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1 Introduction

There is a growing literature on endogenous timing of decisions in oligopolies,
which mainly focuses on duopolies.1 Gal-Or (1985), Dowrick (1986) and
Boyer and Moreaux (1987) compared the outcomes of exogenous timing
duopoly games in order to find out whether the leader or the follower has
a more advantageous position. They also identified conditions under which
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suggestions on an earlier version of this paper. Parts of this research were done during
the author’s Bolyai János Research Fellowship provided by the Hungarian Academy of
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1Oligopolies have been investigated for example by Gangopadhyay (1993) and Mat-

sumura (1999).
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conflict emerges between the two firms to obtain the leader or follower posi-
tion. The more recent literature aims to solve the conflict concerning roles,
and determines an endogenous order of moves under certain circumstances.
Papers addressing this issue include Hamilton and Slutsky (1990), Deneckere
and Kovenock (1992), Furth and Kovenock (1993), van Damme and Hurkens
(1998, 1999) and Matsumura (1999, 2002), among others.

For price-setting duopoly games we determine the endogenous order of
moves in the framework of a Bertrand-Edgeworth game with strictly convex
and sufficiently asymmetric cost functions. We obtain the following interest-
ing result: The more efficient firm chooses the follower’s position, while the
less efficient firm selects the leader’s position (Theorem 3). This result can
be interpreted in the following way: The more efficient firm is exerting power
from the follower’s position by forcing the less efficient firm, which has to
avoid the possibility of being undercut by the more efficient firm, to set a suf-
ficiently low price. This result has been obtained in the Bertrand-Edgeworth
framework by Boyer and Moreaux (1987), Deneckere and Kovenock (1992)
as well as Canoy (1996) in different settings.

Boyer and Moreaux (1987) considered a homogeneous good price-setting
duopoly game in which the firms simultaneously choose their prices and
quantities. They found that for small cost differentials both firms prefer the
follower’s position, while for large cost differentials there is no conflict con-
cerning the order of moves since the less efficient firm chooses the role of the
leader and the more efficient firm chooses the role of the follower. However,
they did not deal with the possibility of simultaneous moves and compared
only the outcome of two sequential-move games in determining the order of
moves. In this respect our main result is that the possibility of simultane-
ous moves does not alter their finding concerning the endogenous order of
moves in the Bertrand-Edgeworth framework if the two firms have sufficiently
asymmetric cost functions. We have to mention that our assumptions differ
in three main points from theirs. First, they considered only linear demand
and cost functions. Second, they employed the proportional rationing rule
while we use the efficient rationing rule.2 Third, we consider the production-
to-order version of the Bertrand-Edgeworth game in which production takes
place after the firms have already fixed their prices.

Deneckere and Kovenock (1992) determined the endogenous order of deci-
sions in a homogeneous good Bertrand-Edgeworth duopoly game with capac-
ity constraints in which they also allowed for the possibility of simultaneous
moves. They investigated the case of constant unit costs up to the firms’ ca-

2For the definitions of these two rationing rules we refer to Tirole (1988) and Vives
(1999).
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pacity constraints. As a function of the unit costs and the capacity constraints
they derived the endogenous order of moves. In this respect we consider a
setting which is more difficult to analyze, since for the simultaneous-move
game there is not much known beyond the existence of a mixed-strategy
equilibrium in case of convex cost functions.

Finally, Canoy (1996) considered a heterogeneous goods Bertrand-Edge-
worth duopoly game for which he also showed that the less efficient firm
moves first. However, as in Boyer and Moreaux (1987) he did not allow the
firms to move simultaneously.

The remainder of this paper is organized as follows. In Section 2 we
describe the framework of our analysis. In Section 3 we investigate a simple
two-period timing game, while a multi-period timing game is considered in
Section 4. We conclude our paper in Section 5.

2 The framework

The demand is given by the function D : R+ → R+ on which we impose the
following assumptions in order to ensure the existence of equilibrium:

Assumption 1. There exists a positive price b such that D(p) > 0 if p < b,
and D(p) = 0 if p ≥ b. The demand function D is continuous, strictly
decreasing on [0, b], and continuously differentiable on (0, b).

Let a be the horizontal intercept of the demand function, i.e., D (0) = a.
Clearly, any firm will not set its price above b in the price-setting game.

