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ARTICLE INFO ABSTRACT

JEL classification: This study investigates the sovereign yield curve network of 12 developed countries. We
C32 decompose the term structure of interest rates into the Level, Slope, and Curvature factors using
GO1

the Diebold and Li (2006) model. The connections between the latent yield curve factors across

G12 the countries are measured using the Toda and Yamamoto (1995) model, which is suitable
E;S for cointegrated time series. Our timeframe covers more than 23 years; therefore, we are able

to compare two global and two local crisis periods. For deeper understanding the structural
Keywords: changes, and identify the key participants in the sovereign yield curve network, we analyze the
Connectedness

. . connections on factor, country, and node levels. Investigating the network on node level, in the
Sovereign yield curve network . . .. .
Toda-Yamamoto causality entire sample period, all three US latent factors act as key participants in our network, however,
Global and local crises their contribution is time variant. We find that local and global crises behave differently. The
Fed monetary decisions network density differences on average are relatively small across calm and local crises periods,
but significantly larger during the Global Financial Crisis and the European sovereign debt
crises. Furthermore, we explore links between the easing and tightening decisions by the Fed
and the ECB, and the time-varying dominance of the US yield curve in our sovereign yield
curve network. The dominance of the US factors peaks if the Fed leads the hiking cycle and
reaches its minimum when the interest rate cycle is led by the ECB.

1. Introduction

Over the past few decades interlinkages between global financial markets increased due to the fundamentals, regulatory
convergence, and growing international trade. Globalization and surging connectedness led to a higher likelihood of local and global
crises. Furthermore, during turbulent periods the strength of connections sharply increases, and risk spills over across markets and
asset classes, as it happened during the Dotcom Bubble, the Global Financial Crisis of 2007-2009, the European Sovereign Debt
Crisis, or the recent Covid-19 Pandemic. Examining financial systems is crucial for investors and other market participants too
because a shock and a crisis in one market can affect the return and volatility of another market and infect the decision-making
for portfolio risk management. For this reason, it is essential for regulators to monitor the rapid changes, understand the network
dynamics on different levels, and identify the key participants of financial networks. During the last few years, motivated by these
episodes of crises, the connections between financial markets have been widely investigated in academia, especially from a network
perspective (Diebold and Yilmaz, 2009; Billio et al., 2012).
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To examine financial networks, several approaches have appeared in the literature since the Global Financial Crisis. On the
theoretical side, Gai and Kapadia (2010), Gai et al. (2011), Elliott et al. (2014), Acemoglu et al. (2015) and Glasserman and Young
(2015) analyze the effects of financial contagion on risk. On the empirical side, there are various ways to quantify connectedness. In
the last decade, the widespread methods are the Granger causality (Billio et al., 2012), Conditional Value at Risk (CoVaR) (Adrian
and Brunnermeier, 2011), Systemic Expected Shortfall (SES) and Marginal Expected Shortfall (MES) (Acharya et al., 2012), and
the spillover measure based on Forecast error variance decompositions (FEVD) from Vector autoregressive (VAR) model, shown
by Diebold and Yilmaz (2009, 2012) and Diebold and Yilmaz (2014). These techniques are frequently used to examine networks in
various asset classes, such as equities (Bernal et al., 2014; Vyrost et al., 2015; Billio et al., 2016; BenSaida, 2019), bonds (Antonakakis
and Vergos, 2013; Reboredo and Ugolini, 2015; Corsi et al., 2018), currency rates (Bubék et al., 2011; Antonakakis, 2012; Ji et al.,
2019) or commodity prices (Kang et al., 2017; Ji et al., 2018; Umar et al., 2021b). The Granger and FEVD-based frameworks have
the benefit over CoVaR and MES approaches in that they can better analyze the network on different levels (pairwise, subsystem and
total connectedness, Diebold and Yilmaz (2014)). The Granger causality and the Diebold-Yilmaz (D-Y) approaches are extensively
used in the network literature (Barigozzi and Brownlees, 2019).

The network-related econometrics frameworks are increasingly evolving (Barunik and Krehlik, 2018; Demirer et al., 2018).
Despite the high number of recent connectedness-related articles and the widespread methods, the deeper structure of the networks
(analyzing on different levels) has been investigated by far fewer. In addition to that, only a few studies (Hautsch et al., 2015;
Sedunov, 2016; Nucera et al., 2016; Hué et al., 2019) try to identify the key participants of the financial networks and. Although
there is a large body of both theoretical (Gai and Kapadia, 2010; Gai et al., 2011) and empirical (Diebold and Yilmaz, 2012; Alter
and Beyer, 2014; Bouri et al., 2021) literature focusing on differences between calm and turbulent periods, the comparison of
different crises has only come into focus in recent years (e.g. Mensi et al. (2018), Gunay (2021), Batten et al. (2022), Jebabli et al.
(2022), Jana et al. (2022) and Baumohl et al. (2022)).

The majority of the network-related literature focuses on equities and fewer papers turn attention toward sovereign bonds. Given
that two recent crises, which had serious, cross-county impacts, have been closely related to the fixed-income market (namely, the
Subprime and the European Sovereign Debt Crises), a study that focuses on sovereign yield curves is essential. While researchers
focus mainly on the links between sovereign yields of European (Antonakakis and Vergos, 2013; Fernandez-Rodriguez et al., 2015)
or Asian (Gabauer et al., 2022) countries, only a few studies explore the connections between the most developed (Umar et al.,
2022; Berardi and Plazzi, 2022) markets. Additionally, the most developed sovereign bond markets have significant influences on
the yield curves of other countries, as shown by Ahmad et al. (2018) and Stona and Caldeira (2019).

In this paper, to address the gap in the empirical literature, we calculate the yield curve factors (Level, Slope, and Curvature) of
12 developed sovereigns based on the model of Diebold and Li (2006) and investigate the connectedness among them from 1998
to 2021. Our examination covers cross-factor relations as well, and we use the Toda and Yamamoto (1995) causality test to handle
cointegrated time series. We are particularly interested in investigating the density of networks during calm and turbulent periods.
To deeper understand the structural changes and identify the key participants in the sovereign yield curve network, we analyze the
connections on factor, country, and node level. In addition, in analyzing the nodes’ connections, we examine the relation between
the monetary policy decisions and the sovereign yield curve network. We explore links between the easing and tightening decisions
by the Fed and ECB, and the time-varying dominance of the key participants in the sovereign yield curve network.

