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A B S T R A C T

Network analysis opens new horizons for data analysis methods, as the results of ever-developing network
science can be integrated into classical data analysis techniques. This paper presents the generalized version
of network-based dimensionality reduction and analysis (NDA). The main contributions of this paper are as
follows: (1) The proposed generalized dimensionality reduction and analysis (GNDA) method already handles
low-dimensional high-sample-size (LDHSS) and high-dimensional and low-sample-size (HDLSS) at the same
time. In addition, compared with existing methods, we show that only the proposed GNDA method adequately
estimates the number of latent variables (LVs). (2) The proposed GNDA already considers any symmetric
and nonsymmetric similarity functions between indicators (i.e., variables or observations) to specify LVs. (3)
The proposed prefiltering and resolution parameters provide the hierarchical version of GNDA to check the
robustness of LVs. The proposed GNDA method is compared with traditional dimensionality reduction methods
on various simulated and real-world datasets.
1. Introduction

In recent years, handling high-dimensional data that contain tens
of thousands of variables has become an increasingly frequent and
important problem in many fields of modern scientific research (see,
e.g., Li, Li, Lian, & Tong, 2017; Stippinger et al., 2023). However, the
disadvantages of working in such a high-dimensional space are the
increased prediction error, difficult interpretability, and high computa-
tional costs (Gao, Song, Liu, Shao, Liu, & Shao, 2017; Migenda, Möller,
& Schenck, 2021). To avoid these problems, or in other words, to alle-
viate the ‘‘curse of dimensionality’’ (Bellman, 1957), high-dimensional
data are typically transformed into a lower-dimensional representation.
In practice, this challenging task is mainly performed by traditional
– typically linear – methods such as Principal Component Analysis
(PCA) (Abdi & Williams, 2010; Aversano, Li, Gicquel, & Parente, 2018;
Jolliffe, 2002; Nakayama, Yata, & Aoshima, 2021) and Principal Factor
Analysis (PFA) (Ali, Ahmed, Ferzund, Mehmood, & Rehman, 2017;
Khosla, 2004) or by a neural-network-based method such as Variational
Autoencoder (VAE) (Mahmud & Fu, 2019; Mahmud, Fu, Huang, &
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Masud, 2018; Mahmud, Huang, Fu, Ruby, & Wu, 2021), which can
handle nonlinear relationships as well.

Dimension reduction is even more challenging if the number of ob-
servations is less than the number of features. This phenomenon is often
referred to as the High-Dimension Low-Sample-Size (HDLSS) problem.
Traditional methods such as PCA and PFA cannot be applied effectively
in this situation (Mahmud & Fu, 2019). However, approaches have
been developed to handle the dimension reduction problem under the
HDLSS dataset, such as low-rank tensor network decompositions (Ci-
chocki et al., 2016, 2017), deep generative models (Mahmud et al.,
2021), ensemble learning methods (Dettling & Bühlmann, 2003), or
alternatively, Social Network Analysis (SNA)-based methods, such as
Network-based Dimensionality Reduction and Analysis (NDA) (Kosz-
tyán, Kurbucz, & Katona, 2022), can also be applied for dimensionality
identification and reduction.1 To our knowledge, no dimensionality re-
duction method would perform equally well in both the Low-Dimension
High-Sample-Size (LDHSS) and HDLSS datasets. In addition, in existing
dimensionality reduction methods, one of the most crucial steps is
estimating the number of latent variables (LVs).
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Most existing dimensionality reduction methods employ a symmet-
ric measure, such as the correlation between variables, for grouping
variables to specify latent variables. Therefore, they are not work-
ing on any asymmetric similarities, such as semipartial correlations,
which determine whether indirect effects between variables should be
filtered (Pop, Ciulca, et al., 2013). To fill this gap, in this paper, a
generalized version of NDA, called Generalized Network-based Dimen-
sionality Analysis (GNDA), is presented and compared with traditional
dimensionality reduction methods on various simulated and real-life
datasets. First, the proposed method calculates the similarity network
of the indicators (i.e., either variables or observations) and then groups
them by using modularity-based community detection. By combining
the eigenvector centrality (EVC) of the indicators, a LV is specified for
each module. Finally, variable selection is optimally performed based
on the relationship of variables to their LVs. According to the results,
the proposed method can be effectively applied to both LDHSS and
HDLSS data structures; meanwhile, it extends the original NDA with
a hierarchical version of dimensionality reduction; it generalizes the
applicable similarity functions between indicators; and identifies the
proper number of LVs.

