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a b s t r a c t

It is well known that in assignment markets competitive prices always exist, but no price mechanism
is strategy-proof for all agents. We investigate the extent a single agent can influence three special
competitive price vectors by misreporting his/her reservation values. We provide an exact formula
how the minimum, the maximum, and the fair competitive price vectors change, and show that at
the fair prices no agent can gain more than half of the deviation from the true values. We also
derive the analogous results for the corresponding core payoffs of the associated assignment game
via graph-theoretic characterizations of the two side-optimal core payoffs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We consider the two-sided matching markets introduced by
oopmans and Beckmann (1957) with two types of agents and
wo types of goods: one is indivisible (e.g. houses, locations,
ositions), the other is perfectly divisible (e.g. money). In these
arkets each agent is either a seller or a buyer; each seller
wns one unit of the indivisible good (e.g. has one house to sell)
nd no buyer demands more than one unit of the indivisible
ood (e.g. wants to buy at most one house). Due to these unit
upplies and unit demands, the indivisible goods are exchanged in
xclusive seller-buyer partnerships. The perfectly divisible good,
owever, can be freely reallocated among the agents, so ‘‘side-
ayments’’ to third parties are allowed. Finally, individual utilities
re assumed to be transferable, one unit of the divisible good is
alued the same by all agents, so comparison and aggregation of
ndividual utilities are meaningful.

Koopmans and Beckmann (1957) formulated the optimiza-
ion problem, called linear assignment problem, to find the col-
ectively most efficient allocation of the indivisible goods, and
nvestigated the dual problem of finding prices which provide
uitable incentives for the autonomous profit-maximizing agents
n a market mechanism to arrive at the collectively optimal
arket outcome. They proved the existence of such competitive
quilibrium prices.
Shapley and Shubik (1972), extending earlier work by Shapley

1955), investigated assignment markets using cooperative game

✩ This is a revised version of the working paper (dated February 9, 2022)
with the same title.
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theory. They proved that the core of the assignment game asso-
ciated with any assignment market is not empty, moreover, it
coincides with the set of competitive equilibrium payoffs vec-
tors. Shapley and Shubik (1972) also investigated the structure
of the core and showed that it has a lattice structure and two
special extreme elements: one is simultaneously the best for all
buyers (and the worst for all sellers), the other is simultaneously
the best for all sellers (and the worst for all buyers). The average
of these two side-optimal core payoffs (corresponding to the
average of the minimum and the maximum competitive prices)
was recommended by Thompson (1981) as the ‘‘fair’’ payoffs
favoring neither side. It was shown to coincide with the tau-value,
a point-valued solution to cooperative games introduced by Tijs
(1981), of the assignment game by Núñez and Rafels (2002). They
also showed that the tau-value in assignment games is pairwise
monotonic, meaning that if the pairwise profit of a seller-buyer
pair is increased, but all other pairwise profits remain unchanged,
the payoff of neither this seller, nor this buyer decreases at the
tau-value payoff. This assignment game specific monotonicity
result was the motivation for this study.

Our main question is what happens to the fair (tau) payoffs
if all pairwise profits of an agent change due to some unilateral
change in that agent’s market valuations, but all other pairwise
profits remain unchanged. Exactly this happens if we consider a
market situation where the agents have reservation values for the
possible partnerships, and one agent changes his/her reservation
value for all of his/her possible partnerships, but all other agents
keep their original valuations. We focus on the uniform case
when the change is the same for all possible partnerships of
the particular agent. For example, in a housing market a seller
‘‘typically’’ sets a single reservation price for his house irre-
spective of who the buyer would be. On the other hand, the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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raphical characterization of the side-optimal core payoffs we use
o prove our main results can also be used to investigate the
ffect of non-uniform changes in the reservation values of the
gent, like in the properties object-valuation antimonotonicity
nd buyer-valuation monotonicity discussed by van den Brink
t al. (2021).
Our main question and results have relevance also to the ma-

ipulability of the market mechanisms which yield competitive
quilibrium prices with respect to the reported valuations by
he agents. We only highlight some fundamental results on the
ncentives of the agents in such competitive assignment market
echanisms. Roth and Sotomayor (1990) (Theorem 7.3) showed

hat no stable matching mechanism exists for which stating the
rue reservation value is a dominant strategy for every agent.
his impossibility result basically rests on the opposite interest
f sellers versus buyers over the set of stable payoffs which is
ypically not a singleton. Pérez-Castrillo and Sotomayor (2013,
017) strengthened and extended this insight and proved that
f the assignment market (defined by the true valuations of the
gents) has more than one vector of competitive prices and a
ompetitive equilibrium allocation rule does not yield a buyer-
ptimal (respectively, seller-optimal) competitive equilibrium for
his market, then any buyer (respectively, seller) who is not
eceiving his (her) optimal competitive equilibrium payoff for this
arket can profitably misrepresent his (her) valuations, assuming

he others tell the truth.
In contrast to this general manipulability theorem, Demange

1982) and Leonard (1983) proved that if the competitive match-
ng mechanism selects the minimum competitive prices then
ruthful reporting is a dominant strategy for every buyer. This
artially positive result makes it possible to design a multi-
bject sealed-bid second price auction in which no buyer has an
ncentive to misreport his reservation values. Finally, we men-
ion that Demange et al. (1986) constructively proved that the
inimum competitive prices can be achieved by ascending multi-
bject auctions. Roth and Sotomayor (1990) (Chapters 7 and
) and the survey by Núñez and Rafels (2015) provide further
iscussions on the mechanism design aspects of assignment mar-
ets.
The aforementioned results tell us that only mechanisms yield-

ng the side-optimal competitive equilibrium prices can be
artially strategy-proof, any other mechanism which yields com-
etitive equilibrium prices are manipulable. We investigate the
at least to best of our knowledge) unexplored question of how
much an agent can gain by not telling the truth in a competi-
tive equilibrium mechanism. We focus on the sensitivity of the
minimum, the maximum, and the ‘‘fair’’ competitive prices with
respect to unilateral changes in the reservation values of a single
agent.

We prove for all three aforementioned competitive price rules
that the payoff of an agent cannot decrease if he/she changes
his/her reservation value in the ‘‘natural way’’ (i.e. sellers in-
crease, buyers decrease), but all other reservation values are kept
unchanged. In fact, the same holds for all agents on the side of
the misreporting agent. More importantly, we provide an exact
formula how the price concerning the misreporting agent changes
and establish sharp upper bounds for the extent the payoff of any
agent of the same type can increase. In particular, we show that if
one seller (buyer) reports a higher (uniformly lower) reservation
value(s) than the true one(s), but all other agents report honestly
to the mechanism, each fair competitive price can only increase
(decrease), but by no more than half of the deviation from the
true value. Our proofs rely on a graph-theoretic characterization
of the side-optimal competitive payoffs, that can also be used for
their efficient computation.

Given the coincidence of the set of competitive payoff vectors
in the market with the core of the associated assignment game
2

induced by the matrix of pairwise profits (Shapley and Shubik,
1972), our results apply for the two side-optimal core vectors
and the tau-value. Since changing the reservation value of a
single agent in the market causes uniform change (subject to
keeping nonnegativity) in all entries of a row or a column in the
pairwise profit matrix, our results provide a remarkably precise
sensitivity analysis for both side-optimal core vectors and for the
tau-value in the unusual case when not just one, but several
model parameters are changed in a uniform way.

The rest of the paper is organized as follows. In the next sec-
tion we formally introduce assignment markets and games, and
review the early fundamental results on the set of competitive
equilibrium and core payoffs. In Section 3, we use a 2-seller,
2-buyer assignment market to preview our results which are
formally proved in two subsequent sections. First, in Section 4,
we present a graphical characterization of the two side-optimal
payoff vectors. Based on that, we establish our results on the
sensitivity of the two side-optimal and the fair payoff vectors in
Section 5. We conclude in Section 6.