The contribution of this paper to the existing literature is fourfold. First, to our knowledge, we are the first to adopt the Toda
and Yamamoto (1995) causality test to examine a large network of sovereign yield curves over an extended period of time. While
the Time-Varying Parameter Vector Autoregression (TVP-VAR) model recently suggested choice for network analysis (Rossi, 2005;
Rossi and Wang, 2019), our choice of the Toda-Yamamoto model (T-Y hereafter) is motivated by its simplicity and flexibility
(see Rambaldi and Doran (1996)), alleviating complications that may arise from using TVP-VAR with cointegrated series. The T-Y
causality test is applicable regardless of whether a series is 1(0), I(1), or I(2) are cointegrated or not cointegrated in any arbitrary
order. The procedure avoids the bias associated with unit roots and cointegration tests (Rambaldi and Doran, 1996; Zapata and
Rambaldi, 1997; Clarke and Mirza, 2006), as it does not require pre-testing of the cointegrating properties of the system. Consistent
with earlier studies (e.g., Cavaliere et al. (2010); Engsted and Tanggaard (1994), Hall et al. (1992) and Wilms and Croux (2016)),
we also provide evidence of numerous cointegrated time-series yield curve pairs using Engle and Granger (1987) and Johansen
(1988) tests. To address potential limitations of T-Y model, and account for potentially time-varying parameters in the network, we
use 750-day estimation moving window estimation during the sample period.

Second, using a large sample of sovereign yield curves, from 12 countries over 23 years, we consider Level, Slope, and Curvature
factors using the Diebold and Li (2006) model.? We explore cross-connections between sovereign yield curve factors and show
evidence of a significant amount of linkage between the Level Slope and Curvature subnetworks. We identify the key participants
in the sovereign yield curve network and find that the US factors dominate as key network participants throughout the sample, in
each subperiod, with some variation across time. These results extend the findings of other recent yield curve papers (e.g., Cavaca
and Meurer (2021); Umar et al. (2021a, 2022) and Gabauer et al. (2022)) who examine spillover effects among networks created
from Level, Slope and Curvature factors only and do not identify the top nodes in the system.

2 Our model is a close network approach, containing only yield curve factor data, as we focus on the endogenous relationships. Therefore omitted variable
bias might occur.
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Third, we provide several unique insights by analyzing the deeper structure of our network showing the followings: (1) the two
global crises have more dense networks, than the local ones;* (2) US latent factors act as key participants in our network, however,
their contribution is time variant; (3) cointegrated relationship between Canada and US results in the Canada being co-driver in the
network during in crises periods.

Lastly, we contribute to the literature about the spillover effect of monetary policy decisions (e.g., Hofmann and Takats
(2015); Kearns et al. (2018), Albagli et al. (2019), Lakdawala et al. (2021), Miranda-Agrippino and Ricco (2021), Jarocinski (2022)
and Miranda-Agrippino and Nenova (2022)) and provide insights for monetary policy discussions. We also extend the scope of the
earlier sovereign yield curve studies as we inspect the dynamics of the key participants’ dominance in the network and connect these
dynamics to the monetary policy decisions. Specifically, by analyzing the influence of the easing and tightening decisions by the
Fed and the ECB on the key participants of the sovereign yield curve network we find that the dominance of the US factors peaks
if the Fed leads the rate hike cycle and reaches its minimum when the interest rate cycle is led by the ECB. We provide insights for
the more exposed market participants to prepare for the expected impacts of US intervention potentially better. We also highlight
the potential structural breaks in crisis and tranquil periods, by showing that Canada is effectively an extension of US monetary
policy impact during crisis periods, highlighting the importance of close trade partner relations.

The rest of this paper is structured as follows. In Section 2 we review the literature on the sovereign yield curve networks, in
Section 3 we discuss the methodology for extracting the latent factors with the Diebold-Li model and we introduce the T-Y model.
In Section 4 the data is presented, in Section 5 we discuss our empirical results and in Section 6, we conclude and present the policy
implications.

2. Literature review

There are two families of articles investigating links among sovereign bonds. The first one examines the market integration
and comovements between short and long-term yields of international bonds. The second one estimates the connectedness among
sovereign yields or yield curve factors with network-based econometric methods.

An overview of existing literature on the bond market reveals that there are only two pioneer studies that analyze the
connectedness of international bond markets from a network view, without using the last 10 years’ network-based econometrics
methodologies. In an early paper, Sander and Kleimeier (2003) investigate connections among Asian sovereign bond spreads with
Granger-causality during four episodes of Asian crisis. They show that the Asian crisis changed causality patterns on a regional
base. Christiansen (2007) examine the volatility spillover between the US and European sovereign bond markets using a GARCH
model. Results indicate volatility spillover from the US to European bond markets, but not vice versa.

Since the GFC network-based methodologies have gained popularity. Antonakakis and Vergos (2013) examine the spillover in
the sovereign yield spread among Eurozone countries using measures developed by Diebold and Yilmaz (2012) and find that more
than 60% of the variances are explained by spillovers from other countries. Gémez-Puig and Sosvilla-Rivero (2013) analyze the
time-varying nature of Granger causal relationships between the yields on 10-year government bonds issued by five EMU countries.
In a similar study (Gémez-Puig and Sosvilla-Rivero, 2016), using sovereign bond yield spreads of ten central and peripheral countries
to examine the dynamic evolution of Granger causality network connections. Both studies document peaks of linkages during the
ESDC. Claeys and Vasicek (2014) measure the direction of the linkages of the sovereign bond market among sixteen European
Union countries, using a factor-augmented version of the D-Y model. They show that spillover effects from other countries dominate
the domestic fundamental factors for EMU countries’ sovereign yields. Fernandez-Rodriguez et al. (2015) investigate 10-year yield
volatility spillovers in eleven Eurozone countries using the D-Y framework. They document that more than half of the total variance
of the forecast errors is explained by systemic shocks. A year later in Fernandez-Rodriguez et al. (2016) study the time-varying
integration of EMU bonds with the same framework. Contrary to previous empirical studies, they find a significant decrease in
connectedness during the crisis period. Reboredo and Ugolini (2015) use conditional value-at-risk (CoVaR) to measure systemic
risk in European sovereign bond markets around the ESDC. They find that prior to the crisis, the markets were all coupled,
while after that, the risk decreased for the affected countries. Bernal et al. (2016) use the same methodology to analyze the
risk spillovers within the EMU and examine the impact of Economic Policy Uncertainty to the net connections. They find that
uncertainty has an impact to country-level spillovers which is stronger for key countries. Using Diebold-Yilmaz-based structural
vector autoregressions, De Santis and Zimic (2018) examine the bond market connectivity among the 10-year sovereign yields of 12
developed countries. They document that connectedness among sovereign bond yields declined during the 2008-2012 period due to
financial fragmentation. Chatziantoniou and Gabauer (2021) concludes the same while examining the financial risk synchronization
of 11 EMU members’ government bond yields with a time-varying parameter Diebold-Yilmaz model. They document fragmentation
during the ESDC and find that core countries spillover risk shocks to periphery countries. Hamill et al. (2021) investigate the network
connectivity of the European sovereign bond markets and compare the different variants of D-Y frameworks. They document that
the Lanne-Nyberg dynamic connectedness model provides an accurate indication of the GFC. In a recent study, Benlagha and Hemrit
(2022) investigate the impact of Economic Policy Uncertainty (EPU) on the connectedness among G7 sovereign bond yields. They
find that EPU affects the connectedness of long-term yields but is insignificant for short-term yield spillovers. Berardi and Plazzi

3 We examine the Dotcom Bubble (DCB), the Global Financial Crisis (GFC), the European Sovereign Debt Crisis (ESDC), and the Covid-19 Pandemic (C19).
From these, we consider the GFC and the C19 Pandemic as global, while the other two as local crises. It is revealed that the two global crises have more
connection counts, than the local ones.
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(2022) investigate the connectedness between the yield curve components of four developed countries after they decompose the
nominal yields into the sum of expectations, the term premium, and the convexity term. They find that the USA indicates the
strongest spillovers in long-term yields.

