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We introduce a new predictor-corrector interior-point al-
gorithm for solving P∗(κ)-linear complementarity problems 
which works in a wide neighbourhood of the central path. We 
use the technique of algebraic equivalent transformation of the 
centering equations of the central path system. In this tech-
nique, we apply the function ϕ(t) =

√
t in order to obtain 

the new search directions. We define the new wide neigh-
bourhood Dϕ. In this way, we obtain the first interior-point 
method, where not only the central path system is trans-
formed, but the definition of the neighbourhood is also mod-
ified taking into consideration the algebraic equivalent trans-
formation technique. This gives a new direction in the research 
of interior-point algorithms. We prove that the interior-point 
method has O

(
(1 + κ)n log

((
x0)T s0

ε

))
iteration complexity. 

Furthermore, we show the efficiency of the proposed predictor-
corrector algorithm by providing numerical results. To our 
best knowledge, this is the first predictor-corrector interior-
point algorithm which works in the Dϕ neighbourhood using 
ϕ(t) =

√
t.

* Corresponding author.
E-mail addresses: tibor.illes@uni-corvinus.hu (T. Illés), petra.rigo@uni-corvinus.hu (P.R. Rigó), 

roland.torok@stud.uni-corvinus.hu (R. Török).
https://doi.org/10.1016/j.ejco.2023.100072
2192-4406/© 2023 The Author(s). Published by Elsevier Ltd on behalf of Association of European 
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

https://doi.org/10.1016/j.ejco.2023.100072
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2023.100072&domain=pdf
mailto:tibor.illes@uni-corvinus.hu
mailto:petra.rigo@uni-corvinus.hu
mailto:roland.torok@stud.uni-corvinus.hu
https://doi.org/10.1016/j.ejco.2023.100072
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 T. Illés et al. / EURO Journal on Computational Optimization 11 (2023) 100072
© 2023 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Starting from the field of linear optimization (LO), interior-point algorithms (IPAs) 
have spread around different fields of mathematical programming, returning to nonlinear 
(convex) programming, as well. For analysis of IPAs see the monographs of Roos et al. 
[1], Wright [2], Ye [3], Klerk [4], Kojima et al. [5], and Nesterov and Nemirovskii [6].

IPAs for LO have been extended to more general classes of problems, such as linear 
complementarity problems (LCP) [5,7–12], semidefinite programming problems (SDP) 
[4,13–15], smooth convex programming problems (CPP) [6], and symmetric cone opti-
mization (SCO) problems [16–21].

LCPs have several applications in different fields, such as optimization theory, en-
gineering, business and economics, game theory etc [8,22,23]. For example, the Arrow-
Debreu competitive market equilibrium problem with linear and Leontief utility functions 
are formulated as LCP [24,25]. Testing copositivity of matrices also has connection 
with solvability of special LCPs [26]. In 2020, Darvay et al. [27] introduced a predictor-
corrector (PC) IPA for P∗(κ)-LCPs and obtained very promising numerical results for 
testing copositivity of matrices using LCPs. Note that the notion of P∗(κ)-matrix and 
P∗(κ)-LCPs will be defined in Section 2.

The monographs written by Cottle et al. [8] and Kojima et al. [5] summarize the 
most important results related to the theory and applications of LCPs. The solvability 
of the LCP is influenced by the properties of the problem’s matrix. If the problem’s 
matrix is skew-symmetric, see [1–3], or positive semidefinite, see [28], then LCPs can 
be solved in polynomial time by using IPAs. However, there is still an open question, 
whether the LCPs with other types of matrices can be solved in polynomial time [13]. In 
general, LCPs belong to the class of NP-complete problems, see [29]. The most important 
class of LCPs from the point of view of the complexity theory is the class of sufficient 
LCPs. This class was introduced by Cottle, Pang, and Venkateswaran [30]. The name 
sufficient comes from the observation that if the matrix of the LCP is sufficient, then 
that condition is sufficient to ensure that the solution set of the LCP is a convex, closed, 
bounded polyhedron [30]. The union of the sets P∗(κ) for all nonnegative κ gives the class 
P∗ [5]. Väliaho [31] demonstrated that the class of P∗-matrices is equivalent to the class 
of sufficient matrices introduced by Cottle et al. [30]. Most of the IPAs for LCPs with 
sufficient (P∗) matrices have polynomial iteration complexity in the size of the problem 
n; handicap of the matrix, κ ≥ 0; the starting point’s duality gap and in the accuracy 
parameter. As de Klerk and E.-Nagy [13] pointed out, the handicap of the matrix could 
be exponential in the bit length of the data, therefore it is still unknown whether for 
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sufficient LCPs there exists a polynomial time algorithm in the size of the problem and 
the bit length.

Theoretical complexity analysis of IPAs for P∗(κ)-LCPs depends on parameter κ. 
However, the preliminary computational results [27,32] with different types of IPAs, 
even with matrices that have exponential value κ, show much better iterations number 
than it is predicted by their complexity results.

The PC IPAs have shown to be an efficient tool for solving LO and LCPs, respectively. 
In a main iteration they perform a predictor step and several corrector steps. One of the 
first PC IPAs for LO was proposed by Sonnevend et al. [33]. Later on, Mizuno, Todd and 
Ye [34] introduced such PC IPA for LO in which only a single corrector step is performed 
in each iteration of the algorithm and whose iteration complexity is the best known in 
the LO literature. These types of methods are called Mizuno-Todd-Ye (MTY) PC IPAs. 
It should be mentioned that in order to use only one corrector step in each iteration, the 
centrality parameter and the update parameter should be properly synchronized. Illés 
and Nagy [35], Potra and Sheng [7,36] and Gurtuna et al. [37] also introduced MTY-type 
PC IPAs for P∗(κ)-LCPs.

We can classify the IPAs based on the length of the steps, as well. In this way, there 
exist short- and long-step IPAs. The short-step algorithms generate the new iterates in 
a smaller neighbourhood, while the long-step ones work in a wider neighbourhood of 
the central path. Potra and Liu [38,39] presented first order and higher order PC IPAs 
for solving P∗(κ)-LCPs using the N−

∞ wide neighborhood of the central path. It should 
be mentioned that there was a gap between theoretical and practical behavior of these 
IPAs in the sense that in theory, short-step algorithms had better theoretical complexity, 
while the long-step algorithms turned out to be more efficient in practice. Peng et al. 
[40] were the first who reduced this gap by using self-regular barriers. Similar results 
have been obtained by using a different class of kernel functions, the so-called eligible 
kernel functions, see [11,41]. After that, Potra [42] proposed a PC IPA for degenerate 
LCPs working in a wide neighbourhood of the central path having the same complexity 
as the best known short-step IPAs. Later on, Ai and Zhang [43] introduced a long-step 
IPA for monotone LCPs which has the same complexity as the currently best-known 
short-step IPAs. They decomposed the classical Newton direction as the sum of two 
other directions, corresponding to the negative and positive parts of the right-hand side. 
After that, Potra [44] generalized this algorithm to P∗(κ)-LCPs.