2. Assignment markets and stable outcomes

In an assignment market there are two types of agents, a set of
indivisible objects and money. It is assumed that agents’ utilities
are identified with money. We call the two types of agents sellers
and buyers, and denote their disjoint sets by I and J , respectively.
Each seller owns one indivisible object which are similar in kind
but not identical (e.g. houses, cars, jobs). Seller i ∈ I will not sell
his object for less than si. Each buyer wants one of these objects,
buyer j will not pay for the object owned by seller i more than tij.
n assignment market is given by the two disjoint sets I and J , by

the vector [si]i∈I containing the reservation values of the sellers,
nd the matrix [tij]i∈I,j∈J containing columnwise the valuations of

the buyers on the objects.
An outcome of the market will specify an allocation of the

bjects (to buyers, if sold, or to sellers, if unsold) and the mone-
ary transfers among the agents. Because of the indivisibility of
he objects and the unit supplies and demands of the agents,
he objects can only be traded in exclusive bilateral partnerships.
ollowing Roth and Sotomayor (1990) (chapter 8), we call a
inary matrix X = [xij]i∈I,j∈J an assignment of sellers/objects to
uyers, if it satisfies∑
j∈J

xij ≤ 1 for all i ∈ I∑
i∈I

xij ≤ 1 for all j ∈ J

xij ∈ {0, 1} for all i ∈ I, j ∈ J.

Clearly, the positive components of an assignment matrix X de-
scribe a matching between I and J , and vice versa, any matching
between I and J can be described by an assignment matrix X .

A market outcome also specifies the monetary transfers among
the agents. If buyer j buys the object from seller i at a price
pi, and if no other monetary transfer are made to or received
from third parties, the profit of buyer j equals tij − pi and the
profit of seller i equals pi − si. The potential total profit of the
exclusive partnership between i and j is then aij = max{0, tij−si},
independently of the actual price pi. We call a payoff vector(
(ui)i∈I ; (vj)j∈J

)
feasible for assignment X , if∑

i∈I

ui +
∑
j∈J

vj ≤

∑
i∈I,j∈J

aijxij

holds. We emphasize that although the objects are traded in
exclusive bilateral partnerships, side-payments to third parties
are allowed. By a feasible outcome of an assignment market
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I, J, [si]i∈I , [tij]i∈I,j∈J
)
we mean a pair

(
X, (u; v)

)
consisting of an

assignment X and a feasible payoff vector (u; v) for X .
A feasible outcome

(
X, (u; v)

)
is called stable, if its payoff

vector is acceptable for each agent and for each seller-buyer pair:

• ui ≥ 0 , vj ≥ 0 for all i ∈ I, j ∈ J ,
• ui + vj ≥ aij for all i ∈ I, j ∈ J .

One quickly observes that the individual and pairwise lower
bounds on the payoffs needed for stability and the collective
upper bound required by feasibility can only be consistent if
certain relations hold.

Proposition 1. An acceptable payoff vector (u; v) is feasible for as-
signment X if and only if the following complementarity conditions
are satisfied:

• ui = 0 for each unmatched seller i, (i.e.
∑

j∈J xij < 1),
• vj = 0 for each unmatched buyer j, (i.e.

∑
i∈I xij < 1),

• ui + vj = aij for each matched pair i, j, (i.e. xij = 1 > 0),

The proof is straightforward, see e.g. Roth and Sotomayor
(1990) (Lemma 8.5). It is also easily seen that the stability of
a market outcome can be characterized by the following two
optimality conditions.

Proposition 2. A feasible outcome
(
X, (u; v)

)
is stable, if and only

if

• X maximizes the total value
∑

ij aijxij over all assignments, and
• (u; v) minimizes the total payoff

∑
i ui +

∑
j vj over all accept-

able payoffs.

It follows from Propositions 1 and 2 that the existence of a
stable outcome in an assignment market is equivalent to whether
both related optimization problems have an optimal solution
and, by complementarity, the same optimum value. Since there
are finite many assignments, there is always an assignment of
maximum value. The question remains whether there exists an
acceptable payoff vector such that its total equals that maximum
assignment value. As noticed by Biró (2007), this question is
affirmatively answered for any assignment market induced by
a nonnegative pairwise profit matrix by the duality theorem
of Egerváry (1931), stated below in our terminology.

Theorem 1 (Egerváry, 1931). For any nonnegative matrix A =
[
aij

]
,

max
Xassignment

∑
ij

aijxij = min
(u;v)acceptable

∑
i

ui +
∑

j

vj.

Having the existence of stable outcomes guaranteed for any
assignment market, from the acceptability and complementarity
conditions one could easily obtain all the well-known structural
results on the set of stable payoff vectors which we summarize
next by reviewing the early fundamental results on this model.

The linear assignment problem of finding a maximum value
assignment and the question of how it can be sustained by a price
system in a decentralized economic setting was formulated and
investigated by Koopmans and Beckmann (1957). They derived
the existence of a stable outcome from the Minkowski–Farkas
lemma for linear inequalities applied to the equivalent linear
programming problem:∑

ij

aijxij → max∑
j∈J

xij ≤ 1 for all i ∈ I∑
i∈I

xij ≤ 1 for all j ∈ J

(1)
xij ≥ 0 for all i ∈ I, j ∈ J.
3

Theorem 2 (Koopmans, Beckmann, 1957). For any square matrix
A =

[
aij

]
, if the identity assignment is of maximum value then

there exists a payoff vector (ui; vj)i,j such that the following linear
conditions hold:

ui + vi = aii for all i ; ui + vj ≥ aij for all i, j. (2)

Conversely, if there exists a payoff vector (ui; vj)i,j satisfying (2) then
the identity assignment is of maximum value.

Moreover, if all matrix entries are nonnegative (positive), also a
nonnegative (positive) such payoff vector exists.

Koopmans and Beckmann (1957), in their informal style, dis-
cuss why the existence of such payoff vector(s) implies that ‘‘an
optimal assignment can be sustained by profit-maximizing agents
in a decentralized market mechanism operating through profit-
maximizing responses’’ (we refer to their paper for details). Gale
(1960) offers a more formal treatment. He shows that for any
optimal solution (ui; vj)i,j of the following LP, that is dual to the
assignment LP (1),∑

i∈I

ui +
∑

j∈J vj → min

ui + vj ≥ aij for all i ∈ I, j ∈ J
ui ≥ 0 for all i ∈ I

vj ≥ 0 for all j ∈ J,

(3)

the price vector (pi = si + ui)i∈I is a competitive equilibrium price
vector in the assignment market

(
I, J, [si]i∈I , [tij]i∈I,j∈J

)
, mean-

ing that there exists an assignment µ such that the following
conditions hold:

pi ≥ si for all i ∈ I
pi = si if i ∈ I is unmatched in µ

µ(j) ∈
{
i ∈ I : tij − pi = maxk∈I∪{i0}{tkj − pk}

}
for all j ∈ J,

where i0 is a ‘‘null object/seller’’ representing the status ‘‘un-
matched’’ for possibly several buyers. The value of this option is
zero to all buyers, while its price is always zero.

Koopmans and Beckmann (1957) also ‘‘register a few straight-
forward yet interesting implications’’ of the inequalities (2) for
the connections between the payoff and the profitability dif-
ferences between buyers (sellers) paired with the same seller
(buyer). Particularly interesting for this paper are the following
ones:

Corollary 1. If the identity assignment is optimal, the following
inequalities hold for any payoff vector (ui; vj)i,j satisfying condi-
tions (2) and for any i, j, k:

aki − aii ≤ uk − ui ; aij − aii ≤ vj − vi.

The first type of inequalities indeed readily come from elim-
nating the payoff vi of buyer i, by subtracting the complemen-
tarity equation ui + vi = aii from the acceptability inequality
uk + vi ≥ aki for the optimally-not-matched (off-diagonal) pair
of buyer i and seller k ̸= i in (2). The second type of inequalities
re obtained analogously.
The third set of fundamental results is due to Shapley and

hubik (1972). Following up the early work of Shapley (1955),
he authors associated a cooperative TU game to an assignment
arket in two steps: first, starting from an assignment market
I, J, [si]i∈I , [tij]i∈I,j∈J

)
, the pairwise profit matrix A =

[
aij ≥]

i∈I,j∈J where aij = max{tij − si, 0} is determined, then second,
related coalitional game, called assignment game, (I ∪ J, wA) is
efined from matrix A on player set N = I ∪ J by the coalitional
unction

A(S) = max
µ∈M(S∩I,S∩J)

∑
aij for all S ⊆ N,
(i,j)∈µ
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here M(S ∩ I, S ∩ J) denotes the set of seller-buyer matchings
n S.

