaf of the tree, while j and s refer to the feature and 
feature value, the structure of the regression tree is determined by the 
values of these three parameters. Using the optimized values of α, j, and 
s, a regression tree can be built to determine the step size γm for the 
current iteration (m) of the algorithm as in equation (26). 

γm = arg(γ)
∑n

i=1
L(yi,Fm− 1(xi)+ γTm(xi)) (26) 

The step size γm is determined by minimizing the loss function for the 
current iteration, which includes the model (Fm− 1). The new weak 
learner (Tm) is scaled by γ which is a hyperparameter that is determined 
by minimizing the loss function.  

3. Update the model by adding the prediction of the current tree scaled 
by the step size as in equation (27): 

Fm(x)=Fm− 1(x) + γmTm(x) (27) 

Finally, in the third main step, the prediction for a new observation 

Table 1 
ANN hyperparameter values and descriptions.  

Parameter Description Value 

Number of inputs Number of input data variables 9 
Number of outputs Number of output forecasted variables 1 
Number of hidden 

layers 
Number of hidden layers hyperparameter 2 

Number of hidden 
neurons 

Number of hidden neurons hyperparameter 9 

Maximum epochs Max. number of training iterations before 
training is stopped 

1000 

Maximum training 
time 

Max. time in seconds before training is 
stopped 

Unlimited 

Performance goal The minimum target value of MSE 0  
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ŷi is performed as in equation (28): 

ŷi = FM(xi) (28) 

The final prediction of the gradient boosting regressor model in 
equation (28) is obtained by using the ensemble of trees that were 
optimized by minimizing the loss function. The algorithm can improve 
the model’s performance by testing different hyperparameter combi-
nations to find the optimal set. Table 2 describes the parameters used in 
optimizing the GB models. The Huber loss function is chosen to be 
optimized. The learning rate, which controls the step size at each iter-
ation, is tested at 8 different values ranging from 0.05 to 0.40, while the 
number of boosting stages (number of estimators) and the maximum 
depth of the individual regression estimators (max depth) are both 
tested at 8 different values ranging from 25 to 200 and 2 to 9, respec-
tively. To evaluate the performance of each combination of hyper-
parameters, the model is trained using a K-fold cross-validation 
technique, with 3 folds used for each of the 512 candidates (3 parame-
ters each with 8 different values 83, as shown in Table 2). In total, 1536 
fits (512*3) are carried out for each model (three different models were 
built for the three regions, USA, China, and EU). 

3. Results 

In the following sub-sections, the results start with the comparative 
descriptives for all investigated regions, followed by the machine 
learning results laid separately for each geography (i.e. USA, China, and 
EU). 

3.1. Regional comparisons 

Regarding the historical GHG emissions data, Fig. 4 shows GHG 

emissions in the USA, China, and the EU from 1965 until 2021. It can be 
observed that China experienced a significant increase in emissions over 
the last two decades. Conversely, the USA and the EU have shown a 
slight decrease in emissions. 

Fig. 5 shows the proportions of energy consumption for each type of 
energy source in the USA, China, and the EU for the year 2021. It can be 
noted from the graph that the three major economies extremely depend 
on fossil fuels. USA and EU exhibit a similar consumption pattern as both 
rely mostly on oil, followed by gas then coal to supply their demand. 
However, the EU has a relatively higher utilization of renewable re-
sources compared to the USA. China on the other hand shows a sub-
stantial dependence on coal, with over 55% of energy consumption 
coming from coal. The current situation (i.e. 2021 numbers) is used as a 
reference point for the effects of increasing the share of energy con-
sumption sources on GHG emissions. 

3.2. USA results 

3.2.1. Gradient boosting results for the USA 
Based on the optimization technique, the best parameters found for 

the US GB model were a learning rate of 0.05, a maximum depth of 2, 
and 200 estimators. These parameters resulted in a 0.95 r-squared value, 
indicating that the model is a good fit for the data. 

The GB results for the US are depicted in Fig. 6. Energy consumption 
from coal plays the highest importance (0.41) in GHG emissions, fol-
lowed by nuclear (0.23), oil (0.22), wind (0.07), geo biomass (0.04), and 
solar (0.03). Gas, hydro, and biofuels have very marginal effects. The 
results for the USA demonstrate that the GHG emissions can be mainly 
explained by coal, nuclear, and oil consumption. Coal, nuclear, and oil 
consumption sources were further analyzed using ANN to investigate the 
effects of increasing the consumption shares of each of these sources on 
GHG emissions. 