An important aspect in the analysis of the IPAs is the determination of the search 
directions. Peng et al. [40] used self-regular kernel functions and they reduced the theo-
retical complexity of large-update IPAs. Darvay [45] presented the technique of algebraic 
equivalent transformation (AET) of the centering equations of the central path system. 
The idea of this method is to apply a continuously differentiable, invertible, monotone 
increasing function ϕ on the nonlinear equation of the central path problem. The first 
PC IPAs using the AET method for determining search directions were given by Darvay 
[46,47] for LO and linearly constrained convex optimization. Kheirfam [48] generalized 
these algorithms to P∗(κ)-horizontal LCPs. Note that the most widely used function for 
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finding search directions using the AET technique is the identity map. Darvay [45,49]
used the square root function in the AET technique. Subsequently, Darvay et al. [50] pro-
posed an IPA for LO based on the direction generated by using the function ϕ(t) = t −

√
t. 

In 2020, Darvay et al. [27,51] introduced PC IPAs for LO and P∗(κ)-LCPs, that are based 
on this search direction. They also provided a new approach for introducing PC IPAs 
using the AET technique, by decomposing the right hand side of the Newton-system into 
two terms: one depending and the other not depending on the parameter μ. Kheirfam and 
Haghighi [52] defined IPA for solving P∗(κ)-LCPs which uses the function ϕ(t) =

√
t

2(1+
√
t)

in the AET technique. Rigó [53] presented several IPAs that are based on the search di-
rections obtained by using the function ϕ(t) = t −

√
t in the AET technique. Haddou 

et al. [54] proposed a class of concave functions in the AET technique. However, they 
transformed the central path system in a different way. Illés et al. [55] defined a new 
class of AET functions in order to define primal-dual IPAs for solving P∗(κ)-LCPs. Note 
that ϕ(t) = t, ϕ(t) =

√
t and ϕ(t) = t −

√
t are members - among many other AET 

functions - of this class.
The purpose of this paper is to generalize the wide neighbourhoods D and N−

∞ tak-
ing into consideration the transformed central path system obtained by using the AET 
approach. We also analyse the relationship between the new generalized neighbourhoods 
Dϕ and N−

∞,ϕ. We prove that in case of ϕ(t) = t and ϕ(t) =
√
t these neighbourhoods 

are the same. However, in case of ϕ(t) = t −
√
t, only the relation Dϕ ⊆ N−

∞,ϕ holds. 
Moreover, using the method given by Potra and Liu in [39] and the approach proposed 
by Darvay et al. [27], we introduce a first order PC IPA which works in the new wide 
neighbourhood Dϕ using the function ϕ(t) =

√
t. This is the first PC IPA which works 

in the Dϕ neighbourhood of the central path using ϕ(t) =
√
t in the AET technique. We 

prove that this algorithm has O
(

(1 + κ)n log
((

x0)T s0

ε

))
iteration complexity, similarly 

to that of Potra and Liu [39]. Following the results of Potra and Liu [39], our algorithm 
keeps the property that the predictor and corrector steplengths can be computed as a 
solution of some optimization problems.

Furthermore, by providing numerical results we also show the efficiency of the pro-
posed PC IPA. We implemented a version of the proposed PC IPA and compared our 
PC IPA to the PC IPA using the function ϕ(t) =

√
t in the AET technique and the 

neighbourhood N−
∞,ϕ(1 − β) with the PC IPA of Potra and Liu proposed in [39], which 

corresponds to the ϕ(t) = t case in our generalization of the wide neighbourhood.
The paper is organized in the following way. In Section 2 the P∗(κ)-LCPs and the 

central path problem is presented. Section 3 contains the AET technique and the new 
generalized wide neighbourhoods used in this paper. In Section 4 we present the new 
PC IPA for solving P∗(κ)-LCPs. Section 5 is devoted to the analysis of the proposed PC 
IPA. In Section 6 we propose a new version of the PC IPA which does not depend on 
κ. In Section 7 we provide numerical results that show the efficiency of the introduced 
IPA. Section 8 contains concluding remarks.
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We use the following notations throughout the paper. Let x and s be two n-
dimensional vectors. Then, xs denotes the componentwise product of the vectors x and 

s. Furthermore, x
s =

[
x1
s1
, x2
s2
, ...., xn

sn

]T
, where si �= 0 for all 1 ≤ i ≤ n. In case of an 

arbitrary function f and a vector x we use f(x) = [f(x1), f(x2), . . . , f(xn)]T . The vector 
e = [1, 1, . . . , 1]T denotes the n-dimensional all-one vector. The diagonal matrix obtained 
by the elements of the vector x is denoted by diag(x). We denote by ‖x‖ the Euclidean 
norm and by ‖x‖∞ the infinity norm. Furthermore, Rn

⊕ denotes the nonnegative orthant, 
while Rn

+ is the positive orthant.

2. Linear complementarity problems and matrix classes

In this section we present the linear complementarity problem and some well known 
matrix classes. In the linear complementarity problem (LCP) we would like to find such 
x, s ∈ Rn that satisfy the following constraints

−Mx + s = q, x, s ≥ 0, xs = 0, (LCP )

where M ∈ Rn×n and q ∈ Rn are given.
In general, LCPs belong to the class of NP-complete problems, see [29]. However, if 

we suppose that the problem’s matrix is a P∗(κ)-matrix, then IPAs solve the LCPs in 
polynomial time in the size of the problem n; handicap of the matrix, κ ≥ 0; in the 
starting point’s duality gap and in the accuracy parameter. Kojima et al. [5] defined the 
notion of P∗(κ)-matrices.

Definition 2.1. (Kojima et al. [5]) Let κ ≥ 0 be a real number. A matrix M ∈ Rn×n is a 
P∗(κ)-matrix if

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn, (2.1)

where

I+(x) = {1 ≤ i ≤ n : xi(Mx)i > 0} and I−(x) = {1 ≤ i ≤ n : xi(Mx)i < 0}.

It should be mentioned that P∗(0) is the set of positive semidefinite matrices. The 
handicap of the matrix M is defined in the following way:

κ̂(M) := min {κ : κ ≥ 0,M is P∗(κ)-matrix}.

Definition 2.2. (Kojima et al. [5]) A matrix M ∈ Rn×n is a P∗-matrix if it is a P∗(κ)-
matrix for some κ ≥ 0. Let P∗(κ) denote the set of P∗(κ)-matrices. Analogously, we also 
use P∗ to denote the set of all P∗-matrices, i.e.,
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P∗ =
⋃
κ≥0

P∗(κ).

If M is P∗(κ)-matrix, then the corresponding LCP is called P∗(κ)-LCP. If the prob-
lem’s matrix is not P∗(κ)-matrix, then we speak about general LCPs. We define the 
feasible solution set of the LCP as follows

F := {(x, s) ∈ R2n
⊕ : −Mx + s = q},

the set of interior points as

F+ := F ∩R2n
+

and the set of feasible, complementarity solutions in the following way:

F∗ := {(x, s) ∈ F : xs = 0}.

Throughout the paper we will assume that M is a P∗(κ)-matrix. We also suppose that 
F+ �= ∅. The central path problem is defined as finding x, s ∈ Rn for all μ > 0, for which

−Mx + s = q, x, s > 0, xs = μe, (CPP )

where e denotes the n-dimensional all-one vector. If M is a P∗(κ)-matrix, then the 
central path system has unique solution for each μ > 0, see [5]. The unique solution to 
the central path system for certain μ is called μ-center. The set of μ-centers form a path 
toward the solution when μ is running through positive real numbers.

Now, we present some other matrix classes. A matrix M ∈ Rn×n is a P -matrix (P0-
matrix), if all of its principal minors are positive (nonnegative) [56,57]. Furthermore, 
Cottle et al. [30] defined the class of sufficient matrices as a subclass of P0-matrices.