This framework differs from the setting of Koopmans and
eckmann (1957) in two major aspects. First, Shapley and Shubik
1972) start from ‘‘more primitive’’ market data, namely the indi-
idual reservation values of the agents, and derive the potential
roceeds of pairwise cooperation from these information. On the
ther hand, they use the more abstract coalitional game model,
hich allows richer forms of cooperation in larger groups, to
nalyze the incentives of the agents and the prospects of reaching
stable outcome. The possibility of a different number of sellers
nd buyers and the assumed nonnegativity of the pairwise profits
re negligible differences in the two settings. In fact, due to
he nonnegativity of A in the assignment game model, we can
ssume, without loss of generality, that any optimal matching is
complete matching for the ‘‘short side’’ of the set of players, and
y possibly adding ‘‘null agents’’ to the ‘‘short side’’, we can get
n equivalent model with equal number of sellers and buyers.
Shapley and Shubik (1972) investigate the core, the major

olution concept for coalitional games which formalizes stability
f payoff allocations in terms of efficiency for the grand coalition
nd acceptability by all coalitions. Since in assignment game (I ∪

J, wA), we clearly have

• wA(k) = 0 for all k ∈ I ∪ J , and
• wA(ij) = aij for all i ∈ I , j ∈ J ,

the value of any other coalition is equal to the value of one of
its partitions in single-player and mixed-pair sub-coalitions. Thus,
the single-player and mixed-pair coalitions suffice to describe the
core of an assignment game, all other coalitions are inessential.
Since wA(I∪J) =

∑
(i,j)∈µA

wA(ij) with some matching µA ∈ M(I, J)
of maximum value in A, the efficiency condition for the grand
coalition wA(I ∪ J) =

∑
i ui +

∑
j vj can be replaced by the set of

airwise efficiency conditions wA(ij) = ui + vj for all optimally-
matched pairs (i, j) ∈ µA. Therefore, for nonnegative square
matrix A =

[
aij ≥ 0

]
, the core of the associated assignment game

is precisely the set of nonnegative payoff vectors (ui ≥ 0; vj ≥ 0)i,j
satisfying the linear conditions in (2).

We summarize the key results on the core of assignment
games in the following

Theorem 3 (Shapley and Shubik, 1972). In assignment game (I ∪

, wA) induced by nonnegative matrix AI×J ,

• the core is not empty, because it coincides with the nonempty
set of optimal solutions to the dual assignment LP (3), and
also with the set of payoff vectors attained at competitive
equilibrium prices,

• the core has a seller-optimal extreme point where each seller
receives his core maximum payoff and each buyer receives her
core minimum payoff, and similarly, the core has a buyer-
optimal extreme point where each buyer receives her core
maximum payoff and each seller receives his core minimum
payoff.

Although Shapley and Shubik (1972) have not used the con-
ept of stable outcomes in the market, it is clear that any opti-
al assignment X for AI×J combined with any core vector (u, v)
ives a stable outcome (X, (u, v)) in any assignment market with
airwise profit matrix AI×J , and vice versa, any stable outcome
X, (u, v)) for an assignment market with pairwise profit matrix
I×J is a pair of primal–dual optimal solutions to the corre-
ponding assignment LP with objective coefficient matrix AI×J .
enceforth, we can equivalently use the terminology for the two
odels and analyze the core of the assignment game and derive

esults for the underlying assignment market, and vice versa.
 s

4

3. Preview: two-seller, two-buyer markets

In this section, we use a series of closely related markets
with two sellers and two-buyers to illustrate the model and
the structure of the set of stable payoff vectors; then to moti-
vate our questions on the sensitivity of the buyer-optimal, the
seller-optimal, and the fair (the average of the previous two)
competitive equilibrium prices with respect to unilateral changes
in the reservation values; and finally, to foreshadow the general
results. The various markets in the example will also be used to
prove the sharpness of the payoff changes in our main theorem.

Example 1. We consider assignment markets with two sellers
I = {1, 2} and two buyers J = {1′, 2′

}. Each seller i puts a
reservation price si for his object that applies for both buyers, but
a buyer j could set a different willingness to pay value tij for each
of the heterogeneous objects owned by the sellers. From these
reservation values we derive the nonnegative pairwise profits
aij = max{0, tij − si}.

i si
1 20
2 22

tij 1′ 2′

1 26 22
2 26 25

H⇒

aij 1′ 2′

1 6 2
2 4 3

Since the diagonal entries form the (unique) optimal assignment
f value a11+a22 = 9, the set of stable payoffs (ui for sellers and vj
or buyers) is given by the following system of linear constraints
on the left below), that, due to the complementarity equations

1 = 6 − u1 , v2 = 3 − u2 ,

an be equivalently expressed solely in terms of the sellers’
ayoffs (on the right below).

v1 ≥ 0 v2 ≥ 0
0 ≤ u1 u1 + v1 = 6 u1 + v2 ≥ 2

0 ≤ u2 u2 + v1 ≥ 4 u2 + v2 = 3

u1 ≤ 6 u2 ≤ 3
0 ≤ u1 . u1 − u2 ≥ −1
0 ≤ u2 u2 − u1 ≥ −2 .

As remarked after Theorem 3, the set of stable payoff vectors
coincides with the core of the assignment game induced by the
pairwise profit matrix. The pairs of competitive equilibrium prices
(p1, p2), which trigger stable outcomes of the market, correspond
to the pairs of sellers’ core payoffs (u1, u2) by the following
ijective relations:

1 = s1 + u1 , p2 = s2 + u2 ,

here s1 = 20, s2 = 22 are the reservation values of objects
, 2, respectively. In order to emphasize that the set of compet-
tive equilibrium prices is an additively shifted copy of the core
expressed in terms of sellers’ payoffs), we set the origins of the
oordinate axes in the following pictures not to 0, but to the
ctual reservation values, and the scales along the axes indicate
he core payoffs.

Market A) From reservation values
(A) t.1 t.2

s1 = 20+ 6 2
s2 = 22+ 4 3

we

get the set of competitive prices/core payoffs pictured in Fig. 1.
The buyer-optimal core payoffs of the sellers are (u1 = 0; u2 =

), the minimum competitive prices are (p1 = 20+0; p2 = 22+0).
imilarly, the seller-optimal core payoffs are (u1 = 5; u2 = 3),
o the maximum competitive prices are (p = 20 + 5; p =
1 2
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Fig. 2. Price shifts when s1 = 20 + 2 is reported.
0
w
b
p
i
(

(
t
b
t
s
p
m
c
v
h
m
t

d
m
r
w

2 + 3). The fair competitive prices are (p1 = 22.5; p2 = 23.5)
orresponding to the midpont (u1 = 2.5; u2 = 1.5) of the
ongest chord of the core between the two side-optimal corners.
or simplicity, we call it the tau point of the core.
We investigate what is the effect on these three special stable

ayoffs of a ‘‘sufficiently small’’ change in a single reservation
alue. We might think of an allocation mechanism which takes
he reservation values as inputs and produces a stable outcome
f the market, typically consisting of an unique optimal assign-
ent of sellers to buyers and a set of competitive prices. If the
echanism is known to always output a particular one from the
et of competitive price vectors compatible with the reported
eservation prices, the question of strategic manipulation of the
echanism arises.
Naturally, each seller would like to get a higher price for his

bject, to obtain a higher profit. Let us see what happens in our
xample, if seller 1 reports a higher reservation price. Suppose
hat seller 1 increases his reservation price by 2 units to s1 =

0 + 2. Since he makes at least 2 units profit with any of the
uyers, the pairwise profits calculated from the new reservation
alues decrease by 2 for the pairs containing seller 1, and remain
he same otherwise. Thus, the value of any assignment of the
ellers (objects) to buyers decreases by 2, hence the diagonal
ssignment remains the optimal one.