While the above mentioned studies investigate the linkages among government bond yields in the last few years, another strand
of literature analyze yield curve factor connectedness among sovereign markets.

Sowmya et al. (2016) are the first to investigate linkages across latent factors of yield curves using D-Y framework in a sample of
four developed and seven emerging Asian economies. They find that the regional influence is higher in Slope and Curvature factors
among the Asian countries. In a recent paper, Umar et al. (2021a) study connectedness of 11 Eurozone countries and document
that the core countries are net transmitters while the peripheral countries are net receivers. Cavaca and Meurer (2021) examine
the spillover between yield curve factors of the United States and four South American countries. They prove that the degree of
spillover is highest for the Slope subnetwork, followed by the Level and the Curvature. Gabauer et al. (2022) explore the spillover
of yield curve factors across the Asia-Pacific sovereign bond markets with a time-varying parameter D-Y model. They find that
the highest market connectedness is in the Level subsystem followed by the Slope and Curvature subnetworks. Umar et al. (2022)
examine the connectedness between the Level, Slope, and Curvature factors individually. They conclude that France and Germany
are the transmitters whereas the UK and Japan are the net receivers for all the yield curve components’ networks.

We briefly summarize and highlight the gaps in the literature in A.1. As of today, a large number of connectedness studies
use VAR-based Diebold-Yilmaz frameworks despite the concern that the application of the VAR model on cointegrated time series
can lead to spurious connections. A notable exception is Cavaca and Meurer (2021)’s work where the authors try to handle this
problem within the estimation of the network model. However, unlike the Vector Error Correction Model (VECM)-based (D-Y)
approach, which relies on the variables being integrated in the same order for cointegration analysis, the T-Y model does not
require such an assumption. Although there is a large number of recent sovereign bond connectedness-related studies, deep structural
network analysis, examination networks at multi-levels (analyzing on different levels), is scarce. The papers analyze the network
either on node- or on factor level. Lastly, while a number of bond market works compare tranquil and turbulent periods without
specific distinction in crisis periods, comparing different crisis periods and exploring the network behavior of key market players
are underrepresented in the literature.

3. Methodology

Our approach consists of two steps. First, the Diebold and Li (2006) methodology is used to decompose the yield curve into
latent and economically meaningful factors. Next, we quantify the significant causality relations between the different yield curve
components using the Toda and Yamamoto (1995) model. We describe both of these processes in the next subsections.

3.1. The Nelson-Siegel yield curve model and the Diebold-Li decomposition

Nelson and Siegel (1987) (N-S hereafter) suggest a flexible, parsimonious, exponential components framework that has the ability
to capture a variety of frequently observed yield curve shapes (forward sloping, inverse, humped) and allows for a clear interpretation
of the estimated factors. Diebold and Li (2006) (D-L hereafter) extend the N-S approach, by allowing the dynamic change of the
latent factors. A central feature of the model is that these factors can be interpreted as the Level, Slope, and Curvature as proven
by Diebold et al. (2006), Mumtaz and Surico (2009), Ménch (2012), Koopman et al. (2010) and Christensen and Rudebusch (2012).
Following N-S and D-L, we assume that these components include the majority of the information in the term structure of the yield
curve. The D-L model offers an adaptable structure and has a wide applicability in any market (Yu and Zivot, 2011; Xu et al., 2019;
Bredin et al., 2021).

The observed yield curve can be described with the following equation:

— At — At

y,=ﬂ1+ﬂ2<1 e >+ﬂ3(1 e —e‘“) M
where y_ denote yields for r maturity, g, f, and g5 are the Level, Slope, and Curvature parameters respectively, and 4 is a parameter
that controls the shapes of loadings for the D-L factors (especially for Curvature). The p; parameters have an economic meaning:
B, (Level) represents the long end of the yield curve, g, (Slope) is the short-term component, while f; (Curvature) mimics the
middle interval. The Level factor applies equally to all maturities. Some of the articles focus on the Level and Slope factors only,
however, De Pooter (2007), Almeida et al. (2009) and Ullah et al. (2015) draw attention to the importance of the third factor,
therefore we involve Curvature in our analysis.

We estimate the latent factors using the two-step procedure on a daily basis proposed and applied by Diebold and Li (2006).
We use simple ordinary least squares (OLS) on every day to extract the time-varying latent Level, Slope, and Curvature factors.
Following Diebold and Li (2006), Bianchi et al. (2009), Koopman et al. (2010) and Van Dijk et al. (2014) we set the A parameter
at 0.06093 such that the Curvature factor attains its maximum at r = 30 months.

3.2. The Toda-Yamamoto model

The T-Y model is a popular causality testing approach, introduced by Toda and Yamamoto (1995). Over the past few years
several network-based studies applied the T-Y model to handle cointegrated time series (Giindiiz and Kaya, 2014; Bratis et al.,
2020; Nazlioglu et al., 2020). As T-Y point out, the classic Granger causality test (Granger, 1969) obtained by a VAR model on
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cointegrated time series can lead to spurious connections (Dolado and Liitkepohl, 1996; Zapata and Rambaldi, 1997; Pittis, 1999).
The T-Y approach eliminates this shortcoming by introducing a modified Wald test (MWald) which has restrictions on the parameters
of the VAR(p) model. The test is based on a y, distribution, where p' = p+d™>. The order of VAR is increased artificially, p gets
increased by d™?* which is the maximal order of the integration. Then, a VAR with an order of (p + d™%~) is estimated, where the
last d™e~ lag coefficient is ignored. A VAR(p + d™%*) model is described by Egs. (2) and (3):

» gmax » gmax

Y=o+ Z 6 + Z a, Y+ 20X+ Z B X—j + oy 2
i=1 j=p+1 j=1 j=p+1
» gmax » gmax

Xy =+ Z 63 Y + z ;Y + Z 0r; X, + z By Xi—j + @y 3)
i=1 Jj=p+1 Jj=1 Jj=p+1

where «,6,0, and f are model parameters, p is the optimal lag of the original VAR model, »;, and w,, are the errors of the VAR
model, and d™%* is the maximal integration order in terms of the T-Y model. Hereby based on (2), there is a Granger causality
between X and Y, §,; # 0 for all i. In the same way, based on (3), Granger causality is observable between Y and X, if 6,; # 0 for
all i.

From the VAR(p + d"**) model, the T-Y model is realized in three steps:

» Perform d™* ordered stationarity tests on all of the time series by applying ADF (Augmented Dickey-Fuller test), KPSS
(Kwiatkowski-Phillips—Schmidt-Shin test), and PPE (Phillips—Perron test) tests individually or in combination.