Definition 2.3. (Cottle et al. [30]) A matrix M ∈ Rn×n is a column sufficient matrix if 
for all x ∈ Rn

X(Mx) ≤ 0 implies X(Mx) = 0,

where X = diag(x). Analogously, matrix M is row sufficient if MT is column sufficient. 
The matrix M is sufficient if it is both row and column sufficient.

Kojima et al. [5] showed that a P∗-matrix is column sufficient and Guu and Cottle [58]
proved that it is row sufficient, too. Therefore, each P∗-matrix is sufficient. Moreover, 
Väliaho [31] proved the other inclusion as well, showing that the class of P∗-matrices is 
the same as the class of sufficient matrices.
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3. Generalized wide neighbourhoods

In this section we define some new generalized neighbourhoods. Firstly, we present 
the AET technique of the centering equations of the central path system [45].

Let ϕ : (ξ2, ∞) → R be a continuously differentiable and invertible function, such that 
ϕ′(t) > 0, for each t ≥ ξ2, where ξ ∈ [0, 1). Then, the transformed central path system is

−Mx + s = q, x, s > 0, ϕ

(
xs
μ

)
= ϕ(e), (CPPϕ)

where μ > 0 is a target central path parameter and we use the notation ϕ(x) =
[ϕ(x1), . . . , ϕ(xn)]T . Let (x, s) ∈ F , then the average duality gap is defined as

μ(x, s) := xT s
n

. (3.1)

Let us introduce a simplified notation for the argument of the function ϕ in (CPPϕ) as

u := x s
μ(x, s) . (3.2)

Consider the following generalized proximity measure

δ−∞,ϕ(x, s) :=
∥∥∥[ϕ(u) − ϕ (e)]−

∥∥∥
∞

.

Using the introduced proximity measure and the AET approach, we introduce the gen-
eralized wide neighbourhood of the (CPPϕ):

N−
∞,ϕ(α) := {(x, s) ∈ F+ : δ−∞,ϕ(x, s) ≤ α}. (3.3)

It should be mentioned that in case of ϕ(t) = t we get the wide neighbourhood used 
by Potra and Liu [39]:

N−
∞(α) := {(x, s) ∈ F+ : δ−∞(x, s) ≤ α}. (3.4)

We also introduce another, generalized wide neighbourhood for (CPPϕ):

Dϕ(β) := {(x, s) ∈ F+ : ϕ(u) ≥ βϕ (e)}. (3.5)

Note, that in the special case when ϕ(t) = t, we get the wide neighbourhood used in 
[39]:

D(β) := {(x, s) ∈ F+ : u ≥ βe}. (3.6)



8 T. Illés et al. / EURO Journal on Computational Optimization 11 (2023) 100072
The following lemma represents a novelty of the paper. It plays an important role in 
this theory, because it shows which function used in the AET technique in the literature 
can be applied in this approach for introducing PC IPAs working in the generalized wide 
neighbourhood given in (3.3). However, the complexity analysis of the algorithm could 
be done in a simplier wide neighnourhood (3.5).

Lemma 3.1. Let (x, s) ∈ F+ and α ∈ (0, 1). Then, in case of ϕ(t) = t and ϕ(t) =
√
t we 

have N−
∞,ϕ(α) = Dϕ(1 − α). In case of ϕ(t) = t −

√
t we have Dϕ(1 − α) ⊆ N−

∞,ϕ(α).

Proof. Firstly, we consider the case when ϕ(t) = t:

(x, s) ∈ D(1 − α) ⇐⇒ xs ≥ (1 − α)μ(x, s)e = μ(x, s)e − αμ(x, s)e

⇐⇒ u − e ≥ −αe ⇐⇒
∥∥[u − e]−

∥∥
∞ ≤ α

⇐⇒ (x, s) ∈ N−
∞(α).

Next, consider the other cases. Then, we have

(x, s) ∈ N−
∞,ϕ(α) ⇐⇒

∥∥[ϕ(u) − ϕ(e)]−
∥∥
∞ ≤ α

⇐⇒ ϕ(u) − ϕ(e) ≥ −α e ⇐⇒ ϕ(u) ≥ ϕ(e) − αe

and

(x, s) ∈ Dϕ(1 − α) ⇐⇒ ϕ(u) ≥ (1 − α)ϕ(e) = ϕ(e) − αϕ(e).

It is easy to see, that in case of ϕ(t) =
√
t the ϕ(e) = e holds, so we obtain N−

∞,ϕ(α) =
Dϕ(1 − α). In case of ϕ(t) = t −

√
t only Dϕ(1 − α) ⊆ N−

∞,ϕ(α) holds. �
Note that the typical MTY-type PC IPAs are similar to the one proposed in [35]. In 

the following section we present the new PC IPA, which works in wide neighbourhood 
and uses the function ϕ(t) =

√
t in the AET technique.

4. New predictor-corrector interior-point algorithm

If we apply Newton’s method to the system (CPPϕ) we obtain

−MΔx + Δs = 0,

sΔx + xΔs = aϕ, (4.1)

where

aϕ = μ
ϕ(e) − ϕ

(
xs
μ

)
ϕ′

(
xs
) (4.2)
μ
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and μ > 0. In this paper we consider the ϕ(t) =
√
t case in this generalized wide 

neighbourhood approach. Substituting ϕ(t) =
√
t in (4.1) we get

−MΔx + Δs = 0,

sΔx + xΔs = 2 (√μxs − xs) . (4.3)

In the predictor step we use the approach given by Darvay et al. [27], where the right 
hand side of (4.3) is decomposed into the two terms, one of which depends on μ, while 
the other does not. Next, we set μ = 0 and obtain

−MΔpx + Δps = 0,

sΔpx + xΔps = −2xs,
(4.4)

where (Δpx, Δps) denote the predictor search directions.
There are important and useful lemmas that give information about the magnitudes 

of the solutions of the Newton system. Let us recall these lemmas.

Lemma 4.1. (Lemma 3.2 in [39]) Assume that we have a P∗(κ)-LCP and let (Δx, Δs)
be the solution of the following linear system:

−MΔx + Δs = 0,

sΔx + xΔs = a,

where (Δx, Δs) ∈ R2n
+ and a ∈ Rn are given. Defining

K+ = {i : ΔxiΔsi > 0} and K− = {i : ΔxiΔsi < 0}

we have

1
1 + 4κ ‖ΔxΔs‖∞ ≤

∑
i∈K+

ΔxiΔsi ≤
1
4

∥∥∥(x s)− 1
2 a

∥∥∥2

2
. (4.5)

Lemma 4.2. (Lemma 3.3 in [39]) Assume that we have a P∗(κ)-LCP and let (Δx, Δs)
be the solution of the following linear system:

−MΔx + Δs = 0,

sΔx + xΔs = a,

where (Δx, Δs) ∈ R2n
+ and a ∈ Rn are given. Then, the following inequality holds:

ΔxTΔs ≥ −κ
∥∥∥(x s)− 1

2 a
∥∥∥2

2
. (4.6)

In the following subsection we deal with the predictor step.
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4.1. Predictor step

Let (x, s) ∈ N−
∞,ϕ(1 − β), where β ∈ (0, 1). Then, the predictor search direction 