Market B) From the new reported reservation values
(B) t.1 t.2

s1 = 22+ 4 0
s2 = 22+ 4 3

we get the set of competitive prices/core

ayoffs pictured in Fig. 2.
 s

5

The minimum competitive price vector shifted to (p1 = 22 +

; p2 = 22 + 0), so seller 1 could cash in the whole 2 units by
hich he falsified his reservation value, provided all other agents
ehaved honestly. On the other hand, the maximum competitive
rice vector remained (p1 = 25; p2 = 25), seller 1 could not
nfluence that. As a result, the fair competitive prices shifted to
p1 = 22+ 1.5; p2 = 22+ 1.5), so by misreporting, seller 1 could
only gain half of the 2 units by which he unilaterally increased
his reservation value.

Notice that, as the pairwise profits decreased, the core shrinked
(to the darker shaded triangle), and the u1 profit scale has changed
to the one below the original scale). In terms of these new values,
he buyer-optimal corner of the core remained (u1 = 0; u2 = 0),
ut the seller-optimal corner became (u1 = 3; u2 = 3), thus
he tau point is now (u1 = 1.5; u2 = 1.5). Therefore, seller 1
eemingly did not profit anything if the minimum competitive
rices are determined, and even lost 2 units of his profit at the
aximum competitive prices, hence lost 1 unit when the fair
ompetitive prices are applied. Compared to his true reservation
alues, however, he actually increased his profit by 2 units, kept
is profit, and increased his profit by 1 unit at the minimum, the
aximum, and the fair competitive prices, respectively, due to

he fact, that he already ‘‘secured’’ 2 units profit by misreporting.
In this situation, only seller 1 benefited from his unilateral

eviation from true reporting, at the expense of his optimally
atched partner, buyer 1’. The determined price for object 2

emained the same for all three special competitive price rules
e discuss, hence the profits of seller 2 and buyer 2’ stayed the

ame. It is clear from the picture, however, that this will change
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Fig. 3. Price shifts when s1 = 20 + 2 + 1 is reported.
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f seller 1 further increases his reservation value, it will influence
ther agents’ profit, too.
Suppose that seller 1 further increases his reservation value

y 1 unit to s1 = 20 + 3. Now only the pairwise profit which he
can make with buyer 1’ decreases by 1, but the profitability of his
partnership with buyer 2’ cannot decrease as it was already 0. The
unique optimal assignment, however, still remains the diagonal
one, although the difference in the values of the best and the
second best assignments decreased by 1, from 3 = (4+3)−(0+4)
o 2 = (3 + 3) − (0 + 4).

(Market C) From the new reported reservation values
(C) t.1 t.2

s1 = 23+ 3 0
s2 = 22+ 4 3

we get the set of competitive prices/core

ayoffs pictured in Fig. 3.
The new minimum competitive price vector is (p1 = 23 +

; p2 = 22 + 1). Notice that, unlike in the previous case, seller
’s misreporting also helped seller 2 as his minimum competitive
rice also increased by 1 unit to p2 = 23. Since the maximum
ompetitive price vector remained (p1 = 25; p2 = 25), the
ew fair competitive prices are (p1 = 23 + 1; p2 = 22 + 2),
he unilateral 1 unit increase in s1 caused the same 1/2 units
ncrease in both fair competitive prices. In terms of the core
ayoffs, the nominal changes are different. Seller 1’s core payoff
emained zero at the buyer-optimal corner, decreased by 1 unit
t the seller-optimal corner, and decreased by 1/2 units at the
au point. To get the changes in his net profit, however, the 1
nit he ‘‘secured’’ by misreporting must be added. On the other
and, seller 2’s core payoff increased by 1 unit at the buyer-
ptimal corner, remained the same at the seller-optimal corner,
nd increased by 1/2 units at the tau point. In his case, these
re precisely the net profit changes. Naturally, the changes in the
rofits of the buyers are precisely the opposite of the changes in
he profits of their optimally matched partners.

It is clear from the picture, that for each agent we would
bserve the same change in his/her profit, if seller 1 further
ncreased his reservation price by 1 unit to s1 = 20+4, or by 1+1
nits to s1 = 20 + 5, but all other agents continued to behave
onestly. In the latter case, the set of competitive prices shrinks
o the singleton containing only the maximum competitive price
ector (p1 = 25; p2 = 25).

Markets D, E) Now let us summarize how seller 2 can influ-
nce the three special competitive prices we consider, provided
he other agents report truthfully. The range for possible increase
n s without pricing seller 2 out from the market consists of two
2

6

egments in which the price changes are linear: from 0 to 1, then
rom 1 to 3 (the maximum core payoff to seller 2). Along the
equence of reported reservation values

(A) t.1 t.2
s1 = 20+ 6 2
s2 = 22+ 4 3

(D) t.1 t.2
s1 = 20+ 6 2
s2 = 23+ 3 2

(E) t.1 t.2
s1 = 20+ 6 2
s2 = 25+ 1 0

we get the accordingly shrinking set of competitive prices/core
payoffs pictured in Fig. 4.

(Markets F, G, H) Now let us see how buyer 1 can influence
the three special competitive price vectors we consider, provided
the other agents report truthfully. Suppose she misreports both
of her reservation prices that are decreased by the same amount.
It can range from 0 to 6 (the maximum core payoff to buyer 1’)
without her losing the possibility to buy something. Notice that,
unlike for the other three agents, the minimum core payoff to
buyer 1’ is positive, namely 1 = 26 − 25. It follows from v2 ≥ 0
nd inequality v1−v2 ≥ a21−a22 = 4−3 = 1 stated in Corollary 1,
hat in turn comes by subtracting the complementarity equality
2 + v2 = a22 from the stability inequality u2 + v1 ≥ a21. Thus, if
uyer 1’ misreports her reservation value downward by not more
han 1 unit, nothing happens to the set of competitive prices, so
he cannot even decrease the highest price p1 = 25 of object
she is going to obtain. The range when buyer 1’ can influence

he competitive prices consists of two segments in which the
rice changes are linear: from 1 to 4, then from 4 to 6. Along
he sequence of reported reservation values

(A)∥∥(F) t.1 t.2
s1 = 20+ 6 2
s2 = 22+ 4 3

t.1 t.2
5 2
3 3

(G) t.1 t.2
s1 = 20+ 2 2
s2 = 22+ 0 3

(H) t.1 t.2
s1 = 20+ 0 2
s2 = 22+ 0 3

we get the accordingly shrinking set of competitive prices/core
payoffs pictured in Fig. 5.

Notice that in market (G), similarly to markets (B) and (D), the
optimally matched partner (seller 1) of the misreporting agent
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Fig. 4. Price shifts when s2 = 22 + 1 + 2 is reported.
Fig. 5. Price shifts when t ′.1 = t.1 − 1 − 3 − 2 is reported.
buyer 1′) has two equally profitable partnerships (seller 1 could
ake 2 units profit with buyer 2′ too). This indifference causes

he same change in the price of the object in the alternative
rading pair (p2 decreases precisely as p1 does) as long as the
ptimal assignment of objects/sellers and buyers does not change.

. Extreme core payoffs for sellers

In this section we give a graph-theoretic characterization of
he minimum and the maximum competitive price vectors. It will
e our key tool in studying the sensitivity of these two extreme
oints of the set of competitive prices in the next section. Since
e use the same directed graph for all assignment markets with
he same matrix of pairwise profits, it will be more convenient to
se the equivalent game setting and characterize the two side-
ptimal core payoff vectors of the associated assignment game.
s the section title shows, we opted to describe the core in terms
f the sellers’ payoffs.
The strong connection between the minimum/maximum com-

etitive equilibrium price vectors in two-sided matching markets
nd shortest path optimization problems in appropriately defined
rc-weighted directed graphs are explored in several papers,
ee e.g. Mishra and Talman (2010) for the transferable utility
ase (our setting), and Caplin and Leahy (2014) for the non-
ransferable utility model discussed in Demange and Gale (1985).
losest to our (self-contained) presentation, however, is the tech-
ique used in the assignment nucleolus algorithm (Solymosi and
7

Raghavan, 1994) to find the direction where e.g. the buyer-
optimal vertex of the core moves when the pairwise acceptability
constraints are strengthened. In fact, our graph-theoretic refor-
mulation of finding the minimum competitive equilibrium price
vector is basically the optimization problem to be solved in the
first iteration of that assignment nucleolus algorithm.