We denote the firms’ cost functions by ci : [0, a] → R+ (i ∈ {1, 2}). In
order to ensure the existence and at some points also the uniqueness of the
equilibrium through our analysis we impose on the firms’ cost functions the
following assumptions:

Assumption 2. The cost functions ci are twice continuously differentiable,
there are no fixed costs and the cost functions are strictly increasing and
strictly convex. Furthermore, c′i (0) = limq→0+ c′i (q) = mci (0) < b for all
i ∈ {1, 2}.

Assumption 2 also implies that the competitive supply, henceforth briefly
supply, at price level p ∈ [0, b] of firm i can be given by

si (p) :=





a, if p ∈ (mci (a) , b] ,

(mci)
−1 (p) , if p ∈ [mci (0) ,mci (a)] ∩ [0, b] ,

0, if p ∈ [0,mci (0)) ,
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because the supply of firm i at price level p is a solution of the problem
si(p) = arg maxq∈[0,a] pq − ci(q), which has a unique solution for all p ≥ 0
because of Assumption 2. In addition, there exists an interval of prices such
that si (p) = (mci)

−1 (p). We shall denote by pc the price at which demand
equals supply, i.e., D(pc) = s1(p

c) + s2(p
c).

The following technical assumption ensures that both firms will be active
in the market:

Assumption 3. s1(p
c) > 0 and s2(p

c) > 0.

Since we do not want to assume that the firms are not producing be-
yond their competitive supplies, we start with defining a price-quantity
game. The price and quantity decisions of firm i ∈ {1, 2} are given by
(pi, qi)∈ [0, b]×[0, a]. The quantity decisions q1 and q2 mean here the amounts
actually produced by the firms. We assume that the price decisions precede
the quantity decisions, that is, we consider a production-to-order type mar-
ket environment. In addition, we suppose that the firms make their quantity
decisions simultaneously after they have already announced their prices in
a certain order. Concerning the order of price decisions we will analyze two
sequential-move games (differing in the order of moves) and the simultaneous-
move game. In particular, in the games with sequential price moves we have
either firm 1 or firm 2 announcing its price in stage one, the other firm an-
nouncing its price in stage two and both firms making production decisions
simultaneously in stage three; while in the game with simultaneous price
moves we have firms 1 and 2 setting their prices simultaneously in stage one
and firms 1 and 2 making their production decisions simultaneously in stage
two.

In specifying the firms’ demands we assume efficient rationing3 of con-
sumers, which occurs in a market if the consumers are able to costlessly
resell the good to each other, or if the consumers have heterogeneous unit
demands and the consumers having higher reservation prices are served first
(for more details we refer to Tirole, 1988; and Vives, 1999). For price ties we
define the demands differently for the games with sequential price moves and
the game with simultaneous price moves: Let T1 (p, q2) := (D(p)− q2)

+ and
T2 (p, q1) := D(p) in the two games with sequential price moves, and

Ti (p, qj) := max

{
si (p)

si (p) + sj (p)
D (p) , D (p)− qj

}

in the game with simultaneous price moves, where, like throughout the paper,
i, j ∈ {1, 2} and i 6= j. This distinction ensures that the two games with

3Efficient rationing is also called parallel rationing (see for instance Tirole, 1988) and
surplus-maximizing rationing (see for example Vives, 1999).
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sequential price moves have a unique equilibrium and we do not have to
consider ε-equilibrium solutions. We define the demand faced by the firms in
the following manner:

∆i (pi, qi, pj, qj) :=





D (pi) , if pi < pj

Ti (pi, qj) , if pi = pj

(D (pi)− qj)
+ , if pi > pj.

Since the firms’ sales are either demand constrained or production con-
strained, their sales equal min {∆i (pi, qi, pj, qj) , qi}. Now we are ready to
define the profit functions of the price-quantity game as

π̃i (pi, qi, pj, qj) := pi min {∆i (pi, qi, pj, qj) , qi} − ci (qi) .

By solving the quantity-setting stage of the price-quantity game we obtain
the price-setting game, which we will analyze in Sections 3 and 4. If firm i is
the low-price firm, then

π̃i (pi, qi, pj, qj) = pi min {D (pi) , qi} − ci (qi)

and firm i’s optimal production will be

qi = min {D (pi) , si (pi)} . (1)

Hence, the high-price firm j maximizes π̃j (pj, qj, pi, min {D (pi) , si (pi)}) =

pj min
{
(D (pj)−min {D (pi) , si (pi)})+ , qj

}− cj (qj)

in qj and we obtain as the solution of this problem that firm j produces

qj = min
{
(D (pj)− si (pi))

+ , sj (qj)
}

. (2)