(Δpx, Δps) can be calculated from system (4.4). Defining the predictor updates as

xp(θ) = x + θΔpx and sp(θ) = s + θΔps, (4.7)

and using (3.1) and (4.4), after some calculations we have

xp(θ)sp(θ) = (1 − 2θ)xs + θ2ΔpxΔps, μp(θ) = (1 − 2θ)μ(x, s) + θ2ΔpxTΔps
n

, (4.8)

where μp(θ) = μ(xp(θ), sp(θ)). Furthermore, we obtain that −Mxp(θ) + sp(θ) = q. We 
want to determine the step size θ > 0 in such a way, that

(xp(θ), sp(θ)) ∈ N−
∞,ϕ(1 − β + βγ) = Dϕ((1 − γ)β)

holds, where

γ = 1 − β

5((1 + 4κ)n + 1) . (4.9)

It should be mentioned that in [39] the value of this parameter is γ = 1−β
(1+4κ)n+1 . However, 

the new search direction used in this paper influences the value of γ, hence we chose a 
γ for which the complexity analysis of the new PC IPA works. It should be mentioned, 
that several other values of γ can be given for which the complexity analysis of the 
algorithm could work. This choice of the value γ will become clear from the analysis of 
the algorithm. We have to calculate the largest θ such that (xp(θ), sp(θ)) ∈ F+ and the 
following inequality holds

√
xp(θ)sp(θ)

μ(xp(θ), sp(θ)) ≥ (1 − γ)β e, (4.10)

that is exactly the same as

(x + θΔpx) (s + θΔps)
(x + θΔpx)T (s + θΔps) ≥ (1 − γ)2β2

n
e. (4.11)

From the requirements (xp(θ), sp(θ)) ∈ F+ follows that θF = min{θx, θs}, where

θx = min
{
− xi

Δpxi
: Δpxi < 0

}
and θs = min

{
− si

Δpsi
: Δpsi < 0

}
.

Thus, θF > 0 is the largest step that ensures the feasibility of the new predictor solu-
tion. However, from the inequality (4.11) further restrictions on the predictor steplength 
follow, that after elementary computations can be summarized as
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ai θ
2 − bi θ + ci ≥ 0, for all i, (4.12)

where ai = Δpxi Δpsi − (1 − γ)2β2μ(Δpx, Δps), bi = 2 (xi si − (1 − γ)2β2μ(x, s)), and 
ci = bi

2 for all indices i. Since (x, s) ∈ Dϕ(β), it follows that bi ≥ 0 for all i indices, thus 
θ = 0 satisfy all inequalities.

After some elementary computations, we obtain that inequality (4.12) is fulfilled if 
θ ∈ (0, θpi], where

θpi =

⎧⎪⎪⎨
⎪⎪⎩
∞, if Δi ≤ 0
1
2 , if ai = 0
ζi, if Δi > 0 and ai �= 0,

(4.13)

where

Δi = b2i − 4aici = b2i − 2aibi

and

ζi = bi −
√

Δi

2ai
= b2i − Δi

2ai(bi +
√

Δi)
= bi

bi +
√

Δi

= 1
1 +

√
1 − 2 ai

bi

.

Taking

θN = min{θpi : 1, . . . , n} (4.14)

we get an appropriate predictor steplength which ensures that the predictor solution 
stays in the predictor neighbourhood.

Still we need to ensure that μp(θ) > 0 is satisfied for the computed predictor direction 
with properly selected θ > 0 steplength. Let (x, s) ∈ Dϕ(β) and β ∈ (0, 1), then the 
vector u is defined as in (3.2)

u = x s
μ(x, s) and v = ΔpxΔps

μ(x, s) . (4.15)

For the vector v, the following bounds can be obtained by using Lemma 4.1 and 
Lemma 4.2:

‖v‖∞ ≤ (1 + 4κ)n and − 4κn ≤ eTv ≤
∑
i∈I+

vi ≤ n. (4.16)

Taking into consideration that μ(Δpx,Δps)
μ(x,s) = eTv

n and using (4.8), the quadratic equation 
defined by μp(θ) = 0 can be written as
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eTv
n

θ2 − 2 θ + 1 = 0, (4.17)

therefore, the discriminant denoted by Δμ is

Δμ = 4
(

1 − eTv
n

)

and it is always nonnegative, because −4 κ ≤ eTv
n ≤ 1 follows from (4.16). The smallest 

positive root will be:

θ0 =
2 −

√
4 − 4 eT v

n

2 eT v
n

= 1

1 +
√

1 − eT v
n

. (4.18)

Therefore,

μp(θ) > μp(θ0) = 0, for all 0 ≤ θ < θ0. (4.19)

Now, we are ready to define the predictor steplength θp, which satisfies the interior 
point condition, neighbourhood condition and ensures decrease in the centrality param-
eter μ, as follows:

θp = min{θF , θN , θ0}. (4.20)

From the definition of θF it follows that θF ≥ θN . Taking into consideration the definition 
of θp, for all 0 ≤ θ < θp we have

√
xp(θ)sp(θ) ≥ (1 − γ)β

√
μp(θ) > (1 − γ)β

√
μp(θp) ≥ 0. (4.21)

Using standard continuity argument it can be shown that xp(θ) > 0 and sp(θ) > 0, 
for all θ ∈ (0, θp). Therefore (xp, sp) ∈ F+, where xp = xp(θp) and sp = sp(θp).

The obtained result can be summarized in the following lemma.

Lemma 4.3. Let (x, s) ∈ N−
∞,ϕ(1 −β) = Dϕ(β). Then, ∃θp > 0 predictor steplength such 

that

(xp, sp) ∈ N−
∞,ϕ(1 − β + βγ) = Dϕ((1 − γ)β)

holds, where β, γ ∈ (0, 1) are given parameters.

It should be mentioned, that we can calculate the exact value of θp in each iteration 
of the algorithm. However, this is very time consuming. Therefore, intuitively, we can 
define θp using an optimization problem in the following way



T. Illés et al. / EURO Journal on Computational Optimization 11 (2023) 100072 13
θ̄p = sup {θ̂ > 0 : (xp(θ), sp(θ)) ∈ N−
∞,ϕ(1 − β + βγ),∀θ ∈ [0, θ̂]}, (4.22)

as well. Although, someone might think that it is necessary to prove that θp and θ̄p are 
equal, we do not deal with this question, because it will be enough for us to know a θ̂
mentioned in (4.22). Our goal is to give a lower bound θ̂ on the value θp depending only 
on κ, n and β. The lower bound θ̂ can be used instead of θp to obtain the necessary 
decrease of the duality gap (see the proof of Theorem 5.1). Before we compute the lower 
bound θ̂, we need the following technical lemma.

Lemma 4.4. Let u = x s
μ(x s) , where (x, s) ∈ Dϕ(β), β ∈ (0, 1) and γ = 1−β

5((1+4κ)n+1) . Then, 
we have

ui − ((1 − γ)β)2 ≥ β2 γ.

Proof. Before the predictor step (x, s) ∈ Dϕ(β), hence

ui − ((1 − γ)β)2 = ui − β2 + 2β2γ − β2γ2 ≥ 2β2γ − β2γ2.

It follows

2β2γ − β2γ2 ≥ β2γ, (4.23)

hence, we obtain γ ≥ γ2, which holds for all γ < 1. Using the definition of γ in (4.9) and 
0 < β < 1 we obtain the desired inequality. �

Now, we are ready to compute a lower bound θ̂ on θp depending only on κ, n and β.

Lemma 4.5. Let (x, s) ∈ N−
∞,ϕ(1 − β) = Dϕ(β). Then,

θp > θ̂,

where θ̂ = β
√

1 − β

5((1 + 4κ)n + 2).