» Determine the optimal lag, (p) with the maximal consistency of the AIC (Akaike’s Information criterion), BIC (Bayesian
Information Criterion), the HQ (Hannan—Quinn criterion), or the LR (Likelihood Ratio test) criteria.

+ With the application of the upper-mentioned parameters, rejecting the Granger test between X and Y means a causality relation
in Toda-Yamamoto terms. Bivariate rejection suggests a mutually causal relation between the variables.

4. Data

Following Sowmya et al. (2016), Hamill et al. (2021), Umar et al. (2022) and Stenfors et al. (2022), we collect daily data from
twelve developed countries. We select sovereigns with the highest GDPs and liquid bond markets, resulting in the sample dataset:
Australia, Canada, Switzerland, Germany, Spain, France, Great Britain, Italy, Japan, South Korea, the Netherlands, and the United
States of America.* Similarly to Antonakakis and Vergos (2013), Sowmya et al. (2016), Byrne et al. (2019), Umar et al. (2022)
and Gabauer et al. (2022), we collect the zero-coupon sovereign bond yields from Bloomberg. The specific yield curves and the
corresponding tickers are listed in Table A.2 in Appendix. We consider 15 maturities® to obtain the yield curve factors of the term
structure for each country as Umar et al. (2021a, 2022) and we extend the analysis of Sowmya et al. (2016), Cavaca and Meurer
(2021) and Gabauer et al. (2022) who use shorter terms only. The time period is from September 30, 1998, to December 31, 2021.
Our sample spans over various business cycle phases and major turbulent periods too. Based on Byrne et al. (2019) and Bouri et al.
(2021) we cover the following crisis periods:®

« The Dotcom Bubble (DCB): 03/10/2000-12/02/2001

» The Global Financial Crisis (GFC): 09/15/2008-07,/21/2010

» The European Sovereign Debt Crisis (ESDC): 11/21/2010-03/13/2013
« The Covid-19 Pandemic (C19): 01/20/2020-12/31/2021

and two longer calm periods (CALM1, CALM2) between these crises.” According to our best knowledge, we are the first to examine
the characteristics of four different crises on the bond market. We differentiate between global (GFC, C19) and local (DCB, ESDC)
crises, as GFC and C19 are worldwide events as opposed to the other crises (DCB and ESDC) which primarily affect one country or
a region.

The zero-coupon sovereign bonds are denominated in local currency and we use these yields for two reasons. As per (Cavaca and
Meurer, 2021), debt in local currency better represents the different interest rate cycles of the economy and the domestic monetary
policy. Additionally, according to Sowmya et al. (2016), local currency denominated bonds have better liquidity than debt issued
in US dollars.

Descriptive statistics for the 1-, 5-, 10- and 30-year nodes of each country’s yield curve are provided in Table A.4 of the Appendix.
The yield curve characteristics are in line with the findings of previous studies (Sowmya et al., 2016; Cavaca and Meurer, 2021).

4 The countries are frequently referred to by the three-letter shorthand created by the OECD so henceforth we use AUS, CAN, CHN, DEU, ESP, FRA, GBR,
ITA, JPN, KOR, NLD, and USA.

5 3,6, 12, 24, 36, 48, 60, 72, 84, 96, 120, 180, 240, and 360 months.

6 Start dates and end dates of such crises are linked to global events, described in A.3 in the Appendix. Our results are robust to the choice of the selected
dates. The results of this robustness analysis are not reported here but are available from the authors upon request.

7 CALM1: 12/03/2001-09/14/2008; CALM2: 03/14/2013 - 01/19/2020. Before the Dotcom Bubble, there is an additional calm period (CALMO), due to the
rolling window estimation in the dynamic analysis we do not provide results from this era. The timeframe between GFC and ESDC is very short, therefore we
do not consider it as a separate subperiod.



M.C. Badics et al. Journal of International Financial Markets, Institutions & Money 88 (2023) 101837

i l‘ W |
‘*“l‘ : ‘ W
5‘ ;”J% w' “ t W W

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
(a) Level (b) Slope
1.00

A

Countries
— AUS
I CAN
— CHE

0.00

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

(c) Curvature

Fig. 1. Normalized time series of Level, Slope, and Curvature factors. Notes: The green area denotes the DCB, the red-shaded area shows the GFC, the blue
field represents the ESDC and the yellow area the C19 period. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

The normalized time series of the D-L factors are shown in Fig. 1 in which, DCB is depicted in green shading, GFC is denoted with
red, ESDC is represented with blue, and C19 is marked with yellow.

Fig. 1 sheds light on several stylized facts. Level factors decline and converge across countries during the examination
period. Evans and Marshall (2007) find evidence from the USA market that macro shocks shift the level factor of the yield curve,
which is visible in our sample too, during the GFC and ESDC in 1(a). Slope time series show countercyclical behavior and comoves
across countries. As per (Diebold et al., 2006), the curvature factor has only weak links with the macroeconomic fundamentals thus
trends or cyclicality are less specific for this factor.

The descriptive statistics of the estimated D-L factors are represented in Table 1. The average Level factors are positive in all
cases, with South Korea having the highest values and Japan the lowest. The mean Slope is negative for all countries, which refers to
the typical upward-sloping shape of the yield curves. In absolute terms, Italy has the highest Slope, while Australia has the lowest.
The average Curvature is also negative, highest for Italy and lowest for Great Britain (in absolute terms).

We employ the Jarque-Berra test statistics for the normality test, which is always rejected. Furthermore, the ADF and KPSS
unit-root tests for stationarity are applied. The Level time series is stationary for Korea and the USA, the Slope for Japan, and
Curvature for Australia and Italy on a 99% confidence level, according to the ADF test. According to the KPSS test, neither of the
time series is stationary. The first difference is stationary for all time series based on the two tests. The results of the ADF and KPSS
tests are in the Appendix in Table A.5.

Pairwise Engle and Granger (1987) and Johansen (1988) tests are used to determine cointegrations before using the first
differences for further analysis. The ratios of the cointegrated time series, grouped by factors, are shown in Table 2.