The main contributions of the paper are listed below:

• The paper proposes a novel method called GNDA that can handle
different types of datasets, such as LDHSS and HDLSS, extends
similarity measures, and estimates the number of LVs accurately.

• The paper introduces a prefiltering and resolution parameter
that can split communities and provide a hierarchical version of
GNDA, which offers subcategories of indicators and a robustness
check for LVs.

• The paper compares GNDA with several existing dimensionality
reduction methods in simulated and real-life databases and shows
that GNDA produces the clearest set of indicators.

The remainder of this paper is organized as follows. Section 2
presents the background of the literature. Section 3 shows the employed
methods. Section 4 presents the simulated and real-world datasets and
methods employed in this study. Sections 5 and 6 compare and discuss
the results of GNDA with traditional dimensionality reduction methods.
Section 7 provides a summary and conclusions. Finally, future research
directions are suggested in Section 8.

2. Background

Dimensionality reduction techniques play a crucial role in trans-
forming high-dimensional data into a more manageable form while
retaining essential information. Among these techniques, both Explana-
tory Factor Analysis (EFA) (Fabrigar & Wegener, 2011) and PCA stand
out as widely used methods for this purpose, aiming to approximate
the underlying covariance structure of the data.

EFA and PCA both seek to capture LVs, which succinctly represents
the common variance shared among a set of original variables. The
primary focus of EFA lies in determining whether the data conform to a
predefined structure, making it a powerful tool for uncovering the un-
derlying factors influencing the observed variables. On the other hand,
PCA condenses the original variables into a smaller number of compo-
nents, enabling effective dimensionality reduction and simplification of
complex data.

A variation of EFA is Common Factor Analysis (CFA), also known as
PFA (Kim, 2008). PFA strikes a balance between Factor Analysis (FA)
and PCA, aiming to identify a minimal set of factors that account for
the shared variance among variables. In PFA, the relationship between
factors and observed variables is expressed through the equation 𝐙 =
𝐅𝐋+𝐔, where 𝐙 is the original data matrix, 𝐅 is the factor score matrix,
𝐋 is the factor loading matrix, and 𝐔 captures unique variances. Unlike
CA, which emphasizes maximizing common variance, PFA acknowl-
dges the presence of unique variances and focuses on explaining the
2

orrelation between variables. f
Estimating the appropriate number of latent variables is a pivotal
tep in both PCA and PFA. Various methods have been proposed for
his purpose, each with its own heuristics and rules. Commonly used
riteria include Kaiser’s Rule (K1), Minimum Average Partial (MAP)
orrelation (Velicer, 1976), MAP2000 (Velicer, Eaton, & Fava, 2000),
nd Minimal cumulative variance explained (MCVE) (Hair, William,
arry, & Rolph, 2020), among others. It is recommended to employ
ultiple methods to determine a suitable number of LVs, given their

endency to suggest different solutions.
While traditional methods such as EFA and PCA have been foun-

ational in dimensionality reduction, recent advancements have intro-
uced more versatile techniques, such as neural networks. These newer
pproaches offer unique advantages, addressing limitations posed by
inear assumptions. The t-distributed stochastic neighbor embedding
t-SNE) leverages a nonlinear approach to mapping high-dimensional
ata into a lower-dimensional space (Liu et al., 2021), emphasiz-
ng the preservation of local data relationships. As nonlinear exten-
ions of PCA, Kernel Principal Component Analysis (KPCA) (Schölkopf,
mola, & Müller, 1997, 1998) have been proposed but may not per-
orm as well on LDHSS datasets. Sparse Principal Component Analysis
SPCA) enforces sparsity constraints on principal components (Zhang,
’Aspremont, & El Ghaoui, 2012), focusing on the most informa-
ive variables while ignoring less relevant ones. Non-Negative Matrix
actorization (NNMF) factorizes matrices into lower-rank nonnega-
ive components, offering an alternative perspective on dimensionality
eduction (Wang & Zhang, 2012).

Feature representation and dimensionality reduction are outstand-
ngly important in machine learning problems such as image clas-
ification. Zhang et al. (2017) proposed a Discriminative Elastic-Net
egularized Linear Regression (DENLR) model that uses a slack for-
ulation of regression targets to provide a more feasible regression

cheme by enlarging the margins between classes. Later, Zhang et al.
2017) developed a new Marginally Structured Representation Learning
MSRL) framework that improves the reliability of the regression model
y utilizing the latent explanatory factors from the data and uncov-
ring the latent correlation across the features. In machine learning
pproaches, the representation of the training and testing set can also
e enhanced by the Block-Diagonal Low-Rank Representation (BDLRR)
ethod, which enables the elimination of correlation between different

lasses and improves the accuracy of classification. Although these
ethods have proven to be very effective in image classification, they

ocus on supervised or semisupervised problems, and the extension to
nsupervised problems has not yet been provided.