Now we turn to the case of equal prices. For the two games with sequential
moves we can derive in case of price ties (p = p1 = p2) that

q1 = min
{
(D (p)− s2 (p))+ , s1 (p)

}
, q2 = min {D (p) , s2 (p)} . (3)

In the game with simultaneous price moves firm i can sell si(p)
si(p)+sj(p)

D (p)

independently of the other firm’s action because of our tie-breaking rule.
The same holds true for firm j. Hence, at price p = p1 = p2 firm i will
produce

qi = min

{
si (p)

si (p) + sj (p)
D (p) , si (p)

}
. (4)
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Taking the solutions of the quantity-setting subgames (1), (2), (3) and
(4) into consideration we can restrict ourselves from now on to the analysis
of the price-setting game Op := 〈{1, 2}, [0, b]2, (π1, π2)〉, where

πi (pi, pj) = pi min {D (pi) , si(pi)} − ci (min {D (pi) , si(pi)})

if firm i is the low-price firm,

πi (p, p) = p min {Ti (p, sj(p)) , si(p)} − ci (min {Ti (p, sj(p)) , si(p)})

if there is a price tie and πi (pi, pj) =

pi min
{
(D (pi)− sj(pj))

+ , si(pi)
}− ci

(
min

{
(D (pi)− sj(pj))

+ , si(pi)
})

if firm i is the high-price firm.
We shall denote by Dr

i (p) := (D(p)− sj(p))+ the residual demand of
firm i in all three games4, which ‘almost’ equals the demand of firm i if it
is ‘just’ undercut by its opponent j. In particular, in the sequential games
Dr

1 (p) simply equals the demand firm 1 faces if firm 2 matches firm 1’s price,
whereas in any other case we have

Dr
i (p) = lim

pj→p−
∆i (p, si(p), pj, sj(pj)) < ∆i (p, si(p), p, sj(p))

for any p > pc. Let

π∗i := max
p∈[0,b]

π̃i (p,D
r
i (p), p, sj(p)) ,

P ∗
i := arg max

p∈[0,b]
π̃i (p,D

r
i (p), p, sj(p)) .

Clearly, firm i can secure at least π∗i profits. Define the set

Li := {p ∈ [0, b] | p min{D(p), si(p)} − ci(min{D(p), si(p)}) = π∗i )}

consisting of those prices for which firm i is indifferent between serving the
entire market or maximizing its profit with respect to its residual demand
curve. Note that Li is non-empty because of Assumptions 1 and 2, but may
contain more than one element although in many cases Li contains only one
element. Let pL

i := min Li. Firm i will never set its price below pL
i because

any price p < pL
i is dominated by any price p∗ ∈ P ∗

i . It can be easily checked
that by Assumptions 1, 2 and 3 we have p∗ > pL

i > pc for any price p∗ ∈ P ∗
i .

The following assumption implies that the two firms are asymmetric:

4This is the worst that could happen to firm i if it sets price p.
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Assumption 4. For all p ≥ pL
1 we have D(p) < s1(p).

Assumption 4 means that firm 1 is willing to serve the entire demand
for all its undominated prices. Therefore, we call firm 1 the more efficient
firm and its opponent, firm 2, the less efficient firm. It can be verified that,
for example, the duopoly market with demand curve D(p) = 1− p and cost
functions c1(q) = αq2, c2(q) = q2 satisfies Assumption 4 whenever 0 < α ≤
(−1 +

√
6)/5 ≈ 0.2899. However, Assumption 4 excludes cases in which the

two firms do not have sufficiently asymmetric cost functions, for instance, if
D(p) = 1− p, c1(q) = αq2 and c2(q) = q2, then Assumption 4 is violated for
any α > (−1+

√
6)/5. Therefore, we have to explain why we need Assumption

4 throughout our analysis: The main problem is that there is not much known
beyond the existence5 of a mixed-strategy equilibrium in homogeneous good
Bertrand-Edgeworth games with convex cost functions. Hence, Assumption
4 makes the comparison of the equilibrium profits of the simultaneous-move
game and the two sequential-move games possible.

After all, we define p̃ to be the price at which the less efficient firm could
satisfy the entire demand; that is, s2(p̃) = D(p̃). It can be checked that
p̃ > pL

1 .