Table 2a and b provide a high ratio of cointegrated connections, for example, the Level-Curvature subsystem is greater than 80%
in both cases. Based on Table 2 and Table A.5 of the Appendix, applying the T-Y model is required because the time series are not
stationary in the same order and the ratio of cointegrated time series is high.
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Table 1

Descriptive statistics of the yield curve factors.
Factor Average Std. dev. Minimum Maximum Jarque-Bera t-stat. P value
Australia
Level 4.87 1.50 1.06 7.71 540.29
Slope -1.11 0.99 -4.14 0.97 85.24
Curvature -2.15 1.90 —-6.80 2.93 205.41
Canada
Level 3.94 1.56 0.70 6.62 404.33
Slope -1.83 1.37 -5.35 0.58 364.08
Curvature -2.18 1.94 -6.27 4.83 400.29
Switzerland
Level 2.19 1.56 -0.79 4.63 528.09 0.00%***
Slope -1.60 0.94 -4.10 —0.06 543.73 0.00%**
Curvature -2.71 1.49 -7.25 1.05 30.68 0.00%**
Germany
Level 3.35 1.98 —-0.55 6.56 542.63 0.00%**
Slope -1.84 1.11 —4.69 0.22 234.39 0.00%**
Curvature -3.51 1.73 -6.81 0.96 256.80 0.00%**
Spain
Level 4.54 1.73 0.75 8.56 397.05
Slope -2.78 1.52 -7.35 -0.07 282.06
Curvature —4.01 2.09 -8.75 3.90 115.59 0.00%***
France
Level 3.72 1.80 0.11 6.63 575.05 0.00%**
Slope -2.15 1.17 —-4.85 0.16 241.96
Curvature -3.98 1.90 -8.08 0.57 47.29
Great Britain
Level 3.69 1.37 0.47 5.77 764.03 0.00%***
Slope -1.39 1.73 -5.40 3.21 233.43 0.00%**
Curvature -1.82 3.58 -8.79 8.77 93.08 0.00%**
Italy
Level 4.83 1.43 1.43 7.90 481.67 0.00%**
Slope -3.01 1.39 —-6.36 —-0.24 196.68 0.00%***
Curvature —-4.19 1.96 -8.74 4.06 142.96 0.00%**
Japan
Level 1.79 0.91 —-0.03 3.57 599.64
Slope -1.43 0.75 -3.30 —-0.09 318.65
Curvature -3.72 1.44 -6.54 -0.95 508.30
South Korea
Level 6.13 2.49 1.88 17.23 842.90
Slope -3.00 1.58 -7.85 0.10 169.56
Curvature -4.17 3.00 -14.38 2.67 1961.09
The Netherlands
Level 3.45 1.97 -0.36 7.01 539.12 0.00%***
Slope -1.95 1.14 -4.89 0.20 237.11 0.00%**
Curvature -3.30 1.57 —-8.40 0.74 180.26
USA
Level 4.39 1.45 0.96 6.98 383.47 0.00%**
Slope —2.44 1.72 -5.71 0.91 311.13 0.00%**
Curvature -3.61 2.68 -10.35 3.27 197.93 0.00%**

Notes: This table reports the descriptive statistics of latent factors for each country extracted from the Diebold-Li model. Jarque—
Bera tests the normality of the distribution. Rejection of null hypothesis at 1%, 5%, and 10% levels are denoted by ***, **, and
* respectively.

Table 2
Pairwise Engle-Granger and Johansen tests.
(a) Engle-Granger test (b) Johansen test
Level Slope Curvature Level Slope Curvature
Level 83.3% 41.7% 86.1% Level 68.1% 88.9% 83.3%
Slope 16.0% 65.0% 90.3% Slope 88.9% 88.9% 59.0%
Curvature 23.6% 61.1% 91.7% Curvature 83.3% 59.0% 37.5%

Notes: Instead of the 36 x 36 matrix which we obtain from the pairwise Engle-Granger and Johansen tests, we show only the
subsystems-based aggregated values in this table.
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Fig. 2. Causality relations within subnetworks, estimated by static Toda-Yamamoto model. Notes: Level factors are displayed in red, Slopes in blue, and
Curvatures in green. An arrow between two factors indicates the direction of causation, and the color of the arrow indicates the source factor. Time series
are differentiated at a maximum of one time, and the ideal lag time is chosen based on the AIC. For Level factors, 34; for Slope, 47; and for Curvature, 36
connections are significant from the possible 132 = (12 x (12 — 1)). In the case of cross-connections, 258 are significant from the possible 864 = (1260 — 3 x 132).
For total connections, 375 links are significant from the possible 1260 = (36 x (36 — 1)). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5. Results
5.1. Static, full-sample connectedness analysis

Following Antonakakis and Vergos (2013), Claeys and Vasicek (2014), and Fernandez-Rodriguez et al. (2015), we begin our
analysis with a static investigation on a factor level. We measure the connections within the Level, Slope, and Curvature subsystems,
and identify the cross-relations among them. Fig. 2 displays the causal linkages at a 1% level of significance, separated by
subnetworks. The figure shows connections estimated by the Toda-Yamamoto procedure, using all the available data.

The Slope network has the highest density of the three subsystems with 35.61% of the potential relations being significant. It is
followed by Curvature (27.27%), then Level (25.76%). The findings of Sowmya et al. (2016), Umar et al. (2021a, 2022) and Gabauer
et al. (2022), who all claim that Level subsystem has the largest spillover effect, followed by Slope, and Curvature, are in contrast
with ours. However, according to Cavaca and Meurer (2021), the Slope is the most connected subnetwork, which is supported by
our findings. In addition to the different country set and the sample length, the other reason for the different results could be the T-Y
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Table 3

The number and distribution of the significant connections defined in the system.
(a) Number of connections, grouped by factors (b) Distribution of connections, grouped by factors

Level Slope Curvature Outgoing Level Slope Curvature Outgoing

Level 34 43 48 125 Level 25.8% 29.9% 33.3% 29.8%
Slope 33 47 62 142 Slope 22.9% 35.6% 43.1% 33.8%
Curvature 34 38 36 108 Curvature 23.6% 26.4% 27.3% 25.7%
Incoming 101 128 146 375 Incoming 24.0% 30.5% 34.8% 29.8%

Notes: In the diagonal, we divide the connections by 132 = (12 x (12 — 1)), since this is the maximum definable relation in the subnetworks. Between two
subsystems this number is 144 = (12 X 12), we scale the upper and lower triangular by this. The values in the summarized row and column are divided by
420 = (132 + 144 + 144). The total definable connections in the network are 1260 = (420 x 3), we divide 375 by this.

Table 4
Net and sum connections throughout the study period, aggregated by countries, ordered by net connections.
Country Net connections Sum connections
USA 45 89
DEU 18 74
AUS 16 80
CAN 11 69
CHE 9 51
NLD 2 58
KOR -8 56
GBR -13 59
ESP -16 58
ITA -18 60
JPN -22 44
FRA —24 50

model, which is suitable for filtering out spurious connections in the case of highly cointegrated systems (compared to the widely
used VAR-based D-Y spillover index which is applied in the above-mentioned papers).

We also analyze the cross-connections among the yield curve components, for further insights. Altogether 258 significant cross-
connections are defined, about 29.86% of the total 864 possible edges. From these connections, 95 (36.8%) originate from Slope-,
92 (35.3%) from Level-, and 72 (27.9%) from Curvature nodes. Altogether 258 significant cross-connections can be defined, which
is 29.86% of the total possible edges of 864. From these, 95 (36.8%) originate from Slope, 92 (35.3%) from Level, and 72 (27.9%)
from Curvature nodes. Based on Table 3a, on factor level, the Curvature has the most incoming edges, while the Slope has the most
outgoing ones. The Level has the least incoming links while it is second in the list of outgoings. The Curvature subnetwork has the
least outgoing edges, and in this sense, it is the least connected, which is in line with the findings of Dewachter and Lyrio (2006).