Proof. Using the results of the Lemma 4.4 it follows

bi
μ(x, s) = 2 (ui − ((1 − γ)β)2) ≥ 2β2 γ > 0.

Next, we have

− ai = −vi + ((1 − γ)β)2 eTv ≤ ‖v‖∞ + ((1 − γ)β)2 ≤ ‖v‖∞ + 1,

μ(x, s) n
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since μ(Δpx,Δps)
μ(x,s) = eTv

n and we used bounds (4.16) on the norm of v and on eTv. When 
the discriminant Δi of the quadratic equation related to (4.12) is positive and ai �= 0, 
then

ζi = 1

1 +
√

1 + −vi+((1−γ)β)2 eT v
n

ui−((1−γ) β)2

≥ 1

1 +
√

1 + ‖v‖∞+1
β2 γ

≥ 1

1 +
√

1 + (1+4κ)n+1
β2 γ

,

which follows from the fact that ui − ((1 − γ) β)2 ≥ β2 γ > 0 and the consequences of 
Lemmas 4.1 and 4.2. Using the definition of γ we can rewrite the lower bound as

ζi ≥
β
√

1 − β

β
√

1 − β +
√
β2 (1 − β) + 5((1 + 4κ)n + 1)2

.

It can be seen that β
√

1 − β ≤ 1
2 , hence the denominator of the previous fraction can be 

bounded from above as

β
√

1 − β +
√
β2(1 − β) + 5((1 + 4κ)n + 1)2 ≤ 1

2 +
√

5((1 + 4κ)n + 1)2 + 1
4

< 5((1 + 4κ)n + 2),

thus we get a bound on ζi depending on the parameters β, κ and the problem size n

ζi > θ̂ := β
√

1 − β

5((1 + 4κ)n + 2) . (4.24)

Using the definition of μp(θ), the quadratic equation μp(θ) = 0 can be written as in 
(4.17) and the smallest root θ0 as in (4.18). Root θ0 satisfies the required lower bound 
because (4.16) holds, namely

θ0 = 1

1 +
√

1 − eT v
n

≥ 1
1 +

√
1 + 4κ

> θ̂. (4.25)

Therefore, the predictor steplength satisfies θp > θ̂. �
In the following subsection we deal with the corrector step.

4.2. Corrector step

After the predictor step, using (4.7), (4.14) and Lemma 4.3 we have

(xp, sp) = (xp(θp), sp(θp)) ∈ N−
∞,ϕ(1 − β + βγ) = Dϕ((1 − γ)β). (4.26)

The output of the predictor step will be the input of the corrector step. Using system 
(4.3) we calculate the corrector direction (Δcx, Δcs) from the following system:
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−MΔcx + Δcs = 0,

spΔcx + xpΔcs = 2
(√

μp xp sp − xp sp
)
, (4.27)

where

μp = μ(xp, sp) = (xp)T sp

n
. (4.28)

The goal of the corrector step is to return the iterate to the narrower, corrector neigh-
bourhood of the central path. Thus, the best steplength of the corrector step is defined 
in the following way:

θc := arg min {μc(θ) : (xc(θ), sc(θ)) ∈ N−
∞,ϕ(1 − β) = Dϕ(β)}, (4.29)

where

μc(θ) = μ(xc(θ), sc(θ)) = (xc(θ))T sc(θ)
n

(4.30)

and

xc(θ) = xp + θΔcx, sc(θ) = sp + θΔcs. (4.31)

Instead of solving the optimization problem given in (4.29), for us it is enough to define 
such corrector steplength θ̄ (see (5.10) in Theorem 5.1) which ensures that in one step 
we get back into the corrector neighbourhood and gives enough decrease in the duality 
gap.

Using system (4.27), we determine the corrector search directions (Δcx, Δcs). We 
describe the way how to calculate the corrector steplength θc. Using (4.27), (4.30) and 
(4.31) we have

xc(θ)sc(θ) = (1 − 2θ)xpsp + 2θ
√

μpxpsp + θ2ΔcxΔcs, (4.32)

and

μc(θ) = xc(θ)T sc(θ)
n

= (1 − 2θ)μp + 2θ
eT√μpxpsp

n
+ θ2ΔcxTΔcs

n

≤ (1 − 2θ)μp + 2θ
√
μp

n

√
n
√

eTxpsp + θ2ΔcxTΔcs
n

= (1 − 2θ)μp + 2θμp + θ2ΔcxTΔcs
n

= μp + θ2ΔcxTΔcs
n

=: μ̄c(θ), (4.33)

where we used that eT
√

xpsp ≤ √
n
√

eTxpsp due to the Cauchy-Schwartz inequality.



16 T. Illés et al. / EURO Journal on Computational Optimization 11 (2023) 100072
Algorithm 1: First-order predictor-corrector algorithm.
Input:
Given κ ≥ κ̂(M), (x0, s0) ∈ N−

∞,ϕ(1 − β), β ∈ (0, 1)
Calculate γ = 1−β

5((1+4κ)n+1)
Let μ0 = μ(x0, s0) and k = 0
ε > 0 precision value.
Output: (xk, sk) : xkT sk ≤ ε
begin

while nμ ≥ ε do
(Predictor step);
x := xk, s := sk;
Step 1. Calculate affine direction from (4.4);
Step 2. Calculate the predictor steplength using (4.20);
Step 3. Calculate (xp, sp) using (4.26);
if μ(xp, sp) = 0 then

STOP; Optimal solution found;
else

if (xp, sp) ∈ N−
∞,ϕ(1 − β) then

(xk+1, sk+1) = (xp, sp), μk+1 = μ(xp, sp), k = k + 1, RETURN;
else

(Corrector step);
Step 4. Calculate centering direction from (4.27);
Step 5. Calculate centering steplength using (4.29);
Step 6. Calculate (xc, sc) using (4.40);

end
(xk+1, sk+1) = (xc, sc), μk+1 = μ(xc, sc), k = k + 1, RETURN;

end
end

end

Moreover, using (4.7) and (4.28) we consider the following notations:

ū = xpsp

μp
, v̄ = ΔcxΔcs

μp
. (4.34)

We want to reach
√

xc(θ)sc(θ)
μc(θ)

≥ β e, (4.35)

that is exactly the same as

(xp + θΔcx) (sp + θΔcs) ≥ μc(θ)β2 e. (4.36)

Using (4.33) we have

μc(θ) ≤ μ̄c(θ). (4.37)

Hence, it is enough to reach

(xp + θΔcx) (sp + θΔcs) ≥ μ̄c(θ)β2e ≥ μc(θ)β2e. (4.38)
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From the requirements (xc(θ), sc(θ)) ∈ F+ follows that θF = min{θx, θs}, where

θx = min
{
− xp

i

Δcxi
: Δcxi < 0

}
and θs = min

{
− spi

Δcsi
: Δcsi < 0

}
.

Thus, θF > 0 is the largest step that ensures the feasibility of the new corrector solution. 
Similarly to the computation of the predictor steplength, now in the corrector step, from 
the inequality (4.38) further restrictions on the corrector steplength follow. Any θ satis-
fying (4.38) gives a lower bound on θF . After elementary computations the constraints 
(4.38) can be presented in the following form:

āi θ
2 + b̄i θ + c̄i ≥ 0, for all i, (4.39)

where āi = v̄i − β2 eT v̄
n , b̄i = 2 

(√
ūi − ūi

)
and c̄i = ūi − β2. Let us compute the 

discriminant as Δi = b̄2i − 4 ̄ai c̄i of the quadratic equation.
In the proof of Theorem 5.1 it will be shown that the inequality (4.35) has solution, 

thus θc satisfying (4.29) exists. Hence the situation Δi < 0 and āi < 0, i = 1, . . . , n
cannot occur.