3.2.2. ANN results for the USA 
The USA ANN model had an r-squared value of 0.98, indicating that 

the model is a good fit for the data. Fig. 7 shows the effects of increasing 
coal consumption on GHG emissions in the USA where it shows a pos-
itive relationship between coal consumption and GHG emissions. 
Increasing coal consumption by 25% will result in a 13% increase in 
GHG emissions. 

Fig. 8 shows the effects of increasing nuclear consumption on GHG 
emissions in the USA. The model shows a positive relationship between 
nuclear consumption and GHG emissions. Increasing nuclear con-
sumption by 25% will result in about 6% increase in GHG emissions. 

Fig. 3. Gradient boosting algorithm workflow.  

Table 2 
Gradient Boosting regressor hyperparameter values and descriptions.  

Parameter Description Tested values during 
optimization 

Loss The loss function to be optimized Huber 
Learning rate The learning rate that controls the step 

size at each iteration while moving 
toward the minimum loss function 

0.05, 0.1, 0.15, 0.2, 
0.25, 0.3, 0.35, 0.40 

Number of 
estimators 

The number of boosting stages to be 
performed 

25, 50, 75, 100, 125, 
150, 175, 200 

Max depth Maximum depth of the individual 
regression estimators 

2, 3, 4, 5, 6, 7, 8, 9  
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Similarly, Fig. 9 shows the effects of increasing the US oil consumption 
on GHG emissions. Increasing oil consumption by 25% will result in 
almost an 8.4% increase in GHG emissions. 

3.3. China results 

3.3.1. Gradient boosting results for China 
Based on the optimization technique, the best parameters found for 

the Chinese GB model were a learning rate of 0.05, a maximum depth of 
5, and 200 estimators. These parameters resulted in 0.98 r-squared 
value, indicating that the model is a good fit for the data. 

The GB results for China are depicted in Fig. 10. Energy consumption 

from nuclear plays the highest importance (0.21) in GHG emissions, 
followed by wind (0.17), gas (0.15), geo biomass (0.13), oil (0.12), 
hydro (0.09), coal (0.07), solar (0.05), and lastly biofuels (0.02). The 
results for China demonstrate that the GHG emissions can be mainly 
explained by nuclear, wind, and gas consumption. Those will be further 
analyzed using ANN to investigate the effects of increasing the con-
sumption shares of each of these sources and GHG emissions. 

3.3.2. ANN results for China 
The Chinese ANN model had an r-squared value of 0.99, indicating 

that the model is a good fit for the data. Fig. 11 shows the effects of 
increasing nuclear consumption on GHG emissions in China. The model 

Fig. 4. Comparison of historical GHG Emission in USA, China, and EU  

Fig. 5. Comparison of energy consumption by type for USA, China, and EU in 2021.  
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shows a negative relationship between nuclear consumption and GHG 
emissions. Increasing nuclear consumption by 25% will result in an 11% 
decrease in GHG emissions. Fig. 12 shows the effects of increasing wind 
consumption on GHG emissions in China as predicted by the ANN 
model. The model shows a negative relationship between wind con-
sumption and GHG emissions. Increasing wind consumption by 25% will 
result in about 3% decrease in GHG emissions. Similarly, Fig. 13 shows 
the effects of increasing gas consumption on GHG emissions in China. 
The model shows a positive relationship between gas consumption and 
GHG emissions and increasing gas consumption by 25% will result in 
about 11% increase in GHG emissions. 

3.4. EU results 

3.4.1. Gradient boosting results for the EU 
Based on the optimization technique, the best parameters found for 

the EU GB model were a learning rate of 0.01, a maximum depth of 2, 
and 100 estimators. These parameters resulted in 0.97 r-squared value, 
indicating that the model is a good fit for the data. 

The GB model analysis for the EU shows that energy consumption 
from oil plays the highest importance (0.33) in GHG emissions, followed 
by coal (0.22), wind (0.13), biofuels (0.13), nuclear (0.10), geo biomass 
(0.05) and gas (0.04). While solar and hydro have negligible effects. The 
results for the EU demonstrate that the GHG emissions can be mainly 
explained by oil, coal, and wind energy consumption as shown in 
Fig. 14. Those will be further analyzed using ANN to investigate the 
effects of increasing the consumption shares of each of these sources and 
GHG emissions. 