If there are more sellers (buyers) than buyers (sellers) we can
add dummy buyers (sellers) to equalize the number of agents on
the two sides of the market. Partnership with a dummy agent is
worthless, so in such cases we make the valuation matrices and
the induced pairwise profit matrix a square matrix by adding zero
columns or rows. In the corresponding assignment game model
this means introducing null players of the appropriate type. It
is well known that the core satisfies the null player property,
meaning that at any core allocation of the augmented assignment
game, all null players receive zero payoff.

In order to obtain a unified notation, we introduce a fictitious
row player and a fictitious column player, and consider a single-
player coalition as a fictitious mixed-pair coalition consisting of
the ‘real’ player and the fictitious one of the other type. Moreover,
we identify the mixed-pair coalitions with the ordered pairs
of the two players, always the row player written first. More
formally, (i, j) denotes the ‘real’ mixed-pair coalition {i, j}, i ∈ I ,
j ∈ J; we write (i, 0) for single-player coalition {i}, i ∈ I , and (0, j)
for {j}, j ∈ J; finally, (0, 0) denotes the coalition of the fictitious
row and column players. To obtain a unified treatment of these

coalitions in the description of the core, we augment the original
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square) profit matrix with entries ai0 = 0 for all i ∈ I , also
a0j = 0 for all j ∈ J , finally a00 = 0. Since the type of the players
is determined by their positions in the ordered pairs, it will be
convenient to use a common set M0 = {0, 1, 2, . . . ,m} of indices,
wherem = |I| = |J|. The set of indices for the ‘real’ row or column
players is M = {1, 2, . . . ,m}.

Given an augmented (square) pairwise profit matrix AM0×M0 ,
we build a complete, simple digraph Gu(A), called the reference
graph for sellers, with node set M0 and arcs (i, k), i, k ∈ M0, i ̸= k,
of length

dik :=

{ aki − aii for i, k ∈ M
0 − aii for i ∈ M, k = 0
0 − 0 for i = 0, k ∈ M

}
.

For illustration, below we show a 3 × 3 pairwise profit matrix,
its augmented 4 × 4 version with the fictitious row and column
players, and the derived matrix of arc lengths which induces a
complete, simple digraph on node set M0 = {0, 1, 2, 3} called the
sellers’ reference graph:

7 1 4
8 6 7
5 0 3

augmented:

0 0 0 0
0 7 1 4
0 8 6 7
0 5 0 3

arc lengths:

. −7 −6 −3
0 . −5 +1
0 +1 . +4
0 −2 −6 .

reference graph for sellers:
0

1

2

3

0

0

0

1

-2 -6

-7

-5

-6

4

1

-3

In the complete and simple (i.e. without loop arcs and parallel
rcs) digraph Gu(A) there is a unique arc from any node to any
ifferent node, hence any sequence of nodes defines a walk from
he node listed first to the node listed last. The walk is said to be
losed if the first and last nodes in the sequence are the same.
f only the first and last nodes are the same in the sequence,
he closed walk is called a cycle. If no node appears twice in the
equence, the walk is called a path from the node listed first to
he node listed last. Notice that any path and any cycle contains
t least two different nodes. The length of a walk/path/cycle is the
um of the lengths of the arcs in the walk/path/cycle.
A feature of the associated reference digraph that is crucial for

he efficient computation of the side-optimal core payoff vectors
s explained next.

roposition 3. The digraph Gu(A) associated to matrix A contains
no cycle of positive length if and only if the diagonal assignment is
of maximum value in A.

Proof. Sufficiency. Let the diagonal assignment be of maximum
value in A, but suppose that a cycle (i1, i2), . . . , (ik, i1) in Gu(A)
has positive length. Then, with i = i , we get

∑k d =
k+1 1 h=1 ih ih+1

8

∑k
h=1 aih ih+1 −

∑k
h=1 aih ih > 0, a contradiction to the optimality of

the diagonal assignment.
Necessity. Take any bijection π : M0 → M0. Let M0 =

M1 ∪ · · · ∪ Mp, p ≥ 1, be the finest partition of M0 induced
by π , that is Mr ⊆ M0 is a smallest (for inclusion) subset of
M0 for which π (Mr ) = Mr holds for every r = 1, . . . , p. For
any r ∈ {1, . . . , p}, if |Mr | = k ≥ 2 then it can be written
as Mr = {i = π0(i), π (i), . . . , π k−1(i)} with any i ∈ Mr , and it
defines the cycle (i, π (i)), (π (i), π2(i)), . . ., (π k−1(i), π k(i1) = i)
in Gu(A). The length of any cycle is assumed to be nonpositive,
so

∑k−1
h=0 dπh(i)πh+1(i) =

∑k−1
h=0 aπh+1(i)πh(i) −

∑k−1
h=0 aπh(i)πh(i) ≤ 0.

Summing up these inequalities for all r ∈ {1, . . . , p} with |Mr | ≥

2 and the equalities aπ (i) i − aii = 0 for any singleton Mr = {i}
gives

∑
i∈M0

aπ (i) i −
∑

i∈M0
aii ≤ 0. Thus, the diagonal assignment

is of maximum value in matrix A. □

Notice that the digraph Gu(A) contains a cycle of zero length if
and only if the diagonal is not the only maximum-value assign-
ment in A.

In the sequel we assume that the rows and columns of the
augmented (square) profit matrix are arranged such that the
diagonal assignment {(i, i) : i ∈ M0} is of maximum value,
i.e. wA(I ∪ J) =

∑m
i=1 aii, because, by definition, a00 = 0.

Equivalently, the reference digraph for sellers Gu(A) contains no
cycle of positive length.

Leaving out a cycle (i.e. a subsequence between consecutive
repetitions of some node) from a walk can only increase the
length of the shortend walk. Thus, for any walk from a node i
to a distinct node j ̸= i there exists an at least as long path from
i to j. As the number of i ⇝ j paths are finite, for any two distinct
nodes i, j ∈ M0 there exists a longest i ⇝ j path (or paths) and the
length of this longest path(s) is an upper bound for the length of
any walk from i to j. Notice that the length of any closed walk is
also nonpositive, as its set of arcs is the union of the arc sets of
the cycles the closed walk is composed of.

It follows from the above discussion that for any node k ∈ M ,
the following numbers are well defined.

• αk := maximum length of 0 ⇝ k paths,
• βk := maximum length of k ⇝ 0 paths.

Proposition 4. For any k ∈ M, the following inequalities hold:

0 ≤ αk ≤ akk, −akk ≤ βk ≤ 0, αk + βk ≤ 0.

Moreover, the lower bounds are always attained, i.e. αi = 0 for some
i ∈ M and βj = −ajj for some j ∈ M.

Proof. Since arc 0 → k of length d0k = 0 is one of the 0 ⇝ k
paths, αk ≥ 0 follows for any k ∈ M . Arc 0 → k followed by a
longest k ⇝ 0 path forms a cycle of length d0k +βk = 0+βk ≤ 0,
thus βk ≤ 0 for any k ∈ M .

Similarly, arc k → 0 of length dk0 = −akk is one of the k ⇝ 0
paths, thus −akk ≤ βk for any k ∈ M . Arc k → 0 followed by a
longest 0 ⇝ k path forms a cycle of length dk0+αk = −akk+αk ≤

0, thus αk ≤ akk for any k ∈ M .
Inequality αk + βk ≤ 0 comes from the nonpositive length of

the closed walk composed of a longest 0 ⇝ k path and a longest
k ⇝ 0 path.

To see that the two lower bounds are sharp, take an arbitrary
k ∈ M . The first arc, say 0 → i, of a longest 0 ⇝ k path, and
the last arc, say j → 0, of a longest k ⇝ 0 path are themselves
longest 0 ⇝ i and j ⇝ 0 paths, respectively, for any subpath of
a longest path must be a longest path from the first node to the
last node of the subpath. Thus, αi = d0i = 0 for some i ∈ M and

βj = dj0 = −ajj for some j ∈ M . □



T. Solymosi Mathematical Social Sciences 126 (2023) 1–12

f

d

·

t

p
T
i
f
u
c
p
c
α

w

t
d
−

a
v

f
(

w

i

I
m
t

p
t
(
m
w
m

5

p
p
p
b
t
a
s
a

Next we establish the link between the lengths of certain
longest reference paths and the minimum and maximum core
payoffs to the sellers.