3 A two-period timing game

In this section we investigate a two-period timing game in which the firms
themselves can choose between two periods to make their price announce-
ments. After the firms have made their timing decisions, which they all ob-
serve, they will play the corresponding price-setting game introduced in Sec-
tion 2. This two-period timing game appeared in Deneckere and Kovenock
(1988) applied to Bertrand-Edgeworth duopoly games with capacity con-
straints. A similar timing game appeared also in Hamilton and Slutsky (1990)
for games possessing pure-strategy equilibria. They called such kind of timing
games ‘games with observable delay’. To determine the endogenous order of
moves we have to compare the equilibrium profits of the three price-setting
games defined in Section 2.

We start with the sequential-move game in which firm 1 is the exogenously
given first mover.

Proposition 1. Consider a duopoly market satisfying Assumptions 1-4. If
the more efficient firm is the exogenously given first mover, then in any
subgame-perfect Nash equilibrium the more efficient firm selects a price p∗

from set P ∗
1 and the less efficient firm follows with the same price.

5The existence of a mixed-strategy equilibrium was established by Maskin (1986).
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Proof. We already noted that the more efficient firm will not set its price
below pL

1 . Hence, let the more efficient firm’s action be any price p ∈ [
pL

1 , b
]
.

Then s1(p) + s2(p) > D(p) holds true. We have to consider two different
cases: (i) s2 (p) < D (p), i.e, p < p̃ and (ii) s2 (p) ≥ D (p), i.e, p ≥ p̃.

In case (i) firm 2 will not set its price below p because at price p firm
2 can sell its entire supply. By setting a price p2 > p firm 2 cannot sell
anything at all, since by Assumption 4 we have D (p2) − s1 (p2) ≤ 0 for all
p2 > p. Therefore, p2 = p is a Nash equilibrium of the subgame. We conclude
that at price p the more efficient firm will sell min {D (p)− s2 (p) , s1 (p)} =
D (p)− s2 (p) amount of product.

In case (ii) firm 2 will not set its price below p̃ because price p̃ dominates
any lower price, since at price p̃ firm 2 can sell its entire supply. Clearly, the
less efficient firm will not set a price higher than p because of Assumption 4.
Hence, Assumption 2 implies that firm 2 will serve the entire demand, which
means that firm 1 will not set a price above p̃.

Finally, we conclude that the more efficient firm will set its price by
maximizing its profit with respect to its residual demand curve because we
have established that the more efficient firm chooses its price from the interval
[pL

1 , p̃] and that for such prices the less efficient firm behaves as a price taker.

We have to mention that if we specify a different tie-breaking rule for
the case of equal prices, then the solution in Proposition 1 can only be an ε-
equilibrium. To see this we have to observe that if the less efficient firm faces
less demand than s2(p1), then it will undercut price p1 for all p1 ∈ [pL

1 , p̃].
Now we compare the sequential-move game in which the more efficient

firm moves first with the simultaneous-move game. Specifically, we demon-
strate that firm 1 announcing its price in the first time period and firm 2
announcing its price in the second time period is not a subgame-perfect Nash
equilibrium of the timing game, which is surprising since the more efficient
firm will not become a price leader.

From Maskin (1986) it follows that under our Assumptions 1 and 2 the
simultaneous-move price-setting game has an equilibrium in mixed strategies.
Let us denote by πi (ϕ1, ϕ2) the expected profit obtained by firm i in case
of the mixed-strategy profile (ϕ1, ϕ2). The next proposition establishes that
firm 1 will not accept the role of the leader.

Proposition 2. Suppose that the duopoly market satisfies Assumptions 1-4.
If (ϕ∗1, ϕ

∗
2) is a mixed-strategy equilibrium of the simultaneous-move price-

setting game, then
π1 (ϕ∗1, ϕ

∗
2) ≥ π1 (p∗1, ϕ

∗
2) > π∗1
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for any p∗1 ∈ P ∗
1 ; that is, the more efficient firm prefers playing the simul-

taneous-move price-setting game to accepting the role of the price leader.

Proof. Clearly, each firm i ∈ {1, 2} setting its price with probability one
to p∗1 ∈ P ∗

1 cannot be a Nash equilibrium profile of the simultaneous-move
game because then firm 1 will slightly undercut price p∗1 by Assumption 3.
Hence, in any mixed-strategy Nash equilibrium firm 2 sets prices differently
from p∗1 with positive probability. Clearly, if firm 2 sets a higher price than
p∗1, then firm 1 faces the entire demand at price p∗1 and can sell more than
Dr

1 (p∗1). Now if firm 2 sets price p2 below p∗1, it supplies only s2 (p2) which is
less than s2 (p∗1) because of Assumption 2 and it follows that firm 1 can sell
at price p∗1 more than Dr

1 (p∗1). Hence, firm 1 can sell at price p∗1 more than
Dr

1 (p∗1) amount of product with positive probability. Thus, π1 (p∗1, ϕ
∗
2) > π∗1.