3.4.2. ANN results for the EU 
Fig. 15 shows the effects of increasing oil consumption on GHG 

emissions in the EU. The model shows that increasing oil consumption 
has a minor negative effect on GHG emissions. Increasing oil con-
sumption by 25% will result in a 1% decrease in GHG emissions. 

Fig. 16 shows the effect of increasing coal consumption on GHG 
emissions in the EU; the model shows a positive relationship between 
coal consumption and GHG emissions where increasing coal consump-
tion by 25% will result in about an 11% increase in GHG emissions. 
Similarly, Fig. 17 shows the effects of increasing wind consumption on 
GHG emissions in the EU; the model shows increasing wind power 
consumption has a minor effect on GHG emissions. Where increasing 
wind consumption by 25% will result in about a 2% increase in GHG 
emissions. 

Fig. 6. GB feature importance for the USA.  

Fig. 7. Effect of increasing coal consumption on GHG in the USA.  

Fig. 8. Effect of increasing nuclear consumption on GHG in the USA.  
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4. Discussion 

This study aimed to investigate the major sources contributing to 
greenhouse gas (GHG) emissions in the USA, China, and the EU using an 
ensemble tree machine learning model known as GB and ANN. The GB 
model was preferred for its ability to identify weaker non-linear re-
lationships that could better explain the target variable. The GB results 
revealed that the major sources contributing to GHG emissions in the 
USA are energy consumption from coal, nuclear, and oil. For China, GB 
demonstrated that nuclear, wind, and gas consumption were the most 
significant factors contributing to GHG emissions. While for the EU, the 
major factors contributing to GHG emissions were found to be energy 
consumption from oil, coal, and wind sources. We chose to use an 
ensemble tree machine learning model such as GB, as it is possible for 

some sources that have a high usage rate, and still not to be identified as 
one of the most important in the feature analysis. This is due to the 
functionality of the GB models which is based on how much each feature 
contributes to reducing errors in predicting the target variable, rather 
than its current weight [36]. This suggests that while some features may 
have strong linear relationships with the target variable, other features 
with weaker non-linear relationships may better explain the target 
variable [37–39]. This is particularly important in China where coal 
consumption accounted for 55% of total energy consumption, yet it is 
not among the most important factor affecting GHG emissions. Never-
theless, smaller utilized sources such as nuclear (2% of Chinese energy 
consumption) are among the most important sources impacting GHG 
emissions. Similarly, wind energy utilization is smaller than other 
sources in USA and EU, however, it is among the most important feature 
of explaining GHG emissions. 

In parallel, the results of the ANN models for the USA showed that 
increasing coal consumption by 25% would result in a 13% increase in 
GHG emissions. This suggests that reducing coal consumption could be 
the most effective strategy to reduce GHG emissions in the USA. 
Meanwhile, increasing nuclear consumption by 25% would result in 
about a 6% increase in GHG emissions, which is lower than the increase 
seen with coal consumption. However, this also suggests that increasing 
nuclear consumption may not be an effective strategy for reducing GHG 
emissions, contrary to what other researchers recommend [40,41]. 
Moreover, it was found that increasing oil consumption by 25% would 
result in about an 8.4% increase in GHG emissions which suggests that 
reducing oil consumption could also be an effective strategy for reducing 
GHG emissions in the USA. However, the priority for the USA should be 
targeted towards reducing coal consumption as it has the highest effect 
on GHG emissions. 

Regarding the Chinese ANN model results, it was found that 
increasing nuclear consumption by 25% will result in a significant 11% 
decrease in GHG emissions. Therefore, increasing nuclear energy 

Fig. 9. Effect of increasing oil consumption on GHG in the USA.  

Fig. 10. GB feature importance for China.  

Fig. 11. Effect of increasing nuclear consumption on GHG in China.  
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production can contribute to reducing GHG emissions in China, contrary 
to the USA. Similarly, increasing wind consumption by 25% will result 
in about a 3% decrease in GHG emissions in China. which suggests that 
wind energy is also a significant low-carbon energy source that can 
contribute to reducing GHG emissions. In contrast, increasing gas con-
sumption by 25% will result in about an 11% increase in GHG emissions, 
which suggests that reducing gas consumption could also be an effective 
strategy for reducing GHG emissions in China. 