Fig. 2(d) and Table 3 highlight that the connections between different subsystems are not negligible. The cross-factor connections
are 68.8% of the defined causality relations (258 out of 375).

Although Fig. 2 and Table 3 provide information about the subsystems of the factors, these are not sufficient to draw conclusions
about the main economics drivers behind the network. To extend the factor level-based analysis in the next subsection we examine
our sovereign yield curve network on a country and a node-wise level too.

5.1.1. Country-level analysis and the key participants of the network

Despite the high number of recent connectedness-related articles, there is limited insights about the different levels, changes in
density and key participants (i.e., dominant factors). In this section, we use the net (outgoing-incoming) and sum connections to
identify the core countries of the system, as shown in Table 4.

Aggregating the connections on a country level, the United States and Germany are at the top of the list. Our results align with
the findings of Umar et al. (2022) and Berardi and Plazzi (2022) but we also consider cross-factor connections. They also claim that
Japan and Great Britain are net importers of shock and hereby we confirm this statement.

Table 4 only provides an aggregated overview on a country level, however, to deeper understand our network, and identify the
key participants, it is useful to aggregate on a node-level too, as they are driven by different economic effects. None of Sowmya
et al. (2016) and Cavaca and Meurer (2021) or Gabauer et al. (2022) carry out this examination (as far as we know, we are the
first to investigate this on the bond market), so hereby we extend their results. Nodes with the most connections are shown in
Table 5. The first quarter of the table represents the summarized relations, whereas the subsequent columns show the nodes with
the highest numbers of separate incoming and outgoing connections. For finding the dominating participants in our network we use
net (outgoing-incoming) connections which is an accurate measurement according to Barigozzi and Brownlees (2019).

Table 5 highlights that in our network, the Slope factor of Canada has the most connections overall, at 32, from which 19 arrows
originate and 13 come in. In a previous study, Umar et al. (2022) find that North-American countries have the most net connections
in all subsystems. On 10-year Treasury bond yields, the results of Umar et al. (2020) show that the USA is the most dominant,
followed by Canada, then the European countries. These findings are in line with our results, except we consider cross-connections
too, in addition, in our case, all three factors of the USA lead the list of net connections.
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Table 5

Key participants of the sovereign yield curve network.
Top 5 Sum Top 5 Incoming Top 5 Outgoing Top 5 Net
Node Total In Out Node In Node Out Node Net
CAN S 32 13 19 ESP C 20 USA L 25 USA L 19
USA L 31 6 25 ITA C 19 USA C 22 USA C 15
AUS C 30 12 18 FRA C 18 USA S 20 USA S 11
AUS S 29 13 16 KOR L 14 CAN S 19 DEU L
DEU S 29 11 18 ITA S 14 DEU S 18 CAN L 8

To better comprehend the role of the USA sovereign yield curve in the network, we analyze the node-wise connections of the
three factors. The connections of the USA Level, Slope, and Curvature components are highlighted in Fig. 3. The graphs support
the statement of Table 5, while the US factors have few incoming connections, they have many outgoing ones. It is also visible that
all three factors have numerous cross-connections (56.2% of the defined edges) which further emphasizes the importance of such
relations.

The USA is not only dominant on a country level, as shown by Table 4, but on a node-wise level as well. Based on these outcomes,
we conclude that relying on a static connectedness analysis, the US yield curve factors are the key participants of our the network.
After the full-sample investigation, we examine the network behavior in turbulent (global and local crises) and tranquil periods.

5.2. Connectedness during different subperiods of the study horizon

The effects of crises on the sovereign yield curve networks are well documented in the empirical literature (Claeys and Vasicek,
2014; Reboredo and Ugolini, 2015), however, it is less common to compare different crises.® We examine the sovereign yield curve
network in the crisis periods on different levels (yield curve factor, country, and node-wise) in a static way, then we investigate the
networks in four previously discussed turbulent and tranquil periods to understand the differences between the global (GFC, C19)
and local (DCB, ESDC) crises.

To deeper understand the different crises, we perform a static connectedness analysis on six separate time periods. Fig. 4 shows
the periods introduced in Section 4, of which four are turbulent (2 globals and 2 locals) and two are calm.’

Fig. 4 highlights that C19 (763) and GFC (414) provide the networks with most connections, followed by DCB (236) and ESDC
(234). The ratio of cross-connections is the following in each subperiod: DCB: 39.9%, CALM1: 57.8%, GFC: 62.6%, ESDC: 62.0%,
CALM2: 62.7%, C19: 65.0%. These results further emphasize the importance of investigating cross-factor linkages.

The number of significant connections is higher in the two global crises (GFC, C19) than in local ones (DCB, ESDC), or calm
periods. Fernandez-Rodriguez et al. (2016), Chatziantoniou and Gabauer (2021) and Karkowska and Urjasz (2021) all find that in
crisis periods the spillover is higher in the sovereign bond markets, which is in line with our results. We extend the contribution of
the latter studies, by showing that while the density difference between calm periods and local crises is rather small, it is significantly
larger during the two worldwide crises.

Similarly to the full-sample investigation, after identifying the density structures of the different time frames on yield curve factor
level, we determine the countries that are responsible for the significant causal relations within the networks. The net connections
for each subperiod, averaged by countries, are shown in Table A.7.

Except for the DCB period, the USA is the dominant country in each subperiod.!’ On a country level, the USA is the main exporter
and Japan the main importer of interest rate shocks (apart from the cases of DCB and C19, when Japanese net connections add up
to zero), which further emphasizes the findings of Berardi and Plazzi (2022).

To achieve a deeper understanding of the role of the key participants in the sovereign yield curve network during the selected
periods, we aggregate the connections by nodes. Table 6 outlines the role of Level, Slope, and Curvature factors for the twelve
countries. As far as we are aware, ours is the first paper that examines the roles of latent yield curve factors in calm, local and
global crisis periods.

Considering the first column, we conclude that the majority of Level and Slope factors are net providers (7 out of 12 in both
cases), while Curvatures are usually net recipients (8 out of 12) of causality relations. Based on Table 6 the USA is the only country

8 Pprevious articles such as Antonakakis and Vergos (2013), Ferndndez-Rodriguez et al. (2015, 2016), Hamill et al. (2021), Chatziantoniou and Gabauer (2021)
and Umar et al. (2022) examine calm and turbulent periods, using a time frame that includes the Global Financial Crisis and the European Sovereign Debt Crisis
while Karkowska and Urjasz (2021) and Umar et al. (2022) extend the investigation window to involve the Covid-19 pandemic as well. However, these papers
only compare calm and turbulent periods with a dynamic model, and we widen their research twofold.

9 These periods range in length (DCB: 451 days, CALM1: 1770 days, GFC: 483 days, ESDC: 603 days, CALM2: 1787 days, C19: 510 days), so to maintain
consistency, we first averaged the time span of the crises (512 days) and then pick such lengthy sets from the calm periods randomly (CALM1: 01/13/2004 -
12/28/2005; CALM2: 05/06/2014 - 04/20/2016). Our results are robust to the choice of the selected dates.