While these recent methods present promising alternatives, they
ay lack robust mechanisms for determining the optimal number of

atent variables. Moreover, they might not fully accommodate the
omplexities of both the LDHSS and HDLSS datasets. Additionally, some
echniques, such as VAE and NNMF, may require users to specify the
umber of dimensions or factors.

Introducing the proposed GNDA, which uniquely fulfills multiple
equirements: (1) determination of suitable latent variable count, (2)
pplicability to diverse datasets, (3) accommodation of symmetric and
onsymmetric similarities, and (4) incorporation of an Automated Fea-
ure Selection (AFS) procedure. By addressing these aspects, GNDA
resents a comprehensive and flexible solution for dimensional reduc-
ion analysis.

Given the ubiquity of PCA and PFA as standard approaches for
imensionality reduction and their compatibility with various data
ypes, it is prudent to benchmark the proposed GNDA against these
ethods. This comparison is justified by the extensive body of research

upporting PCA and PFA in different scenarios, including their per-
ormance with LDHSS and HDLSS datasets (Jung & Marron, 2009).
oreover, the existence of AFS procedures for PCA and PFA (Abonyi,
zvetkó, Kosztyán, & Héberger, 2022) and their successful application

n artificial datasets (Van Der Maaten, Postma, & Van den Herik, 2009)

urther underscores their relevance for comparison.
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Fig. 1. The main steps of the proposed GNDA algorithm.
3. Methods

In this section, GNDA is presented in detail and then compared with
two traditional dimensional reduction methods, PCA and PFA. Since
these two methods are widely applied in statistical analyses, in this
section, we focus only on their main features.

The proposed GNDA has five steps (see Fig. 1). The last two steps
are optional, and these steps support feature selection. After specifying
hyper and prefiltering parameters (step 0), the similarity graph of vari-
ables is specified (step 1) and communities of variables are determined
(step 2). In step 3, LV is specified in each community based on the EVC
of the standardized variable in the similarity graph. In the last steps,
outliers are detected and dropped from the communities.

In this paper, we generalize the original method and therefore
propose several extensions. We extend NDA to make a hierarchical
decision forest of latent variables. GNDA generalizes the phase of
identifying modules of variables to consider directed relationships. This
extension allows specifying LVs on partial and semipartial correlation
or regression networks.

Step 1. Specification of the similarity graph. Let 𝐺( ,,) be a di-
rected/unidirectional weighted graph of the similarity graph, where 
is the node set,  is the arc set, and  is the weight set. Each node
𝑖 ∈  represents a variable 𝑖, 𝑖 = 1, 2,… , 𝑛. The weight of an arc 𝑎𝑖,𝑗 ∈
 is a positive similarity function between two variables, such as the
square correlation 𝑟𝑖,𝑗 = 𝑤𝑖,𝑗 ∈  . A minimal similarity value 𝑟min can
be specified to make the graph sparse and to ignore low correlations.
Loops (𝑎𝑖,𝑖 ∉ ) are neglected. The original NDA implemented four
kinds of correlation: Pearson, Spearman, Kendall, and distance corre-
lation, while GNDA extended them to partial and semipartial versions
and handled both symmetric and asymmetric distance matrices.

Pearson correlation is suitable for interval variables and detects
linear relationships, while Spearman’s and Kendall’s correlations detect
monotonic relationships and can be used for ordinal variables. Distance
correlation has the advantage that it is zero if and only if the variables
are independent (Székely & Rizzo, 2013), but it is computationally
expensive and limited in high-dimensional datasets.

PCA, PFA, and GNDA can use correlation matrices instead of indi-
cators; therefore, any symmetric distance function can be used. GNDA
also handles nonsymmetric similarities/distances, such as partial cor-
relations, regressions, and other structural equation models. In this
case, we use the term similarity graph instead of correlation graph.
Nonsymmetric similarities provide a directed graph; however, all steps
of the original NDA can be extended to handle it.

The proposed GNDA allows the specification of minimal similarity
weights as a threshold. The increase in the minimal similarity value
provides a sparser graph and more communities in the second step;
hence, more latent variables are obtained. The set of latent variables
can be organized into a dendrogram of latent variables.

Step 2: Community detection. Modularity-based community detection
algorithms minimize Eq. (1).