The paradox of increasing nuclear energy consumption being 
coupled with directly decreasing GHG emissions in China can be 
attributed to the displacement of fossil fuel-based energy sources, 
particularly coal, as China is heavily reliant on coal as the primary 
source of energy (55% of total energy sources). Additionally, China’s 

nuclear power plants are relatively new and efficient, with fewer 
backups from fossil fuel sources compared to the USA [42,43]. This 
displacement effect has been observed in previous studies [44]. On the 
other, the positive relationship between nuclear consumption and GHG 
emissions in the USA can be attributed to the fact that the nuclear power 
plants in the USA are relatively old and are often backed up by coal-fired 
power plants, which in turn emit a significant amount of GHG emissions 
[45]. 

The results of the ANN models for the EU concluded that increasing 
oil consumption has a minor negative effect on GHG emissions. This 
emphasizes that the EU has successfully turned oil into a carbon-neutral 
source with a very marginal carbon footprint compared to other sources. 
The EU policies and regulations to reduce GHG emissions from oil 
sources, especially in the transport sector as well as improving the oil- 
fired power plants’ efficiency were the main drivers for this success 
[46,47]. On the other hand, the model shows a positive relationship 
between coal consumption and GHG emissions in the EU, indicating that 
increasing coal consumption by 25% will result in an 11% increase in 
GHG emissions. This finding highlights the importance of reducing coal 
consumption to decrease GHG emissions in the EU. It was also found that 
increasing wind energy consumption by 25% will surprisingly result in 
an increase of about 2% in GHG emissions; this can be attributed to two 
reasons, one is that the technology used is still inefficient, and the other 
is that the location selection should be optimized. This suggests that the 
EU is unlikely to environmentally benefit from expanding its wind en-
ergy base using the current technologies and settings. The conclusion 
that wind energy has a mixed impact on GHG emissions as observed in 
the EU and China is corroborated by several empirical studies. While 
some research has found no evidence to support the claim that wind 
energy can mitigate global warming, other studies have observed a 
positive impact on environmental quality through the reduction of GHG 
emissions [48]. 

Fig. 12. Effect of increasing wind consumption on GHG in China.  

Fig. 13. Effect of increasing gas consumption on GHG in China.  

Fig. 14. GB feature importance for EU  
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5. Conclusion and policy recommendations 

This study utilizes machine learning techniques such as ANN and GB 
to provide novel insights into the energy consumption sources that drive 
GHG in the USA, China, and the EU, three major economies and global 
players in terms of energy consumption and emissions. Energy con-
sumption and GHG emissions data were obtained from “Our World in 
Data” database covering the period from 1965 to 2021. The findings 
have significant implications for policymakers and suggest that effective 
GHG emissions reduction strategies must be tailored to the specific en-
ergy utilization sources of each country. For the USA, the priority should 
be on reducing coal consumption. It was also found that increasing 
nuclear consumption may not be an effective strategy for the US. In 
China, increasing nuclear energy production and wind consumption can 
contribute to reducing GHG emissions. While in the EU, policies and 
regulations should be implemented to reduce GHG emissions from coal 

sources, as well as improve efficiency and optimize location selection for 
wind turbines. 

Future work can focus on addressing a number of limitations in this 
study. The accuracy and reliability of the analysis depend on the 
availability and quality of data. Especially since our source utilizes the 
IPCC methodology in data collection. Although the IPCC methodology is 
based on a rigorous review of the scientific literature and undergoes an 
extensive review process to ensure its accuracy and completeness, 
however, like any scientific endeavor, it is subject to limitations. One of 
the limitations is that this method is based on conversion factors which 
might create some degree of uncertainty in the data. Also, the 
complexity and Interpretability of the ANN and gradient boosting 
models are multifaceted. While these black-box models can capture 
intricate relationships between input variables, interpreting the results 
and understanding the underlying mechanisms can be challenging. 

Fig. 15. Effect of increasing oil consumption on GHG in the EU  

Fig. 16. Effect of increasing coal consumption on GHG in the EU  

Fig. 17. Effect of increasing wind consumption on GHG in the EU  
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