When Δi ≥ 0 and āi �= 0, the smallest and the largest root of the quadratic equation 
will be denoted as

θ−i = −b̄i − sgn(āi)
√

Δi

2 āi
, and θ+

i = −b̄i + sgn(āi)
√

Δi

2 āi
.

Now, we are ready to solve inequalities (4.39) in terms of θ. For each 1, . . . , n, the solution 
set is denoted by Ti and it is given below

Ti =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−∞,∞), if Δi < 0, āi > 0
(−∞, θ−i ] ∪ [θ+

i ,∞), if Δi ≥ 0, āi > 0
[θ−i , θ

+
i ], if Δi ≥ 0, āi < 0(

−∞,− c̄i
b̄i

]
, if āi = 0, b̄i < 0[

− c̄i
b̄i
,∞

)
, if āi = 0, b̄i > 0

(−∞,∞), if āi = 0, b̄i = 0.

It is worth mentioning that the following equality holds

− c̄i

b̄i
= β2 − ūi

2
(√

ūi − ūi

) .
For all θ ∈ T = ∩n

i=1Ti ∩ Rn
⊕, the inequality given in (4.35) is satisfied, unless T = ∅. 

The set T contains the feasible solutions of the optimization problem given in (4.29). 
Thus, it remains to show that T �= ∅, which will be shown in Theorem 5.1.
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After the corrector step we get the following:

(xc, sc) = (xc(θc), sc(θc)) ∈ N−
∞,ϕ(1 − β) = Dϕ(β), (4.40)

where xc(θc) = xp + θcΔcx and sc(θc) = sp + θcΔcs.
Since (xc, sc) ∈ N−

∞,ϕ(1 − β) = Dϕ(β), we can set (x, s) := (xc, sc) and start another 
predictor-corrector iteration.

Instead of computing the exact value of θc, we choose a θ̄ ∈ T such that μc(θc) ≤
μc(θ̄). Theorem 5.1 will show that it is enough to work with θ̄ to ensure a large enough 
decrease in the duality gap. From the practical point of view this shows that neither the 
optimization problem given in (4.22), nor the problem given in (4.29) for the predictor 
and corrector steps, respectively, need to be exactly solved in order to ensure polynomial 
complexity of the algorithm. On the other hand, if we solve the mentioned optimization 
problems, then the steplengths will not depend on κ, thus it will only be used in the 
analysis of the algorithms.

In the following section we analyse Algorithm 1.

5. Analysis of the algorithm

We have already discussed the feasibility of the predictor and corrector step. Further-
more, we obtained a lower bound on the predictor steplength. Now we are ready to state 
and prove the size of decrease in the central path parameter at each iteration.

Theorem 5.1. Let n ≥ 2 and β ∈ (0, 1). Then, the PC IPA given in Algorithm 1 using 
the function ϕ(t) =

√
t in the AET technique is well defined and

μk+1 ≤
(

1 − (1 − β)β
20((1 + 4κ)n + 2)

)
μk, k = 0, 1 . . .

Proof. The kth iteration of Algorithm 1 starts with (xk, sk) := (x, s) ∈ Dϕ(β) and 
μk := μ(x, s). Solving the predictor Newton-system (4.4) and computing the predictor 
steplength θp, we derive from Lemma 4.3 that (xp, sp) ∈ Dϕ((1 − γ) β). Furthermore, in 
Lemma 4.5 we obtained a lower bound on θp. Hence, we have

√
xp(θ)sp(θ) ≥ (1 − γ)β

√
μp(θ) > (1 − γ)β

√
μp(θp) ≥ 0,

where θp > θ̂. From (4.16) it follows that eTv
n ≤ 1 which is equivalent to (Δpx)TΔps ≤

μ(x, s)n. Now, using (4.8) the following inequality holds for θp > θ̂:

μp = μ(θp) < μ(θ̂) ≤
(
(1 − 2 θ̂) + θ̂2

)
μ(x, s) = (1 − (2 − θ̂) θ̂)μ(x, s). (5.1)

Assuming that n ≥ 2, κ > 0 and using (4.24), we obtain
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2 − θ̂ = 2 − β
√

1 − β

5((1 + 4κ)n + 2) ≥ 2 − β
√

1 − β

20 ≥ 2 − 1
40 = 79

40 ,

hence, we have

μp ≤
(

1 − 79β
√

1 − β

200((1 + 4κ)n + 2)

)
μ(x, s). (5.2)

Now, we are analysing a corrector step. In this step (xp, sp) ∈ N−
∞,ϕ(1 − β + βγ) =

Dϕ((1 − γ) β), so

√
ū =

√
xpsp

μp
≥ (1 − γ)β e ⇐⇒ eT

√
ū ≥ (1 − γ)β n.

Using Lemma 4.1 with a = 2(√μpxpsp − xpsp) we get the following inequality

1
1 + 4κ ‖ΔcxΔcs‖∞ ≤

∑
i∈I+

Δcxi Δcsi ≤ μp

∥∥∥e −
√

ū
∥∥∥2

2
. (5.3)

Next, we have

∥∥∥e −
√

ū
∥∥∥2

2
= (e −

√
ū)T (e −

√
ū) = (n− 2 eT

√
ū + eT ū) ≤ 2 (1 − (1 − γ)β)n := ξ n,

where we denote

ξ = 2 (1 − (1 − γ)β). (5.4)

The following two upper bounds are derived from (5.3) and (5.4)

‖ΔcxΔcs‖∞ ≤ (1 + 4κ) ξ nμp,
∑
i∈I+

Δcxi Δcsi ≤ ξ nμp, (5.5)

implying ‖v̄‖∞ ≤ (1 + 4 κ) ξ n. Using (4.32) we obtain

xc(θ)sc(θ)
μp

= (1 − 2 θ) ū + 2 θ
√

ū + θ2 v̄

≥
(
(1 − 2θ) ((1 − γ)β)2 + 2 θ (1 − γ)β − θ2 (1 + 4κ) ξ n

)
e

=
(
((1 − γ)β)2 + θ (1 − γ)β ξ − θ2 (1 + 4κ) ξ n

)
e. (5.6)

Furthermore, from (4.33) and (5.5) we have

μc(θ) ≤
(

1 + θ2 eT v̄
n

)
μp ≤

(
1 + θ2 ξ

)
μp. (5.7)
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Using (5.6) and (5.7) we get

xc(θ)sc(θ) − β2 μc(θ) e
μp

≥ g(θ) e, (5.8)

where

g(θ) := −γ β2 (2 − γ) + θ ξ ((1 − γ)β) − ξ
(
β2 + (1 + 4κ)n

)
θ2. (5.9)

Then, the quadratic function g(θ) can be written in the form g(θ) = ag θ
2 + bg θ + cg, 

where

ag := −ξ
(
β2 + (1 + 4κ)n

)
< 0, bg := ξ ((1 − γ)β) > 0,

and

cg := −γ β2 (2 − γ) < 0.