Obviously π1 (ϕ∗1, ϕ
∗
2) ≥ π1 (p∗1, ϕ

∗
2) must hold.

The reason why the more efficient firm prefers moving simultaneously
to moving first is that at any leader price p∗1 ∈ P ∗

1 it sells with positive
probability more than its residual demand Dr

1(p
∗
1) because its opponent is

playing a nondegenerated mixed-strategy in the simultaneous-move price-
setting game.

We have to determine the outcome of the game in which the less efficient
firm is the first mover. As we already noted in Section 2 the more efficient
firm will never set its price below pL

1 . Thus, the less efficient firm can sell
its entire supply if it sets a price less than or equal to pL

1 , which implies
(regarding Assumptions 1 and 2) that the less efficient firm too will not set
its price below pL

1 . Moreover, the less efficient firm has to set its price so
that the more efficient firm will not undercut the less efficient firm, because
otherwise the more efficient firm would capture the entire market because of
Assumption 4 and thus, the less efficient firm will not sell anything at all. The
more efficient firm’s sales equal D(p) for all p ≥ pL

1 if it undercuts the less
efficient firm. Let h(p1, p2) := min{s1(p1), (D(p1)− s2(p2))

+} (p1 ≥ p2 ≥ pL
1 )

stand for the amount sold by the more efficient firm if it sets the higher or the
same price. Furthermore, we shall denote by G(p) := pD(p)− c1(D(p)) and
H(p1, p2) := p1h(p1, p2)− c1(h(p1, p2)) the profit levels corresponding to the
two previously mentioned cases. The function πh(p2) := maxp1∈[p2,b] H(p1, p2)
gives the maximum profit if the more efficient firm does not undercut the less
efficient firm’s price p2.

6 Observe that if pL
1 ≤ p2 < p′2 ≤ p̃, then for any p1 ∈

[p′2, p̂), where p̂ is determined by D(p̂) = s2(p2), we have H(p1, p2) > H(p1, p
′
2)

because of Assumption 2 and therefore, it follows that πh(p2) > πh(p′2).

6Deneckere and Kovenock (1992) introduced similar functions in analyzing the price-
setting game with capacity constraints.
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Moreover, πh is a continuous function following from the Theorem of the
Maximum. Thus, the less efficient firm’s price pl

2 is determined by the smallest
price satisfying equation G(p2) = πh(p2), which has a solution in

[
pL

1 , p̃
]
, since

G
(
pL

1

)
= π∗1 < πh

(
pL

1

)
and G (p̃) > πh (p̃) = 0. In particular, the less efficient

firm has to pick the smallest price satisfying equation G(p2) = πh(p2) because
πh is strictly decreasing on [pL

1 , p̃]. In a subgame-perfect Nash equilibrium
firm 1 sets its price ph

1 by maximizing function H(·, pl
2). Note that under

Assumptions 1-4 there may be multiple prices ph
1 maximizing H(·, pl

2).
Based on the results obtained so far we can formulate and prove the

following theorem.

Theorem 3. Suppose that the duopoly game satisfies Assumptions 1-4. Then
the less efficient firm moves first and the more efficient firm moves second.
Furthermore, the less efficient firm sets price pl

2 and the more efficient firm
sets a price ph

1 , which maximizes function H(·, pl
2) and is higher than pl

2.

Proof. We know by Proposition 2 that the more efficient firm will not be
the price leader. Therefore, it remains to show that both firms prefer the
game having the less efficient firm as the first mover to the simultaneous-
move price-setting game. Let (ϕ1, ϕ2) be a mixed-strategy equilibrium of the
simultaneous-move game. We write p

i
:= min suppϕi for the smallest price in

the support of ϕi and pi := max suppϕi for the largest price in the support
of ϕi (i ∈ {1, 2}). Obviously, p

1
≥ pL

1 . Clearly p
2

< p̃ because otherwise
π2(ϕ1, ϕ2) = 0 if p1 < p2, π1(ϕ1, ϕ2) = 0 if p1 > p2, πi(ϕ1, ϕ2) = 0 if p1 = p2

and ϕj({pj}) = 0, and each firm can increase its profit by undercutting its
opponent price with probability ϕi({pi}) if both firms have an atom at price
p1 = p2.