10 At the end of the ’90s, South Korea (and other Southeastern Asian countries) went through a serious financial crisis and its consequences are felt during
the 2000-2001 horizon which overlaps with the Dotcom Bubble in the US (Kihwan, 2006). Most of the net connections of South Korea in this period are due
to the Level factor (15) which originates from the Bank of Korea’s monetary policies described in Coe and Kim (2002) and Chung and Kim (2002).

10
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Fig. 3. Role of the USA nodes in the system, estimated by static Toda-~Yamamoto model. Notes: Level factors are displayed in red, Slopes in blue, and Curvatures
in green. An arrow between two factors indicates the direction of causation, and the color of the arrow indicates the source factor. Time series are differentiated
at a maximum of one time, and the ideal lag time is chosen based on the AIC. For USA Level factors, 31 (44.29%); for Slope, 29 (41.43%); for Curvature 29
(41.43%) connections are significant from the total possible 70 = (2x (12+ 12+ 11)). Cross-connection ratios are 67.7% for Level, 62.1% for Slope and 38.0% for
Curvature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where all the three yield curve factors net connections are positive during each subperiod.'! Table 6 confirms our previous statement,
besides the US factors being the dominant nodes on the whole study period we claim that they are the key participants in every
identified subperiods as well.

5.3. Dynamic, rolling-window-based connectedness analysis
Running a static analysis may not capture perfectly the cyclical and structural changes in the dynamics of the network and we are

keen on exploring the potential changes in the network on different levels and the key participants through the examination horizon.

11 In addition to the US factors, the Canadian Level and Slope have a high impact on the network for the majority of the time frame and Canada also can
be found in a high position in the different subperiods in Table A.7. Greenwood-Nimmo et al. (2015) document that since Canada is a member of the North
American Free Trade Agreement (NAFTA), it can be an indicator for being net positive in most cases.

11
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Fig. 4. Network connectedness in different subperiods, estimated by static Toda—Yamamoto model. Notes: Level factors are displayed in red, Slopes in blue, and
Curvatures in green. An arrow between two factors indicates the direction of causation, and the color of the arrow indicates the source factor. Time series are
differentiated at a maximum of one time, and the ideal lag time is chosen based on the AIC. Number of connections in DCB: 236, in CALM1 (sample): 206, in
GFC: 414, in ESDC: 234, in CALM2 (sample): 225, in C19: 763. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 6
Factors being net transmitters or net receivers of causality connections during the six sub-periods.

Level Slope Curvature
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AUS + - - - - - + - - 4+ - = = + = = = =
CAN + + + + + + + + o+ o+ o+ -+ o+ -+ o+ o+ o+ o+ o+
CHE + + - - + o+ + + - - = = + -+ = + -
DEU + - 4+ 4+ o+ o+ + - - - + - + + + o+ o+ o+ -
ESP  + + o+ o+ - o+ - 4+ - o+ o+ -+ - o+ o+ -
FRA + + + + + + + - - + o+ - - o+ + o+ - 4+ -
GBR - + + + + 4+ + - - - = = =] =
ITA - - 4+ o+ o+ o+ -+ -+ o+ o+ oar | - e -
JPN B=E + == - = - = = -+ - - - -+
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NLD + - + 4+ + + + + - - 4+ o+ o+ = = = s = = b =
USA  + + + + 4+ + + + o+ o+ o+ o+ o+ o+ + o+ o+ o+ o+ o+ o+

Notes: + signs indicate that the factor is a net transmitter in the given period, while — signs indicate that the factor is a net
receiver.
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Fig. 5. Summarized connection ratios during the study period, estimated by dynamic Toda-Yamamoto model. Notes: Window size of 750 days and a lag
determined by the AIC. The green area denotes the Dotcom Bubble, the red-shaded shows the Global Financial Crisis, the blue field represents the European
Sovereign Debt Crisis, and the yellow covers the Covid-19 period. The purple line indicates the ratio of total significant connections, the cyan represents the
summarized edges in the three subnetworks, and the gray line is the time series of the cross-connection ratios, compared to the maximum number of possible
edges. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Average connection count by types during the six sub-periods — 750 days long window size.
Whole period DCB CALM1 GFC ESDC CALM2 C19
L+S+C 32.4 34.2 24.3 67.4 35.1 25.9 44.9
Cross connections 75.5 43.4 54.3 139.7 93.1 65.9 100.3
All connections 108.0 77.6 78.6 207.1 128.2 91.8 145.3

Thus after the static examination, we perform a dynamic analysis of the sovereign yield curve network, similar to Sowmya et al.
(2016), Cavaca and Meurer (2021), Umar et al. (2021a, 2022) and Gabauer et al. (2022).'> We estimate 1064 different models as we
roll the estimation window by one business week (5 days) through our sample. In Fig. 5 the purple, cyan, and gray lines represent the
ratios of total significant connections, summarized edges in the three subnetworks, and the cross-connections, respectively compared
to the maximum number of possible linkages.

The behavior of the three time series is very similar, and all of them peak during the GFC, and the C19 outbreak. In the empirical
literature, there is general agreement that connectedness rises during turbulent times. The DCB and the ESDC cannot be viewed as
a global phenomenon, thus the graphs in Fig. 5 do not indicate an upward tendency during these times. While Diebold and Yilmaz
(2009), Billio et al. (2012) and Diebold and Yilmaz (2015) find this evidence for stocks, Antonakakis and Vergos (2013), Fernandez-
Rodriguez et al. (2015), Sowmya et al. (2016), Fernandez-Rodriguez et al. (2016), Ahmad et al. (2018), Chatziantoniou and Gabauer
(2021), Karkowska and Urjasz (2021), Hamill et al. (2021), Chatziantoniou and Gabauer (2021) and Umar et al. (2022) all exhibit
the same on the bond markets. However, none of these studies differentiate between local and global crises (as far as we know, we
are the first to investigate this on the bond market) so hereby we extend their results.

The average summarized connections for each subperiod are shown in Table 7.

Table 7 demonstrates that as the Level, Slope, and Curvature subnetworks get denser, cross-connections also increase during
times of crisis.'® Fig. 5 and Table 7 jointly show that the magnitude of cross-connections is around twice the combined number of
connections in the yield curve factor subnetworks. Our dynamic analysis supports the results of the earlier studies of Sowmya
et al. (2016), Cavaca and Meurer (2021), Umar et al. (2021a, 2022) and Gabauer et al. (2022), but we complete them with
cross-connections between the Level, Slope and Curvature subnetworks.

12 There is no exact rule to chose the sufficient window size and based on Arce et al. (2013) and Papana et al. (2017) we choose a rolling window method
with 750 days. This can be seen as three years with 250 business days. In subsection B of the Appendix, we extend our analysis with window sizes of 500 and
1000 days. Furthermore, we perform a Granger causality test, with a rolling window size of 750 days, as an additional robustness check.