Lemma 1. For any seller k ∈ M,

• αk = uk (= the minimum core payoff to seller k ̸= 0),
• −βk = u k (= the maximum core payoff to seller k ̸= 0).

Moreover, ui = 0 (vi = aii) for some i ∈ M; and uj = ajj (vj = 0)
or some j ∈ M.

Proof. First, we show that αk ≤ uk. Since, by our assumption, the
diagonal (identity) assignment is maximal, all core payoff vectors
(u; v) satisfy uk + vi ≥ aki and ui + vi = aii for any i ̸= k. By
subtracting the second from the first, we get uk − ui ≥ aki − aii =

ik for all core payoffs to sellers i ̸= k. In particular, with i = 0,
uk ≥ 0 for any seller k. Applied to the buyer-optimal core payoff
vector (u, v), we get that uk−ui ≥ aki−aii = dik for any pair i ̸= k
of sellers. Take a longest 0 ⇝ k path (0, i1), (i1, i2), . . ., (ih, k). We
have αk = d0i1 + di1 i2 + · · · + dihk ≤ (ui1

− u0) + (ui2
− ui1

) +

· · + (uk − uih
) = −u0 + uk = uk by recalling that the payoff to

he fictitious row player is u0 = 0 in any core allocation.
Second, we show that αk ≥ uk. To this end, we define the

ayoff vector (u; v) by ui = αi and vi = aii − αi for any i ∈ M .
he inequality αk ≥ uk readily follows if we prove that (u; v) is
n the core. The ui ≥ 0 and vi ≥ 0 (i ∈ M) core conditions come
rom the inequalities 0 ≤ αi ≤ aii of Proposition 4. By definition,
i + vi = aii for any i ∈ M . The remaining ui + vj ≥ aij (i ̸= j) core
onditions also hold, because the composition of a longest 0 ⇝ j
ath and the arc j → i is a walk from 0 to i of length αj + dji that
annot be greater than the length αi of a longest 0 ⇝ i path, thus
i − αj ≥ dji = aij − ajj, implying the claimed ui + vj ≥ aij.
Third, we show that βk ≤ −uk. Similarly to our first argument,

e take the seller-optimal core payoff vector (u, v), and get that
uk − ui ≥ aki − aii = dik for any pair i ̸= k of sellers. Applied
o a longest k ⇝ 0 path (k, i1), (i1, i2), . . ., (ih, 0), we have βk =

ki1 +di1 i2 +· · ·+dih0 ≤ (ui1 −uk)+ (ui2 −ui1 )+· · ·+ (u0 −uih ) =

uk + u0 = −uk by recalling that u0 = 0 in any core allocation.
Fourth, we show that βk ≥ −uk. Similarly to our second

rgument, we define the payoff vector (u; v) by ui = −βi and
i = aii + βi for any i ∈ M . The inequality βk ≥ −uk readily
ollows if we prove that (u; v) is in the core. The ui ≥ 0 and vi ≥ 0
i ∈ M) core conditions come from the inequalities −aii ≤ βi ≤ 0
of Proposition 4. By definition, ui + vi = aii for any i ∈ M . The
remaining ui + vj ≥ aij (i ̸= j) core conditions also hold, because
the composition of the arc j → i and a longest i ⇝ 0 path is a
alk from j to 0 of length dji +βi that cannot be greater than the

length βj of a longest j ⇝ 0 path, thus βj − βi ≥ dji = aij − ajj,
mplying the claimed ui + vj ≥ aij.

To see that both theoretical bounds on the core payoffs to
sellers are attained for some sellers, recall from Proposition 4 that
always exists some i ∈ M with αi = 0, and some j ∈ M with
−βj = ajj. The analogous statements for the buyers come from the
complementarity equations for the optimally-matched pairs. □

For illustration, let us revisit our 3 × 3 example. Here all
longest paths from node 0 to the other nodes are unique, hence
their arcs form a directed tree, called the tree of longest paths,
rooted in node 0 (on the left below). Similarly, all longest paths
to node 0 from each of the other nodes are unique, hence their
arcs form a reversely directed tree whose sink is node 0 (on the
right below). From the lengths of all these longest paths we obtain
the minimum and the maximum core payoffs to each seller, and
from the pairwise efficiency equations, the maximum and the
minimum core payoffs to their optimally-matched buyers.
9

tree of longest 0 ⇝ k paths: tree of longest k ⇝ 0 paths:
0

1

2

3
0

4

1

0

1

2

3
-2

-6

4

Core min u = (1, 4, 0) = α Core max u = (4, 6, 2) = −β

The buyer-optimal corner of the core is (u; v) = (1, 4, 0; 6,
2, 3), while the seller-optimal corner is (u; v) = (4, 6, 2; 3, 0, 1).
n this example, only seller 3 and buyer 2 receive the theoretical
inimum 0 payoff in the core, thus their respective partners get

he full profit of what they can achieve together.
We remark that the vectors (αk)k∈M and (βk)k∈M of maximum

ath lengths from and to node 0 can be computed in polynomial
ime. Among the various available approaches which can be used
with more or less the same computational efficiency), we only
ention two methods (without giving any algorithmic details)
hich we find particularly close to our discussion. Namely the
ethod of

• Floyd (1962) and Warshall (1962) which determines the
longest paths between all pairs of nodes in an arc-weighted
directed graph;

• Solymosi and Raghavan (1994) which determines the path
traversed by the minimum corner of ε-core boxes as ε

increases, starting at the minimum corner of the imputation
box (when, typically, ε < 0), passing through the minimum
corner of the core (when ε = 0), all the way to nucleolus
point (when, typically, ε > 0).

. Sensitivity of the side-optimal and the fair payoffs

Thompson (1981) suggested to use the fair prices, the sim-
le average of the seller-optimal prices and the buyer-optimal
rices. Núñez and Rafels (2002) proved that the tau-value, a
oint-valued solution concept for coalitional games introduced
y Tijs (1981), of the corresponding assignment game is precisely
he vector of payoffs to the agents obtained when the objects
re sold at the fair prices. We denote the fair (tau) payoffs to
ellers and buyers by ũ and ṽ, respectively, that is, ũi =

ui+ui
2

nd ṽi =
vi+vi

2 for i ∈ M0. Obviously, ũ0 = ṽ0 = 0.
We show that every seller can unilaterally manipulate to his

advantage the fair prices by increasing his reservation value. On
the other hand, the amount a seller can gain by misreporting
his reservation value cannot exceed the half of the amount of
manipulation (i.e. the difference between the reported and the
true reservation values), provided that amount is not more than
the maximum core payoff to this seller.

We denote by x+
= max{x, 0} the positive part of x ∈ R, and

by x ∧ y = min{x, y} the minimum of x, y ∈ R.

Theorem 4. Let seller k ∈ M increase his reservation value by
0 ≤ c ≤ uk, but let all other agents keep their original valuations, so
the new pairwise profits (including those with the fictitious players)
become

a′

kj = (akj − c)+ for all j ∈ M0, a′

ij = aij for all i, j ∈ M0, i ̸= k.