We will need the following four auxiliary statements: (i) p
1
≤ p

2
, (ii)

p1 ≥ p2, (iii) ϕ2({p2
}) = 0 and (iv) ϕ2({p1}) = 0. The first one p

1
≤ p

2
must

hold true since otherwise a profile with p
2

< p
1

could not be an equilibrium
profile because firm 2 would sell its entire supply by setting a price in interval
[p

2
, min{p

1
, p̃}) and thus its profits would increase on [p

2
, min{p

1
, p̃}). For the

second one observe that if firm 2 sets a higher price than p1, then it will not
sell anything at all regarding Assumption 4. In order to verify the third one
suppose that ϕ2 has an atom at p

2
, i.e., α := ϕ2({p2

}) > 0. We have to
distinguish between two cases. If there exists a positive value ε such that
ϕ1([p2

, p
2

+ ε)) = 0 holds true, then firm 2 could benefit from increasing
the probability of setting a price in interval (p

2
, p

2
+ ε) with the additional

probability of α and never setting price p
2
. If we have ϕ1([p2

, p
2

+ ε)) > 0
for all positive values ε, then we can select a sufficiently small positive value
ε′ such that firm 1 could gain from undercutting price p

2
with probability of

β := ϕ1([p2
, p

2
+ ε′)) and never setting prices in interval [p

2
, p

2
+ ε′). Now we
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turn to statement (iv). Suppose that this is not the case, i.e., ϕ2({p1}) > 0.
Then by (ii) we must have p1 = p2. If ϕ1({p1}) = 0, then π2(ϕ1, ϕ2) = 0
would follow; a contradiction. But even ϕ1({p1}) > 0 cannot be the case,
since then there exists an ε > 0 such that π1(p1 − ε, ϕ2) > π1(ϕ1, ϕ2).

Finally, we claim that p
2

< pl
2, which in turn implies by (i) that both firms

prefer playing the game with the less efficient firm as the leader to playing the
simultaneous-move game. Suppose that p

2
≥ pl

2; but then, by applying the

auxiliary statements (iv), (ii) and (iii), for any price ph
1 maximizing function

H(·, pl
2)

π1(ϕ1, ϕ2) = π1(p1, ϕ2) < π1(p1, p
l
2) ≤ π1(p

h
1 , p

l
2) = πh(pl

2) = π1(p
l
2, ϕ2)

would follow. Hence, (ϕ1, ϕ2) cannot be a mixed-strategy equilibrium of the
simultaneous-move game and therefore, we must have p

2
< pl

2.

Regarding Theorem 3 the more efficient firm prefers the follower’s position
because then it can force the less efficient firm to set a low price. By setting
a low price the less efficient firm prevents itself from being undercut by the
more efficient firm.

We want to point out that applying another tie-breaking rule Ti in case
of equal prices for the game in which the less-efficient firm is the exogenously
given first mover does only alter the result of Theorem 3 slightly in one special
case. In particular, the only difference arises, if we apply the other extreme
tie-breaking rule which puts the less efficient firm to the residual demand
curve, that is, T1 (p, q2) := D(p) and T2 (p, q1) := (D(p)− q1)

+. In this case
the more efficient firm’s best replies to price pl

2 are pl
2 and ph

1 . To escape this
uncertainty the less efficient firm will set a price slightly below pl

2 and thus,
resulting in an ε-equilibrium.

Finally, to illustrate our results we will consider the following numerical
example:

Example 1. Let D(p) = 1− p, c1(q) = 1
4
q2 and c2(q) = q2.

Observe that Assumption 4 is satisfied since 1
4
∈

(
0,−1

5
+

√
6

5

]
. We have

s1(p) = min {2p, 1}, s2(p) = p/2 and Dr
1 (p) = (1− 3p/2)+ for any p ∈ [0, 1].

One can easily derive that P ∗
1 = {14/33} and π∗ = 4/33. If firm 1 is the

leader, then it will set price 14/33 and firm 2 will follow with the same price
by Proposition 1. In addition, we have pL

1 = 3
5
− 2

165

√
429 ≈ 0.34894. Now we

turn to the game having firm 2 as the first mover.7 For this game we have
G(p) = p(1− p)− 1

4
(1− p)2 for any p ≥ pL

1 , h (p1, p2) =
(
1− p1 − p2

2

)+
and

7We do not consider the simultaneous-move game because it is a very difficult and
tedious task to calculate the mixed-strategy equilibrium for Example 1.
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H (p1, p2) = p1

(
1− p1 − p2

2

)+ − 1
4

((
1− p1 − p2

2

)+
)2

for any p1 ≥ p2 ≥ pL
1 .