𝑀 = 1
2𝐿

∑

𝑖,𝑗

(

𝑟𝑖,𝑗 − 𝛾𝑟̂𝑖,𝑗
)

𝛿(𝐶𝑖, 𝐶𝑗 ), (1)

where 𝑀 is the modularity value; 𝑟𝑖,𝑗 is the edge weight between node
𝑖 and node 𝑗; 𝑟̂ is the expected weight based on the null model
3

𝑖,𝑗
of Newman (2006); 𝐿 is the total weight in the network; 𝛾 is a constant
(default 1); and 𝛿 is 1 if node 𝑖 and node 𝑗 belong to the same
community and 0 otherwise. For directed similarity graphs, Eq. (2)
must be minimized.

𝑀 = 1
𝐿

∑

𝑖,𝑗

(

𝑟𝑖,𝑗 − 𝛾𝑟̂𝑖,𝑗
)

𝛿(𝐶𝑖, 𝐶𝑗 ), (2)

The result of community detection is a partition of the graph.
Isolated nodes and low-correlated variables are grouped in small com-
munities; therefore, the minimal community size (𝑛𝑐min) is specified.
The result of modularity-based community detection is 𝑁 modules,
which are disjoint subgraphs of the graph. Formally, 𝐶1, 𝐶2,… , 𝐶𝑁 ∈
𝐺,𝐶𝐼 ∩ 𝐶𝐽 = ∅, 𝐼, 𝐽 ∈ 1,… , 𝑁,∪𝑁

𝐼∶=1𝐶𝐼 ⊆ 𝐺, and |𝐼 | ≥ 𝑛𝑐min for all
𝐶𝐼 (𝐼 ,𝐼 ,𝐼 ) ∈ 𝐺.

The 𝛾 parameter controls the resolution of community detection.
Modularity optimization with the null model 𝑟̂𝑖,𝑗 has a resolution limit,
which means it fails to identify small communities in large networks
and communities with less than (

√

𝐿∕2−1) internal links (Fortunato &
Barthélemy, 2007). Reichardt and Bornholdt (RB) generalized the mod-
ularity function by introducing an adjustable 𝛾 parameter (Reichardt &
Bornholdt, 2004, 2006) to handle this problem. The identified com-
munities depend on the null model and the resolution parameter (𝛾).
The null model of Newman (2006) is based on a configuration model,
where an arc in a null model is calculated by the product of incoming
and outgoing arcs divided by all links. The adjacency matrix of a null
model is a contingency table of conditional independence. Therefore,
modules identify communities where the connections (i.e., similarities)
between nodes (i.e., variables) are denser than expected. Moreover,
increasing the resolution coefficient (𝛾), such as increasing the thresh-
old of minimal similarities, makes a sparse graph and breaks down
the communities. In this way, a hierarchy of communities can be pro-
vided, which specifies a dendrogram. Thus, all the employed Louvain
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and Leiden (Traag,
Waltman, & van Eck, 2019) community detection algorithms provide a
disjoint set of variables (i.e., modules).

Step 3: Specification of the latent variables. LV𝐼 is specified within
module 𝐼 as a linear combination of the EVC value and the standardized
variable 𝑣𝑖 (see Eq. (3)).

𝐿𝑉𝐼 =

∑

𝑖∈𝐶𝐼
𝑐𝑖𝑧𝑖

∑

𝑖∈𝐶𝐼
𝑐𝑖

, (3)

where 𝐿𝑉𝐼 is the LV for module 𝐶𝐼 ; 𝑐𝑖 is the EVC value of variable 𝑣𝑖
and 𝑧𝑖 = (𝑣𝑖 − 𝜇𝑣𝑖 )∕𝜎𝑣𝑖 is the standardized variable of variable 𝑣𝑖.

EVC is preferred because of its beneficial properties, such as
anonymity,2 symmetry,3 positive homogeneity,4 and robustness.5 In
addition, in directed and undirected graphs, EVC can be calculated.
Let 𝐴 = (𝑎𝑘,𝑙) be the adjacency matrix. The EVC, 𝑐𝑘, and the score of
vertex 𝑘 can be defined as:

𝑐𝑘 = 1
𝜆

∑

𝑙∈𝑁(𝑘)
𝑐𝑙 =

1
𝜆
∑

𝑙∈𝐺
𝑎𝑘,𝑙𝑐𝑙 , (4)

2 The scores of nodes are unaffected by how they are labeled.
3 Symmetric nodes receive the same score.
4 This means homogeneity for all positive values.
5 This indicates invariance after adding an average node.
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where 𝑁(𝑘) is a set of neighbors of 𝑘, and 𝜆 is a constant.
Both the EVC value and the eigenvalue in PCA are based on eigen-

alues and eigenvectors, which are used to analyze complex systems.
n eigenvector of a matrix is a nonzero vector that changes by a
calar factor when multiplied by the matrix. The scalar factor is the
igenvalue. In eigenvector centrality, the eigenvector measures the
mportance of a node in a network. It is obtained by finding the
igenvector corresponding to the largest eigenvalue of the network’s
djacency matrix. The larger the eigenvector centrality value of a node
s, the more important that node is in the network.