Then

1. the optimal assignment of sellers and buyers remains optimal
in the new setting;
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2. u′

k =
(
uk − c

)+
= uk − (c∧uk) for the minimum core payoff

to seller k, and
ui ≤ u′

i ≤ ui + c for the minimum core payoff to any other
seller i ∈ M, i ̸= k;

3. u′

k = uk − c for the maximum core payoff to seller k, and
u′

i = ui for the maximum core payoff to any other seller
i ∈ M, i ̸= k;

4. Consequently, ũ′

k = ũk −
c + (c ∧ uk)

2
for the fair payoff to

seller k, and
ũi ≤ ũ′

i ≤ ũi +
c
2 for the fair payoff to any other seller i ∈ M,

i ̸= k.

oreover, all bounds are sharp in Claims 2 and 4.

roof. First of all, let us see how the arc lengths in the cor-
esponding reference digraph change if seller k increases his
eservation value by 0 ≤ c ≤ uk, but all other valuations remain
the same. In the new pairwise profit matrix, a′

kj = (akj − c)+ =

kj − (akj ∧c) for all j ∈ M0, in particular, a′

k0 = 0 and a′

kk = akk −c
since 0 ≤ c ≤ uk ≤ akk); and a′

ij = aij for all i, j ∈ M0 i ̸= k. We
get for the lengths of the

• outgoing arcs from node k: d′

kj = dkj+c for all j ∈ M0, j ̸= k,
because of a′

jk = ajk for all j ∈ M0, j ̸= k, and a′

kk = akk − c;
• incoming arcs to node k: djk ≥ d′

jk = djk − (akj ∧c) ≥ djk −c
for all j ∈ M0, j ̸= k, because of akj ≥ a′

kj = akj − (akj ∧ c) ≥

akj − c and a′

jj = ajj for all j ∈ M0, j ̸= k;
• any other arc: d′

ji = dji for all i ̸= j ∈ M0, i, j ̸= k, because
of a′

ij = aij and a′

ii = aii for all i, j ∈ M0, i ̸= j.

To see Claim 1, recall from Proposition 3 that the optimal-
ity of the original (diagonal) assignment is equivalent to the
non-existence of a cycle of positive length in the corresponding
reference digraph. If seller k ∈ M increases his reservation value
by 0 ≤ c ≤ uk, only the lengths of the outgoing and the incoming
arcs incident to node k change, hence only the lengths of the
ycles which contain node k can change. Take such a cycle that
it is composed of the arc k → j, some path j ⇝ i, and the arc

→ k with some k ̸= i, j ∈ M (maybe with i = j). The length
f this cycle is (ajk − akk) + ℓ(j ⇝ i) + (aki − aii), that changes
recisely as the difference aki − akk does, because only these two
erms are in the kth row of the matrix. In case of c ≤ aki, we
et a′

ki − a′

kk = (aki − c) − (akk − c) = aki − akk, so the length of
he cycle remains the same nonpositive value. If c ≥ aki, we get
′

ki − a′

kk = 0 − (akk − c) = aki − akk + (c − aki), so the length
f the cycle increases by c − aki. However, for the length of this
ycle we have ℓ(k → j ⇝ i → k) = ℓ(k → j ⇝ i → 0) + aki ≤

k + aki ≤ −c + aki, since the sequence k → j ⇝ i → 0 is an
⇝ 0 path and βk = −uk ≤ −c . Thus, even the increased length

of our cycle remains nonpositive in the new setting, ℓ′(k → j ⇝
i → k) = ℓ(k → j ⇝ i → k) + c − aki ≤ −c + aki + c − aki = 0.

In Claim 2, equation u′

k = uk − (c∧uk) for the misrepresenting
eller can be seen as follows. In case of uk = 0, arc 0 → k is
a longest 0 ⇝ k path whose length remains 0 also in the new
setting. Since the length of any other incoming arc to node k can
nly decrease, the nonpositive length of any other 0 ⇝ k path can
nly decrease. Thus, arc 0 → k remains a longest path also in the
ew setting, implying u′

k = 0 = 0−(c∧0) for c ≥ 0. On the other
hand, in case of uk > 0, any longest 0 ⇝ k path must be of the
orm 0 ⇝ i → k consisting of a longest 0 ⇝ i path to some node
i ̸= k, i ∈ M and the arc i → k. Thus, we have uk = ui − aii + aki,
mplying uk ≤ aki because of ui ≤ aii. If c ≤ uk, the length of our
ath 0 ⇝ i → k decreases by c ∧ aki = c down to uk − c ≥ 0. To
ee that this is the length of the longest 0 ⇝ k path(s) in the new
etting, take any path of the form 0 ⇝ j → k with some node
̸= i, k, j ∈ M . Its length is at most u − a + a originally, and
j jj kj
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decreases by c ∧ akj. Since uj ≤ ajj, the decreased length can only
be positive if akj − (c ∧ akj) is positive, so akj > c , implying that
n the new setting the length of the path 0 ⇝ j → k is at most
j−ajj+akj−c ≤ uk−c. Therefore, we get u′

k = uk−c = uk−(c∧uk)
also in case of uk > 0 and c ≤ uk. The previous argument also tells
that, even if originally positive, the length of any path of the form
0 ⇝ j → k with some node j ̸= k, j ∈ M , becomes nonpositive if
c ≥ uk, implying u′

k = 0 = uk − (c ∧ uk) also in this subcase, and
making the proof of the equation for the misrepresenting seller
complete.

In Claim 2, the inequalities ui ≤ u′

i ≤ ui + c for any other
seller i ∈ M , i ̸= k follow from Lemma 1 once we show that the
maximum length αi of the 0 ⇝ i paths can only increase, but by
o more than c . To this end, take a 0 ⇝ i path arbitrarily. If it

contains no arc incident to node k, its length remains unchanged.
Otherwise, the path contains exactly one outgoing arc from node
k whose length increases by c , exactly one incoming arc to node k
hose length decreases by at most c , and some other arcs whose

engths remain unchanged, so the length of the path can only
ncrease by at most c. In any case, the length of a 0 ⇝ i path
an only increase, but by no more than c , thus, αi ≤ α′

i ≤ αi + c.
Claim 3 also follows from Lemma 1 once we show that the

aximum length βk of the k ⇝ 0 paths increases by exactly
c , however, for i ̸= k, the maximum length βi of the i ⇝ 0
paths does not change. Since any k ⇝ 0 path consists of exactly
one outgoing arc from node k whose length increases by c and
some other arcs whose lengths remain unchanged, we readily get
β ′

k = βk + c. For any other node i ̸= k, the i ⇝ 0 paths are of
two distinct types: those which do not go through node k and
those which contain node k. The maximum length of the i ⇝ 0
paths is clearly the maximum of the maximum lengths of the
paths in these two classes. We show that for either type of paths
the maximum length remains unchanged, implying β ′

i = βi for
i ̸= k. In case an i ⇝ 0 path contains no arc incident to node
k, its length is left unchanged, so does the maximum of these
path lengths. In case an i ⇝ 0 path contains one incoming arc
to node k (its length decreases by at most c) and one outgoing
arc from k (its length increases by c), and some other arcs (with
unchanged lengths), the path length can only increase, but by at
most c . We argue that, even if it increases, the length of such
a path remains at most βi. To see this, take a path of the form
i ⇝ p → k ⇝ 0 with some p ∈ M , p ̸= k, but node p might be
node i. Its length is ℓ(i ⇝ p) − app + akp + ℓ(k ⇝ 0), that will
change by c − (c ∧ akp). Thus, the length of this path does not
change if c ≤ akp. On the other hand, if c ≥ akp, the length of this
ath increases to ℓ(i ⇝ p) − app + akp + ℓ(k ⇝ 0) + c − akp that
s at most ℓ(i ⇝ p) − app, because of ℓ(k ⇝ 0) ≤ βk = −uk ≤ −c.
Since ℓ(i ⇝ p)− app is precisely the length of the path i ⇝ p → 0
which does not visit node k, it is at most βi in both settings. We
get that the maximum length of either type of i ⇝ 0 paths does
not decrease but does not exceed βi either, implying β ′

i = βi.
The inequalities in Claim 4 come from averaging the corre-

sponding inequalities in Claim 2 and equations in Claim 3.
Finally, we show the sharpness of the bounds in Claims 2 and

4 by the markets discussed in Example 1 (Section 3).