Using the definition of γ given in (4.9) we get the following value for ξ

ξ = 2 (1 − β) (β + 5((1 + 4κ)n + 1))
5((1 + 4κ)n + 1) .

Using the definition of γ and ξ, the parameters ag, bg and cg are computed:

cg = −β2 (1 − β) (10 ((1 + 4κ)n + 1) + β − 1)
25((1 + 4κ)n + 1)2 ,

bg = 2β (1 − β) (β + 5((1 + 4κ)n + 1)) (β − 1 + 5((1 + 4κ)n + 1))
25((1 + 4κ)n + 1)2

and

ag = −2 (1 − β) (β + 5((1 + 4κ)n + 1)) (β2 + (1 + 4κ)n)
5((1 + 4κ)n + 1) .

We need to find the values of parameters β, γ for which g(θ) ≥ 0 is satisfied. To simplify 
the search for such pairs we fix

θ̄ := β

2 ((1 + 4κ)n + 1) (5.10)

value and compute the corresponding parameters β. Clearly, g(θ̄) ≥ 0 is equivalent to

g(θ̄) := β2 (1 − β)
3 ḡ(θ̄) ≥ 0
((1 + 4κ)n + 1)
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for some β ∈ (0, 1). We have

ḡ(θ̄) = − 1
10 (β + 5((1 + 4κ)n + 1)) (β2 + (1 + 4κ)n)

+ 1
25(β + 5((1 + 4κ)n + 1)) (β − 1 + 5((1 + 4κ)n + 1))

− 1
25 (β − 1 + 10 ((1 + 4κ)n + 1)) ((1 + 4κ)n + 1) .

After some computations we get

f(β) := ḡ(θ̄) =
(
−β3

10 − 23β2

50 + 8β
25 + 11

25

)

+
(
−β2

2 + 13β
50 + 27

50

)
(1 + 4κ)n + 1

10 (1 + 4κ)2 n2.

A single variable function f has a domain (0, 1). It would be beneficial to find all β ∈ (0, 1)
that satisfy f(β) ≥ 0. A sufficient condition for f(β) ≥ 0 leads to solving the following 
system of nonlinear inequalities

−β3

10 − 23β2

50 + 8β
25 + 11

25 ≥ 0,

−β2

2 + 13β
50 + 27

50 ≥ 0.

Straightforward computations show that both inequalities hold for β ∈ (0, 1). Hence, for 
β ∈ (0, 1) the inequality f(β) ≥ 0 holds. Namely, θ̄ ∈ T , thus T �= ∅ completing the 
analysis of the corrector step, which is described in Subsection 4.2.

The last step of the proof is derived as follows. Assume θ̄ is given, β ∈ (0, 1) and 
n ≥ 2. Furthermore, at the beginning of the iteration we have (xk, sk) ∈ Dϕ(β) with μk, 
and we compute the predictor solution (xp, sp) with μp.

From (5.7) and assuming n ≥ 2 we have

μc = μc(θc) ≤ μc(θ̄)

= μc

(
β

2((1 + 4κ)n + 1)

)
≤

(
1 + β2(1 − β)(5((1 + 4κ)n + 1) + β)

10((1 + 4κ)n + 1)3

)
μp

Since 5((1+4κ)n+1)+β
10((1+4κ)n+1) = 1

2 + β
10((1+4κ)n+1) ≤ 2

3 we have

μc ≤
(

1 + 2β2(1 − β)
2

)
μp <

(
1 + 2β(1 − β)

2

)
μp. (5.11)
3((1 + 4κ)n + 1) 3((1 + 4κ)n + 1)
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Using (5.2) and (5.11) we obtain

μc ≤
(

1 − 79β
√

1 − β

200((1 + 4κ)n + 2)

)(
1 + 2β(1 − β)

3((1 + 4κ)n + 1)2

)
μ

≤
(

1 − 79β(1 − β)
200((1 + 4κ)n + 2)

)(
1 + 2β(1 − β)

3(1 + 4κ)n((1 + 4κ)n + 2)

)
μ

≤
(

1 − 79β(1 − β)
200((1 + 4κ)n + 2) + 2β(1 − β)

3(1 + 4κ)n((1 + 4κ)n + 2)

)
μ

≤
(

1 −
(

79
200 − 2

3(1 + 4κ)n

)
β(1 − β)

((1 + 4κ)n + 2)

)
μ

≤
(

1 − (1 − β)β
20((1 + 4κ)n + 2)

)
μ, (5.12)

where the last inequality follows from the fact that 79
200 − 2

3(1+4κ)n ≥ 37
600 > 1

20 , where 
n ≥ 2.

Furthermore, we denote by μ = μ(xk, sk) = μk and μk+1 = μc. Hence, we obtained 
the desired result. �

The following corollary is a consequence of Theorem 5.1.

Corollary 5.2. Let n ≥ 2 and β ∈ (0, 1). Then, Algorithm 1 produces a point (xk, sk) ∈
N−

∞,ϕ(1 − β) with xksk ≤ ε in at most O
(

(1 + κ)n log
((

x0)T s0

ε

))
iterations.

It should be mentioned that Algorithm 1 depends on a given parameter κ ≥ κ̂(M)
because of the parameter γ given in (4.9). It may be difficult and expensive to find on 
upper bound for the handicap κ̂(M) in case of many applications, see [13,59,60]. That 
is why in the following section we present another variant of the PC IPA.

6. Extension of predictor-corrector interior-point algorithm for unknown handicap

We propose a new version of the PC IPA presented in Algorithm 1. If the algorithm 
fails to produce a point in N−

∞,ϕ(1 − β) = Dϕ(β) with ϕ(t) =
√
t, then the current value 

of κ may be too small. Hence, we double the value of κ and restart Algorithm 1 from 
the last point produced in Dϕ(β). In this way, we have to double the value of κ at most 
�log2 κ̂(M)� times. This new version of the algorithm is presented in Algorithm 2.

Using Theorem 3.9 in [39], Theorem 5.1, Corollary 5.2 we obtain the following.

Theorem 6.1. Algorithm 2 produces a point (xk, sk) ∈ N−
∞,ϕ(1 − β) with xksk ≤ ε in at 

most O
(

(1 + κ̂(M))n log
((

x0)T s0

ε

))
iterations.
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Algorithm 2: Predictor-corrector interior-point algorithm not depending on κ.
Input:
(x0, s0) ∈ N−

∞,ϕ(1 − β), β ∈ (0, 1);
Set κ = 1
Let μ0 = μ(x0, s0) and k = 0
ε > 0 precision value.
Output: (xk, sk) : xkT sk ≤ ε
begin

while nμ ≥ ε do
(Predictor step);
x := xk, s := sk;
Step 1. Calculate affine direction from (4.4);
Step 2. Calculate the predictor steplength using (4.20);
Step 3. Calculate (xp, sp);
if μ(xp, sp) = 0 then

STOP; Optimal solution found;
else

if (xp, sp) ∈ N−
∞,ϕ(1 − β) then

(xk+1, sk+1) = (xp, sp), μk+1 = μ(xp, sp), k = k + 1, RETURN;
else

(Corrector step);
Step 4. Calculate centering direction from (4.27);
Step 5. Calculate centering steplength using (4.29);
Step 6. Calculate (xc, sc);
if (xc, sc) ∈ N−

∞,ϕ(1 − β) then
(xk+1, sk+1) = (xc, sc), μk+1 = μ(xc, sc), k = k + 1, RETURN;

else
κ = 2κ; (xk+1, sk+1) = (xk, sk), μk+1 = μ(xk, sk), k = k + 1, RETURN;

end
end

end
end

end

Proof. Consider κ̄ as the largest value of κ used in Algorithm 2. Then, we have κ̄ <

2κ̂(M). Now we consider that at iteration k of Algorithm 2 we have κ < κ̂(M). If 
(xc, sc) ∈ N−

∞,ϕ(1 − β), then (xk+1, sk+1) = (xc, sc). Using that Lemmas 4.1 and 4.2
hold for κ = κ̂(M) and the bound on the predictor step size depends on γ which is 
decreasing in κ, we obtain that

μk+1 ≤
(

1 − (1 − β)β
20((1 + 4κ̂(M))n + 2)

)
μk ≤

(
1 − (1 − β)β

20((1 + 8κ̂(M))n + 2)

)
μk.