In PCA, the eigenvalue measures the strength of the relationship
etween variables in a dataset. It is obtained by representing the dataset
s a matrix, where the rows are data points and the columns are
ariables. The larger the eigenvalue is, the stronger the relationship
etween the variables in the dataset. The similarity between the eigen-
ector centrality value and the eigenvalue in PCA is that both are based
n eigenvalues and eigenvectors, and both measure the importance or
trength of a relationship in a complex system. However, they are used
nd measured in different contexts.

tep 4: Periphery analysis (optional). AFSs suggest two phases of vari-
ble selection. First, variables with EVC values below a threshold
min are dropped, and LVs are recalculated without peripheral nodes.
hese nodes are at the edge of the network, which results in low
entrality values. However, this does not imply that these variables are
nimportant but only that their influence on the latent variable is low.
herefore, similar to omitting variables with low communality in PCA,
e also omit those variables that do not fit the latent variable or have

ow contributions to it. One of the advantages of EVC is that it works
or both directed and undirected graphs. Moreover, the interpretation
f EVC is close to the interpretation of factor loadings in PCA or
FA, so this value is an ideal weight for calculating latent variables.
higher centrality value indicates a higher weight for the indicator.

mportantly, this step does not depend on any correlation calculation.
he removal of peripheral nodes (i.e., , indicators) of modules of the
imilarity graph can be interpreted similarly as dropping indicators
ith low communalities in a squared correlation graph.

tep 5: Communality analysis (optional). Step 5 has two substeps and
equires the similarities between the indicators to be correlations. The
ommunality value for indicator 𝑖 is the highest square correlation
etween 𝑖 and any LV. Iteratively, the indicator with the lowest com-
unality value below a threshold (ℎmin) is dropped, and all LVs are

ecalculated. Then, all square correlations between each indicator and
ach LV are analyzed. If the difference between the two highest square
orrelations for indicator 𝑖 is below a threshold (𝐶min), 𝑖 is a common in-
icator. The common indicators with the lowest communality value are
ropped one by one in an iterative manner, and LVs are recalculated.
his step is optional and should be skipped if the correlation between

ndicators cannot be calculated or is meaningless for this analysis. This
tep can be used in both PCA and PFA (see an application for AFS in
bonyi et al., 2022).

tep 0: Prefiltering (optional). The number of latent variables is not
ffected by the thresholds of the minimal EVC value (𝑐min), minimal
ommunality value (ℎmin), or common communality value (𝐶min). How-
ver, the thresholds of the minimal correlation (or similarity) value
𝑟min) and resolution value of the null model (𝛾) can specify more
ommunities and latent variables.

Increasing (𝑟min) drops connections or ignores similarities between
odes below this threshold. The graph becomes sparse and splits into
ore components. Therefore, communities are also split, and more

atent variables can be specified.
Similarly, the increase in 𝛾 detects smaller communities and splits

he original communities into smaller ones (Reichardt & Bornholdt,
004, 2006). These two parameters are called prefiltering parameters.

The increasing value of these (hyper)parameters provides a dendro-
gram of GNDA and provides a hierarchical version of GNDA, revealing
4

the hierarchical structure of the latent variables. o
4. Experimentation

We tested the proposed method on two datasets. The first contains
simulated samples to test dimensionality reduction methods, such as
PCA, PFA, and GNDA, while the second is a real-world dataset called
Communities and Crime (Redmond & Baveja, 2002) and is freely avail-
able at https://archive.ics.uci.edu/ml/datasets/communities+and+cri
me(accessed: 13 April 2023). This dataset includes variables relevant
to per capita violent crime rates in different communities of the United
States.

Generating simulation dataset. Our goal in generating the simulation
database was to generate matrices where the number of independent
components can be known in advance. Therefore, given the number of
observations (𝑛), we can obtain 𝑏 independent orthogonal vectors by
dividing the n-element vector into 𝑏 blocks. Then, choosing a block,
we write ones in that block and zeros in the others. These will be our
basis vectors (see Eq. (5)).