If problem maxp1∈[p2,1] H(p1, p2) has an interior solution, i.e., p2 ∈
[
pL

1 , 6
13

)
,

then we have p1 = 3
5
− 3

10
p2. Next we can derive

πh (p2) =





1
20

p2
2 − 1

5
p2 + 1

5
, if p2 ∈

[
pL

1 , 6
13

]
;

−33
16

p2
2 + 7

4
p2 − 1

4
p2, if p2 ∈

(
6
13

, 2
3

)
;

0, if p2 ∈
[

2
3
, 1

]
.

As a solution of equation G (p2) = πh (p2) we obtain pl
2 = 17

26
− 1

26

√
55 ≈

0.36861. Furthermore, by maximizing H
(
p1, p

l
2

)
with respect to p1 we get

ph
1 ≈ 0.48942. Thus, firm 2 sets price pl

2 ≈ 0.36861 and firm 1 follows with
price ph

1 ≈ 0.48942.

4 A multi-period timing game

The timing game analyzed in Section 3 was quite simple. Next, we will in-
vestigate for the case of strictly convex cost functions a multi-period timing
game considered by Deneckere and Kovenock (1988) in which the firms have
repeatedly the opportunity to fix their prices. Before we proceed let us sum-
marize the results obtained through Proposition 2 and Theorem 3. If we
denote the equilibrium profits of the firms achieved as a leader, a follower
and a simultaneous-mover by πL

i , πF
i , and πS

i respectively8, then under As-
sumptions 1-4 we have

πL
1 < πS

1 < πF
1 and πS

2 < πL
2 , (5)

which follow from Proposition 2 and Theorem 3.
The firms have T periods to set their prices at times t/T where t ∈

{0, 1, . . . , T − 1}. Let τ := 1/T stand for the time elapsing between two
periods. We assume that the firms play a game with observable delay; that
is, they are both aware of whenever they play a simultaneous-move subgame.
Moreover, we suppose that the consumers’ demand is independent of the
timing of price announcements and that the sales will be determined when
both firms have fixed their prices. We shall assume that the firms discount
their profits continuously with a discount rate r, and let δ := e−rτ .

We calculate the subgame-perfect equilibrium of the multi-period timing
game through backwards induction. If no price announcements are made
until the final period T − 1, then they both announce their prices in the final

8If the simultaneous-move game does not have a unique equilibrium, then we can pick
an arbitrary mixed-strategy equilibrium.
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Table 1: Payoffs of the subgame starting in period T − 2.
Announce Wait

Announce (δT−2πS
1 , δT−2πS

2 ) (δT−1πL
1 , δT−1πF

2 )
Wait (δT−1πF

1 , δT−1πL
2 ) (δT−1πS

1 , δT−1πS
2 )

period since otherwise, they will earn zero profits. Hence, the firms will play a
simultaneous-move game. Now if no announcements occur until period T −2,
then the firms play a 2 × 2 bimatrix game with both firms deciding about
making an announcement in period T − 2. If both set their prices in period
T −2, then they play a simultaneous-move game at time (T −2)/T and earn
δT−2πS

i profits; while if both firms delay their announcements to the next
period, they earn δT−1πS

i profits. If only the more efficient firm reveals its
price in period T − 2, then the less efficient firm reveals its price in the next
period resulting in δT−1πL

1 and δT−1πF
2 profits respectively. Otherwise, the

less efficient firm sets its price in period T − 2 and the more efficient firm in
period T − 1, which yields them δT−1πL

2 and δT−1πF
1 profits. Without loss of

generality we may assume that πS
1 /πF

1 < δ because this can be achieved by
choosing a sufficiently large T . It can be easily verified by (5) and Table 1
that in the equilibrium of the subgame played in period T−2 the less efficient
firm announces its price in period T − 2, while the more efficient firm delays
its announcement to period T − 1.