• Fig. 2 shows a situation where seller k = 1 increases his
reservation value by c = 2 ≤ 5 = u1. It exceeds his
minimum core payoff uk = 0, and his minimum core payoff
indeed remains u′

k = (0− 2)+ = 0, illustrating the equation
for the misreporting seller in Claim 2. Since, by Claim 3,
his maximum core payoff decreases by c = 2 (indeed,
u′

k = 3 = 5 − 2 = uk − c), his fair payoff decreases to
ũ′

k =
3
2 =

5
2 −

2+(2∧0)
2 , as prescribed by the equation for

the misreporting seller in Claim 4. In the same situation, the
honestly reporting other seller i = 2 notices no change in his
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minimum core payoff, u′

i = 0 = ui, proving the sharpness
of the corresponding lower bound in Claim 2. His maximum
core payoff is also left unchanged, u′

i = 3 = ui, as prescribed
by Claim 3 in general. Thus, seller 2’s fair payoff remains
ũ′

i =
3
2 = ũi, which shows the sharpness of the lower bound

in Claim 4 for an truthfully reporting seller.
• The second situation pictured in Fig. 3 shows the sharpness

of two other bounds. Assume that s1 = 22 is the true
reservation value of seller k = 1 that he increases by c =

1 ≤ 3 = u1. The pattern of changes in his payoffs are
exactly the same as in the previous case. The minimum core
payoff of the honestly reporting other seller i = 2, however,
increases by the maximum prescribed amount, u′

i = 1 =

0 + 1 = ui + c , proving the sharpness of the corresponding
upper bound in Claim 2. Since, as always, his maximum
core payoff remains the same, u′

i = 3 = ui, seller 2’s fair
payoff also increases by the maximum prescribed amount,
ũ′

i = 2 =
3
2 +

1
2 = ũi+

c
2 , proving the sharpness of the upper

bound in Claim 4 for the honestly reporting seller. □

We remark that the first situation pictured in Fig. 5 illus-
rates the other case for the misreporting player in Claims 2 and
, namely when both the minimum and the fair core payoffs
ecrease by exactly c because c does not exceed the positive
inimum core payoff. The misreporting player k is buyer 1 now,
he decreases both of her true valuations by the same amount
= 1, inducing a shift in her core payoff scale (from v1 to v′

1 in
he figure). Her minimum core payoff decreases by the prescribed
aximum amount c = 1 from vk = 1 to v′

k = 0, illustrating the
quation in Claim 2. Since, by Claim 3, her maximum core payoff
ecreases by c = 1 (indeed, v′

k = 5 = 6 − 1 = vk − c), the
change in her fair payoffs, ṽ′

k =
5
2 =

7
2 − 1 = ṽk − c , illustrates

he equation in Claim 4 for the misreporting player. Notice that in
his situation all three core payoffs remained unchanged for the
onestly reporting buyer i = 2.
By translating the set of sellers’ core payoff vectors (ui)i∈M in

he assignment game to the set of competitive equilibrium price
ectors (pi)i∈M in the underlying market via the bijective relations
i = si + ui for all sellers i ∈ M , where si (i ∈ M) is the true
eservation value of seller i ∈ M , we readily get the following
orollary of Theorem 4. Notice that pi = si + ui simplifies to
i = si +0 for any seller i ∈ M who is optimally not matched to a
‘real’’ buyer, thus is matched to a ‘‘null’’ buyer in our ‘‘squared’’
odel.
Let pi denote the maximum, p

i
denote the minimum, and p̃i

enote the fair competitive equilibrium price of object i ∈ M .

orollary 2. Let seller k ∈ M increase his reservation value by
≤ c ≤ pk−sk, but let all other agents keep their original valuations,
o the new reservation values are s′k = sk+c, but s′i = si and t ′ij = tij
for all i, j ∈ M. Then

1. the optimal assignment of objects to buyers remains optimal
in the new setting;

2. p′

k
= p

k
+ (s′k − p

k
)+ for the new minimum competitive

price p′

k
of object k; p

i
≤ p′

i
≤ p

i
+ c for the new minimum

competitive price p′

i
of object i for all other i ∈ M, i ̸= k;

3. p′

i = pi for the new maximum competitive price p′

i of object
i for all i ∈ M;

4. Consequently, p̃′

k = p̃k +
(s′k−pk)

+

2 for the new fair competitive
price p̃′

k of object k; p̃i ≤ p̃′

i ≤ p̃i +
c
2 for the new fair

competitive price p̃′

i of object i for all other i ∈ M, i ̸= k.

oreover, all bounds are sharp in Claims 2 and 4.

Notice that under the assumptions of Corollary 2, the sharp
rice bounds in Claims 2 and 4 also apply for object k, that is,
≤ p′

≤ p + c and p̃ ≤ p̃′
≤ p̃ +

c hold.

k k k k k k 2
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Fig. 6. The minimum, maximum, and fair price functions for seller k.

Fig. 6 illustrates (in terms of the true values) the exact func-
tional relations between the reported reservation value s′k of
seller k and the minimum p′

k
, the maximum p′

k, and the fair p̃′

k
competitive prices the mechanism determines for object k (from
the reported values).

For the truthfully reporting sellers the three price functions
are also monotone nondecreasing and piecewise linear, but a
general formula can be given only for the maximum competitive
price functions: all of them are constant, just like for the mis-
reporting seller (Corollary 2, Claim 3). From the above proofs it
is not difficult to conclude that the minimum competitive price
functions are built up from constant and 45 degree line pieces,
just like for the misreporting seller, but various patterns can
arise. For example, the minimum price p′

i
(s′k) for seller i ̸= k

ould constantly remain p
i
over the domain sk ≤ s′k ≤ pk, or

ould become constant after an increasing (1-sloped) segment.
urthermore, the highest minimum price determined from the
eported valuations might stay below the maximum competitive
rice, that is p′

i
(pk) < pi can happen, unlike for the misreporting

seller. Naturally, the same observations can be made for the fair
price function p̃′

i(s
′

k) for seller i ̸= k over sk ≤ s′k ≤ pk, with the
difference that any 45-degree line segment must be replaced by
a line segment of slope 1/2.

6. Concluding remarks

We considered assignment markets and investigated the sen-
sitivity of the minimum, the maximum, and the fair competitive
equilibrium prices with respect to changes in the valuation(s) of
an agent. We found that, by increasing his reservation value, each
seller can increase the minimum and the fair competitive equi-
librium prices, but cannot influence the maximum competitive
equilibrium prices. Analogously, by decreasing her reservation
values by the same amount, each buyer can decrease the max-
imum and the fair competitive equilibrium prices, but cannot
influence the minimum competitive equilibrium prices.

Moreover, we established sharp upper bounds for the ex-
tent these competitive equilibrium prices could be influenced by
unilateral changes. The minimum competitive equilibrium prices
could even increase by the same amount as the particular seller’s
reservation value. Analogously, the maximum competitive equi-
librium prices could even decrease by the same amount as the
particular buyer’s reservation values. The fair competitive equi-
librium prices, however, could only increase/decrease by at most
half of the amount the particular seller/buyer increases/decreases
his/her reservation values. All these sensitivity results are valid if
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he change in the agent’s valuation does not exceed his/her max-
mum competitive payoff, consequently, the collectively optimal
eller-buyer matching remains optimal.
We find this attenuative feature of the fair competitive prices

ery appealing. We conjecture that no other competitive price
ule, that returns to each assignment market a unique competi-
ive equilibrium price vector, could guarantee a smaller than 1/2
‘‘depletion factor’’ in the worst case.

A natural ‘‘contender’’ of the fair price rule would be the
nucleolus price rule, that returns to each assignment market the
competitive equilibrium price vector obtained from the sellers’
reservation values and the nucleolus payoffs in the associated
assignment game. The nucleolus payoffs (hence the associated
prices) can also be computed in strongly polynomial time from
the market valuations (Solymosi and Raghavan, 1994), although
slightly less efficiently than the minimum, the maximum, and
the fair competitive equilibrium prices. The nucleolus, however,
is in a certain sense the ‘‘innermost’’ point in the core, thus it
could be expected being less sensitive than the tau-value that
might lie on the boundary of the core, see e.g. Fig. 3. However,
precisely the move from Market B to Market C in Example 1
shows that seller 1 could increase his nucleolus price by 2/3
units by unilaterally increasing his reservation value by 1 unit
(from s1 = 22 to s1 = 23), whereas with the fair prices his
gain is only 1/2 units. Indeed, the nucleolus prices in Market B
are (p1 = 23 = 22 + 1; p2 = 24 = 22 + 2), these increase to
(p′

1 = 71/3 = 23 + 2/3; p′

2 = 73/3 = 22 + 7/3) in Market C.
e conjecture that for the nucleolus price rule the worst case

‘depletion factor’’ is d
d+1 , where d is the dimension of the set

f competitive equilibrium prices (equivalently, the dimension of
he core of the associated assignment game). If indeed true, this
nstance would show that this worst case upper bound is sharp.
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