𝐞1 = (

⌈𝑛∕𝑏⌉
⏞⏞⏞⏞⏞⏞⏞
1, 1,… , 1, 0, 0,… , 0)𝑇

…
𝐞𝑏 = (0, 0,… , 0, 1, 1,… , 1

⏟⏞⏞⏟⏞⏞⏟
⌈𝑛∕𝑏⌉

)𝑇
(5)

These vectors are orthogonal. All dimensionality reduction methods
must identify these vectors as independent vectors. We obtain a block
matrix if each basis vector is copied ⌈𝑚∕𝑏⌉ times, where 𝑚 is the number
of variables.

The proposed simulation dataset contains generated block matrices.
At the generated block matrices, the number of rows (𝑛) (i.e., the
number of observations), the number of columns (𝑚) (i.e., the number
f variables), and the number of blocks (𝑏) (i.e., the number of factors)
an be specified. Eq. (6) shows an example for 6 by 5, 0–1 block
atrices.

(6×5)
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐞1
⏞⏞⏞
1 1 1

𝐞2
⏞⏞⏞
0 0

1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐁(6×5)
3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐞1
⏞⏞⏞
1 1

𝐞2
⏞⏞⏞
0 0

𝐞3
0

1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6)

Suppose all values are equal to 1 within all 𝑏 blocks, but the remain-
ing values are 0. In that case, the block matrix specifies 𝑏 uncorrelated
factors since both the vectors of columns and rows provide orthogonal
vectors. Note that the rows and columns of the block matrices can be
interchanged during the analysis. Within a block, the row and column
vectors are the same, while between blocks, the rows and columns are
orthogonal. Thus, for 𝑛 ≫ 𝑚, we obtain a binary LDHSS dataset, while
its transpose becomes a binary HDLSS dataset.

Eq. (7) is used to generate block matrices for testing dimensional
reduction methods.

𝐌(𝑛×𝑚)
𝑏,𝜆 = 𝐁(𝑛×𝑚)

𝑏 − 𝐁(𝑛×𝑚)
𝑏 ◦𝐔(𝑛×𝑚)∕ exp(𝜆), (7)

where 𝐌 is the result block matrix, 𝐁 is an 𝑛 by 𝑚 0–1 block matrix,
where the number of blocks is 𝑏; 𝐔(𝑛×𝑚) is the 𝑛 by 𝑚 is a random
matrix, where values follow a 𝑈 (0, 1) uniform distribution; ◦ represents
the elementwise multiplication of matrices; and 𝜆 ∈ R is the so-called
exponent of exponential smoothing. If 𝜆 → ∞ ⇒ 𝐌(𝑛×𝑚)

𝑏,𝜆 → 𝐁(𝑛×𝑚)
𝑏 . The

oise follows the uniform distribution scaled by 1/exp(𝜆).
Changing 𝜆 sets the noise level. PCA and PFA are very sensitive to

utliers. However, there are no extreme outliers due to employing a
niform distribution. Fig. 2 shows the Pearson’s correlogram6 of the

6 A correlogram is a graphical representation of a correlation matrix of the
riginal data. Therefore, the number of rows and columns equals the number
f variables.
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Fig. 2. Correlation matrix of simulated samples, where the number of rows/observations (𝑛) is 300, the number of columns/variables is (𝑚) 50, the numbers of blocks (𝑏) are 2
and 5, and exponential smoothing values (𝜆) are 1 and −1.
generated dataset (𝐌(𝑛×𝑚)
𝑏,𝜆 ), where the number of rows is 𝑛 = 300,

and the number of columns is 𝑚 = 50. The numbers of blocks are
𝑏 = 2 and 𝑏 = 5, and the exponents of smoothing are 𝜆 = 1 and 𝜆 =
−1. The correlations are between [−1,1]. Bluish cells indicate positive
correlations, while reddish cells represent negative correlations. Darker
cells indicate higher absolute correlations. A correlation matrix of a
block matrix is also a block matrix. Nevertheless, in this case, the blocks
are square matrices because the number of rows and the number of
columns are equal to each other.

Fig. 2 shows that the decrease in the exponent 𝜆 decreases the
correlation between variables and increases the noise. The correlogram
shows that Fig. 2(a–b) indicates two groups, while Fig. 2(c–d) indicates
five groups of variables. A dimensional reduction method should find
these groups of variables. The goodness of the dimension reduction
methods can be compared in terms of how many LVs (which represent
a group of variables) are found and whether adequate original variables
belong to the adequate LV.

Employing a real-life dataset. In the case of the Communities and Crime
dataset, the per capita number of violent crimes was considered a
dependent variable (𝑦). This variable was separated from the dataset.
The remaining (independent) variables (𝑚 = 124) were grouped into
LVs by the PCA, PFA, and GNDA methods. These variables characterize
the community with population and law enforcement data, such as
the per capita number of police officers or the percentage of officers
assigned to drug units.