13 A detailed view of the average edge counts by countries in these six periods is available in Table A.6 in the Appendix.
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Fig. 6. Dynamic dominance of US factors, estimated by dynamic Toda—Yamamoto model. Notes: Window size of 750 days and a lag determined by the AIC,
smoothed by cubic spline method. The orange areas denote the Fed interest rate cut, the green-shaded parts show Fed interest rate hikes and the cyan field
represents the period when ECB leads the interest rate cycle. The red line stands for the Fed rates over time, while the blue represents ECB rates. The black
line is the dynamic ratio of summarized outgoing USA edges and the total number of outgoing edges, smoothed by a cubic spline. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

5.4. The shift in the dominance of US factors across the study horizon

There is growing evidence in the empirical literature that US market shocks play a special role in international asset market
comovements and Fed monetary policy affects the global bond market. Hofmann and Takats (2015) are the first who document
economically and statistically significant spillovers from the US short and long-term interest rates to advanced economies’
government yields. In an influential paper (Miranda-Agrippino and Rey, 2020) study how the existence of a ’Global Financial
Cycle’ shapes the global financial spillovers of US monetary policy shocks. Lakdawala et al. (2021) also document that the Fed’s
communication on uncertainty regarding future actions is an additional, new monetary policy instrument through which the Fed
can influence global financial conditions.

Empirical evidence on the effects of ECB policies on international government bonds is less clear (Jarocinski, 2022). Kearns et al.
(2018) find significant spillovers from ECB announcements and Curcuru et al. (2018) document that US and European government
bond yields also co-move around these actions. Jarocifiski (2022) complete these results while he documents that spillovers of
ECB interest rate shocks are smaller because they are conditional on the integration of European interest rates. Contrary to these
findings, Miranda-Agrippino and Nenova (2022) document comparable magnitudes of spillovers related to the two central bank’s
monetary policy decisions. Based on these results, it is worth examining how the Fed and ECB monetary policy decisions affect the
key participants of a sovereign bond-related network as well.

Hofmann and Takéts (2015), Albagli et al. (2019), Miranda-Agrippino and Rey (2020) and Lakdawala et al. (2021) all emphasize
that the Fed exerts a significant impact on the rest of the world’s fixed-income market through its monetary policy, which presents
itself in a dominant role at the yield-curve factor level in our network. However, as evidenced by the lead-lag effect of the Fed’s
interest rate politics, based on Kearns et al. (2018), Jarocinski (2022) and Miranda-Agrippino and Nenova (2022) this dominance
can vary over time. Therefore we also examine the ECB monetary policy decisions.

In Sections 5.1 and 5.2 we show that the US factors are the key participants in our network, considering the whole time frame, as
well as each subperiod. Upon further examination of the time series of these connections, based on Fig. B.3, we discover that these
yield curve factors are the key participants of the system from a dynamic perspective too. Fig. B.3 highlights that the dominance
of the US factors is time-varying; therefore, further economic drives can be behind these nodes’ dynamics. Since monetary policy
decisions have a great impact on the evolution of the yield curve, it is useful to investigate the linkage between the Fed’s and ECB’s
easing and tightening decisions and the dominance of US factors.

In the lower part of Fig. 6 the time series of the policy rates set by the Federal Reserve (Fed, red line) and the European Central
Bank (ECB, blue line) are visible.!* Orange shading represents those periods when Fed cuts interest rates, while during green shading,

14 The rates for the Fed and ECB are collected from https://fred.stlouisfed.org and https://www.ecb.europa.eu respectively.
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Fed raises interest rates. Additionally, with cyan filling, the only period is noted when the ECB changes rates while the Fed does not.
The upper part of Fig. 6 represents the ratio of the outgoing USA connections (Level, Slope, Curvature summarized) compared to the
aggregated outgoing connections of the entire network. Fig. 6 shows that the Fed, in general, leads the ECB and this phenomenon
is in line with the hypothesis that the Fed is the leader of the interest rate cycle. According to Brusa et al. (2020), the Fed is the
global central bank and generally leads the other central banks in setting monetary policy.

Fig. 6 highlights that the US dominance decreases in the sovereign yield curve network when Fed cuts rates. Furthermore, its
dominance reaches the global minimum when the interest rate cycle is led by the ECB (during the years 2011-2014). Based on
Fig. 6, during interest rate hiking cycles, the dominance of the US factors also change, however, from 2016 to 2019, the dominance
increased sharply, while a slight decrease is experienced between 2004 and 2006.

6. Concluding remarks

This study investigates the network of sovereign yield curves of 12 developed countries. We decompose the term structure of
the interest rates into the Level, Slope, and Curvature factors using the dynamic Nelson and Siegel (1987) model as in Diebold and
Li (2006). The connections between the latent yield curve across countries are measured using the Toda and Yamamoto (1995)
method, which is suitable for cointegrated time series. Our examination also covers cross-factor relations. For deeper understanding
the structural changes and identify the key participants in the sovereign yield curve network, we analyze the connections on factor,
country, and node levels too. Our timeframe lasts over a 23-year long interval; therefore, we can compare two global (GFC and
C19) and two local (DCB and ESDC) crises.

When considering the whole time period, the Slope subnetwork has the most connections of the three subsystems followed by
Curvature and Level. Additionally, we claim that there is a significant amount of linkage between the three subnetworks on factor
level, so cross-connections are not negligible. The number of total connections in the network increases during turbulent periods.
During the two global crises (GFC and C19) the sovereign yield curve network is denser than in the two local (DCB, ESDC) cases.
We found that the USA factors are the key participants in our network, considering the whole time frame, as well as each subperiod
and the dynamic analysis too, but this behavior is time-varying. Although the dominance of the USA factors is independent of the
characteristics of the subperiod (whether it is a calm, local or global crisis) it is affected by the Fed’s and ECB’s monetary policy
decisions. The dominance of the US factors peaks if the Fed leads the hiking cycle and reaches its minimum when the interest rate
cycle is led by the ECB.

Our results are relevant for academics, central bankers, and policy makers by providing insights into the behavior of sovereign
yield curve networks during turbulent and tranquil periods. Our findings related to Fed and ECB monetary policy decisions are
important for central bank policymaking. Identifying the key participants provides insights into the dynamics of the market.
Specifically, monitoring the activities of these players can aid policymakers’ assessment of the market conditions, identify potential
risks, and detect any deviation from tranquil periods that may impact market stability. All network participants have linkages with
various financial institutions and other asset classes, locally and globally. Policymakers need to be aware of these connections to
assess systemic risk and the potential for contagion in times of market stress. Overall, our results about the influence of the Fed and
the ECB, the two key players, can be useful for policymakers in smaller economies for managing their macroeconomic and monetary
policy decisions. Essentially smaller economies have to be aware of their network exposure to key players to be prepared. Identifying
the important players can help policymakers anticipate and mitigate the likely spillover effects emanating from disruptions or shocks
from the key participants.
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