By induction we establish that in the subgame starting in period T − k (k ∈
{3, 4, . . . , T}) the less efficient firm immediately announces its price and the
more efficient firm delays its announcement to the next period. Suppose that
no announcement has been made before period T −k. If both set their prices
in period T − k, then they obtain δT−kπS

i profits; while if both firms delay
their announcements to period T−k+1, then by the induction hypothesis the
less efficient firm moves in period T −k+1 and the more efficient firm moves
in period T − k + 2 resulting δT−k+2πL

2 and δT−k+2πF
1 profits respectively. If

only the more efficient firm reveals its price in period T − k, then the less
efficient firm sets its price in period T−k+1 yielding δT−k+1πL

1 and δT−k+1πF
2

profits. Otherwise, the less efficient firm sets its price in period T − k and
the more efficient firm in period T − k + 1, which yields them δT−k+1πL

2

and δT−k+1πF
1 profits. Now it can be easily checked by (5) and looking at

Table 2 that for the subgame starting in period T − k the less efficient firm
moves immediately, while the more efficient firm moves in the next period.
Therefore it follows that the multi-period timing game confirms the result
obtained in Theorem 3; that is, the less efficient firm is the endogenously
determined first-mover.
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Table 2: Payoffs of the subgame starting in period T − k.
Announce Wait

Announce (δT−kπS
1 , δT−kπS

2 ) (δT−k+1πL
1 , δT−k+1πF

2 )
Wait (δT−k+1πF

1 , δT−k+1πL
2 ) (δT−k+2πF

1 , δT−k+2πL
2 )

5 Concluding remarks

Theorem 3 is surprising because one would expect that the more efficient
firm moves first and acts as a price leader. Our result that the less efficient
firm moves first can be explained by the fact that the less efficient firm as
a first mover leaves a far more favourable residual demand than as a second
mover and than as a simultaneous mover. For real life situations in which the
less efficient firm sets a sufficiently low price in order to prevent a price war
we refer to Boyer and Moreaux (1987, p. 190).

It would be nice to extend Theorem 3 to oligopolies in which many
exogenously given orders of moves are possible. Hence, to determine the
endogenous order of moves we have to compare, among other cases, two
payoffs resulting from nondegenerated mixed-strategy equilibria. We could
solve the duopolistic case quite easily because the two sequential-move games
have equilibria in pure strategies. Therefore, to solve the case of more than
two firms appears to be a very difficult task because of the complexity of
Bertrand-Edgeworth games with convex cost functions.

References

[1] Boyer M, Moreaux M (1987) Being a Leader or a Follower: Reflections on
the Distribution of Roles in Duopoly. International Journal of Industrial
Organization 5(2): 175-192

[2] Canoy M (1996) Product Differentiation in a Bertrand-Edgeworth
Duopoly. Journal of Economic Theory 70(1): 158-179

[3] van Damme E, Hurkens S (1998) Endogenous Price Leadership. Eco-
nomics Working Paper No. 289, Universitat Pompeu Fabra

[4] van Damme E, Hurkens S (1999) Endogenous Stackelberg Leadership.
Games and Economic Behavior 28(1): 105-129

[5] Deneckere R, Kovenock D (1988) Price Leadership. CMSEMS Discussion
Paper No. 773, Northwestern University

14



[6] Deneckere R, Kovenock D (1992) Price Leadership. Review of Economic
Studies 59(1): 143-162

[7] Dowrick S (1986) von Stackelberg and Cournot duopoly: choosing roles.
Rand Journal of Economics 17(2): 251-260

[8] Furth D, Kovenock D (1993) Price Leadership in a Duopoly With Ca-
pacity Constraints and Product Differentiation. Journal of Economics
(Zeitschrift für Nationalökonomie) 57(1): 1-35

[9] Gal-Or E (1985) First mover and second mover advantages. International
Economic Review 26(2): 649-653

[10] Gangopadhyay S (1993) Simultaneous vs Sequential Move Price Games:
A comparison of equilibrium payoffs. Discussion Paper No. 93-01, Indian
Statistical Institute

[11] Hamilton JH, Slutsky SM (1990) Endogenous Timing in Duopoly
Games: Stackelberg or Cournot Equilibria. Games and Economic Behavior
2(1): 29-46

[12] Maskin E (1986) The Existence of Equilibrium with Price-Setting Firms.
American Economic Review 76(2): 382-386

[13] Matsumura T (1999) Quantity-setting oligopoly with endogenous se-
quencing. International Journal of Industrial Organization 17(2): 289-296

[14] Matsumura T (2002) Market Instability in a Stackelberg Duopoly. Jour-
nal of Economics (Zeitschrift für Nationalökonomie) 75(1): 199-210

[15] Tirole J (1988) The Theory of Industrial Organization. MIT Press, Cam-
bridge MA

[16] Vives X (1999) Oligopoly Pricing: Old Ideas and New Tools. MIT Press,
Cambridge MA

15