The per capita violent crime variable was calculated using popula-
tion, and the sum of crime variables considered violent crimes in the
United States: murder, rape, robbery, and assault. There was apparently
some controversy in some states concerning the counting of rapes.
These resulted in missing values for rape, which resulted in incorrect
values for per capita violent crime. These cities are not included in the
dataset. Many of these omitted communities were in the midwestern
United States.

All numeric data were normalized into the decimal range of 0.00
to 1.00. Attributes retained their distribution and skew. All cities were
geo-coded to visualize the spatial distribution of the score values.

Although GNDA proposed several extensions and generalizations of
the original NDA, some of these new features cannot be compared with
traditional dimensionality reduction methods, such as PCA and PFA;
therefore, Section 5.1 focuses on the applications in both the HDLSS
5

and LDHSS cases. In both cases, one of the most crucial steps of the
analysis is to estimate the number of LVs. To be able to compare
which method estimates the adequate number of LVs, LDHSS and
HDLSS datasets, i.e., block matrices, were generated. In these cases, the
number of LVs was known in advance. In this way, we can accomplish
two tasks: (1) determine which method estimates the adequate number
of LVs in the case of different noises and (2) assess whether the
indicators were assigned to appropriate LVs by the methods or not. This
result shows that only the proposed GNDA method finds adequate
numbers of LVs.

In Sections 5.2 and 5.3, the results of the proposed GNDA and
those of the traditional PCA and PFA on the real-world dataset are
compared. Because GNDA provides the number of latent variables and
the simulated data, this estimate seemed more reliable; therefore, we
consider the number of LVs recommended by GNDA as a guideline
for the other methods as well. Section 5.4 introduces the opportunity
for hierarchical analysis by tuning prefiltering parameters. All results
are compared with the PCA and PFA methods. However, since only
GNDA can handle nonsymmetric similarities, these results are shown
in the appendix. The original NDA was implemented in R and has been
accepted by the CRAN community (see https://cran.r-project.org/web/
packages/nda/index.html, accessed: 13 April 2023). The GNDA can be
downloaded from GitHub (see https://github.com/kzst/nda, accessed:
13 April 2023).

5. Results

5.1. Comparing dimension reductions for simulated block matrices

In the first simulation, four block matrices, such as 𝐌(𝐧(=𝟑𝟎𝟎)×𝐦(=𝟓𝟎))
𝐛=2,𝜆=𝟏 ,

𝐌(𝐧(=𝟑𝟎𝟎)×𝐦(=𝟓𝟎))
𝐛=𝟐,𝜆=−𝟏 ,𝐌(𝐧(=𝟑𝟎𝟎)×𝐦(=𝟓𝟎))

𝐛=𝟓,𝜆=𝟏 ,𝐌(𝐧(=𝟑𝟎𝟎)×𝐦(=𝟓𝟎))
𝐛=𝟓,𝜆=−𝟏 , are generated (see

their correlation matrices in Fig. 2). Fig. 3 shows the scree plots of
PCA and PFA of the generated matrices.

Fig. 4 shows the number of estimated LVs. The most commonly used
method, Kaiser’s rule, is used in the case of PCA and PFA. Fig. 4(a)
shows the LDHSS case, where the number of observations (𝑛 = 500) is
10 times greater than the number of variables (𝑚 = 50), while Fig. 4(b)
shows the HDLSS case, where the number of observations (𝑛 = 50) is
ten times less than the number of variables (𝑚 = 500). In both cases,
the number of blocks is five (𝑏 = 5), which must be estimated.

https://cran.r-project.org/web/packages/nda/index.html
https://cran.r-project.org/web/packages/nda/index.html
https://cran.r-project.org/web/packages/nda/index.html
https://github.com/kzst/nda
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Fig. 3. Scree plots of simulated samples.

Fig. 4. Number of estimated LVs for simulated data.
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Table 1
Estimated number of LVs (𝑛 = 500, 𝑏 = 5, 𝜆 ∈ {−1, 1}).

Methods 𝜆 𝑚

50 250 500 1000 5000

PCA (K1) 4 4(!) 4(!) 4(!) 4(!)

PFA (K1) 1 4(!) 4(!) 4(!) 4(!) 4(!)

GNDA 5 5 5 5 5

PCA (K1) 18 92 176(!) 317(!) 499(!)

PFA (K1) −1 4 19 74(!) 183(!) 499(!)

GNDA 5 5 5 5 5

Notes: (!): Results with warnings.