Furthermore, if κ ≥ κ̂(M), then the corrector step is never rejected. Hence, using Theo-
rem 5.1 and the fact that κ ≤ κ̄ < 2κ̂(M), we obtain

μk+1 ≤
(

1 − (1 − β)β
20((1 + 4κ)n + 2)

)
μk ≤

(
1 − (1 − β)β

20((1 + 8κ̂(M))n + 2)

)
μk.

Since there can be at most log2(κ̄) rejections we obtain the final result. �
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7. Numerical results

We implemented a variant of the proposed PC IPA in the C++ programming lan-
guage. The computations were performed on a desktop computer with Intel quad-core 
2.6 GHz processor and 16 GB RAM. Due to the fact that in many cases we do not have 
information about the κ, we used Algorithm 2 in our implementation. We set the value 
of β = 0.1 and ε = 10−5.

It is important to mention that several implementations related to IPAs from the 
literature differ from the theoretical versions of the proposed IPAs. The implemented 
version of our PC IPA is very close to the theoretical version of the PC IPA. In the 
predictor step we used the same steplength as in (4.20) and in the corrector step we 
define the corrector steplength by giving an approximate solution of the optimization 
problem (4.29).

Moreover, it should be mentioned that most of the numerical results related to P∗(κ)-
LCPs are obtained for problems where the value of κ is zero, that lead to LO problems. 
Gurtuna et al. [37] and Asadi et al. [61] provided numerical results related to P∗(κ)-LCPs 
having positive handicap, by considering 2 × 2 or 3 × 3 matrices. They also analysed 
block diagonal matrices formed by the aformentioned ones. Darvay et al. [27] presented 
numerical results where they solved P∗(κ)-problems with matrices having positive κ
parameters generated by Illés and Morapitiye [62].

However, in this paper we considered the special matrix proposed by Csizmadia:

M =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0

...
...

...
. . .

...
−1 −1 −1 · · · 1

⎞
⎟⎟⎟⎟⎠ . (7.1)

E.-Nagy proved that κ̂(M) = 22n−8 − 0.25, see [60].
We generated the test problems in the following way: q := −Me + e. We considered 

x0 = e and s0 = e as starting points for our PC IPA.
In our computational study we compared our algorithm to the one of Potra and Liu 

[39] working in Dϕ(0.1) with ϕ(t) = t. The obtained results are summarized in Table 1.
In spite of the fact that the analysis of the algorithm refers to the case when ϕ(t) =√
t, we also tested the PC IPA using the generalized wide neighbourhood Dϕ(β) with 

ϕ(t) = t −
√
t. We also compared this version of the algorithm to the short-step PC IPA 

presented in [27] which works in different type of neighbourhood and uses ϕ(t) = t −
√
t

in the AET technique. The results are given in Table 2. As it was expected, the PC IPAs 
working in wide neighbourhood gave better results than the short-step PC IPA proposed 
in [27].

It seems that the practical iteration complexity is significantly better than the theo-
retical worst case guarantee for the special class of LCPs with the matrix M introduced 
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Table 1
Numerical results using Algorithm 2 in case 
of Dϕ(0.1) with matrix given in (7.1).

n ϕ(t) = t ϕ(t) =
√
t

Nr. of Iter. Nr. of Iter.
10 8 7
20 10 9
50 16 15
100 25 24
200 47 43
300 66 63
400 87 82

Table 2
Numerical results using Algorithm 2 in case of Dϕ(β) and the PC IPA from [27] with matrix given in (7.1).

n PC IPA using Dϕ(β) with ϕ(t) = t −
√
t PC IPA from [27] using ϕ(t) = t −

√
t

Nr. of Iter. Nr. of Iter.
10 21 53
20 20 91
100 40 97
200 61 112

by Zs. Csizmadia. Seemingly, in practice, the iteration number does not have strong 
relation with the value of κ. This fact needs further analysis.

The obtained numerical results show that these algorithms have better iterations 
number than it is predicted by their complexity results. Hence, it would be worth trying 
to prove better theoretical complexity results in case of LPCs with these special matrices. 
In the following section some concluding remarks are presented.

8. Conclusions and further research

In this paper we proposed a new PC IPA for solving P∗(κ)-LCPs. The proposed IPA 
uses new search direction and works in the generalized wide neighbourhood Dϕ(β) with 
ϕ(t) =

√
t. However, the PC IPA depends on the parameter κ, which could usually 

be computed by an algorithm that has no polynomial complexity, see [59]. Therefore, 
we proposed another variant of the PC IPA, where we initially set κ = 1 and used 
Algorithm 1 for this value of κ. If at a certain iteration the algorithm fails to produce 
a point in Dϕ(β), we double the value of κ and restart Algorithm 1 from the last point 
produced in Dϕ(β). Following the results of Potra and Liu [39], our algorithm keeps the 
property that the predictor and corrector steplengths can be computed as a solution of 
some optimization problems. In this computation of the steplengths we do not need the 
apriori knowledge of the handicap of the problem’s matrix. For simplification purposes, 
during the complexity analysis of the algorithm we used steplengths depending on κ
satisfying feasibility property of the above mentioned optimization problems. We proved 

that the PC IPA has O
(

(1 + κ)n log
((

x0)T s0

ε

))
iteration complexity. Because of the 
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used search direction the complexity analysis of the PC IPA became more complicated 
compared to the analysis given in [39]. To overcome this, we restructurated the proofs in 
order to be easily followable. We also provided numerical results where we compared our 
PC IPA to other ones that use different search directions or neighbourhoods. We tested 
the PC IPA working in the generalized wide neighbourhood Dϕ(β) with ϕ(t) = t −

√
t. 

Lemma 3.1 shows that the methods used in the complexity analysis presented in this 
paper with ϕ(t) =

√
t might not work in this form in case of ϕ(t) = t −

√
t. However, 

the obtained numerical results for this variant of PC IPA show that it would be worth 
analysing the theoretical approach for this type of algorithm, as well.

As further research plans, it would be important to understand for which θ, β, γ values 
we can obtain polynomial complexity. Usually in case of IPAs the complexity analysis 
of the algorithms is proven only for a given value of the parameters, although we know 
that there exists a whole set of parameters for which the algorithm is well defined and 
usually a smaller one for which the complexity analysis works as well. The determination 
of the whole set is not trivial, but the choice of a subset could be very interesting, see 
[46,47,63]. Furthermore, it would be interesing to extend the algorithm in a similar way 
that Illés et al. did in [64]. For this reason, it would be good to collect as many general 
LCP test problems as possible in order to make the algorithms developed for general 
LCPs testable in practice, too.
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