Fig. 4(a) shows that in the case of PCA K1 and MCVE, between
ntervals 𝜆 ∈ [−1.5,−0.3], the number of LVs is overestimated, while

PFA K1 and other methods underestimate the number of LVs in all
cases, especially in the interval between 𝜆 ∈ [−1.0,−0.5]. In the case
f HDLSS (see Fig. 4(b)), the number of LVs is overestimated if 𝜆 < 0.5
nd underestimated if 𝜆 > 0.5.

Although the number of factors (or the number of LVs) is a required
arameter both for PCA and for PFA, too, which should be specified
efore running these methods. The scree plot can help to estimate the
umber of factors because the eigenvalues of the factors should be
reater than 1 (K1).

Fig. 3 shows that in the case of positive, such as the 𝜆 = 1 exponent
nderestimate, while negative, such as 𝜆 = −1 can overestimate the
umber of LVs. Nevertheless, in contrast to PCA and PFA, GNDA
rovides the number of LVs well (see Fig. 5).

Fig. 5 shows Pearson’s correlation graphs for data matrices
(𝟑𝟎𝟎×𝟓𝟎)
𝟓,𝟏 ,𝐌(𝟑𝟎𝟎×𝟓𝟎)

𝟓,−𝟏 ,𝐌(𝟓𝟎×𝟑𝟎𝟎)
𝟓,𝟏 ,𝐌(𝟓𝟎×𝟑𝟎𝟎)

𝟓,−𝟏 matrices.
Fig. 5 shows that the proposed GNDA is insensitive to the low

ample size (see Table 1). GNDA always finds an adequate number of
actors, and all variables are associated with the right LV. Moreover,
f no more than 30% of the observations were left out randomly, then
fter 100 runs, in the case of 𝜆 = −1, for both LDHSS and HDLSS data,
he GNDA correctly identified the five latent variables in all cases, as
ell as the variables 99.6% in the case of LDHSS, and 98.2% in the

ase of HDLSS correctly assigned to an appropriate latent variable.
GNDA already work on asymmetric similarities between indicators.

ig. 6 shows that GNDA already finds an adequate number of LVs
nd classifies the variables well if indirect correlations are filtered by
artial (see Fig. 6(a)) or semipartial correlations (see Fig. 6(b)). Since
emipartial correlation provides an asymmetric correlation matrix, the
orrelation graph will be directed; nevertheless, the modules right back
he group of variables as modules (i.e., communities).

Due to both partial and semipartial correlation filter indirect effects,
ig. 6 shows that nodes within a module are more scattered. However,
n these simulations, thanks to the generated block matrices, the num-
er of blocks (here factors) was correctly determined for all smoothing
arameters (𝜆) and all examined row/column ratios. In the real case,
iltering out indirect effects makes the network sparser and thus can
ncrease the number of found modules.

Table 1 shows the comparison of the dimensionality reduction
ethods for the generated samples. The generation, the number of

locks (𝑏 = 5), and the number of observations (𝑛 = 500) are fixed, but
he number of columns (variables) was a tenth (𝑚 = 50), half (𝑚 = 250),
he same (𝑚 = 500), double (𝑚 = 1000), and tenfold (𝑚 = 5000). Two
xponents are applied, such as 𝜆 = 1 and 𝜆 = −1.

The applied psych package in R (see v. 2.2.9 Revelle, 2022) can
e used to implement the newest version of PCA and PFA, and we
lso obtained results with warnings for the high number of variables.
owever, both methods in all cases over- or underestimate the number
f LVs. The use of both PCA and PFA results in the determinant of the
moothed correlation being zero. Chi-square of observed residuals, and
he result is unreliable. GNDA always specified the number of variables
nambiguously. In addition, if the number of LV for all PCA and PFA
7

Table 2
Estimation of the number of factors to be retained in the model.

Methods Applied correlation methods

Pearson’s Spearman Kendall Distance

PCA (K1) 17 15 16 19
PFA (K1) 11 10 10 12
MAP 29 15 16 19
MAP(2000) 29 22 16 23
MCVE 1 1 1 1
GNDA 4 3 3 3

Note: Parallel Analysis (PA) cannot be calculated for this dataset.

was restricted to five, the accuracy of PCA and PFA was between 75
and 85%, depending on the smoothing factor, while the accuracy of
GNDA was 100% in all cases.

5.2. Results on the real-world dataset

Fig. 7(a) shows the scree plot of PCA and PFA, and Fig. 7(b,c) shows
biplots for PCA and PFA.

Fig. 7(a) suggests that 15 to 18 components (PCA) or 10 to 12
factors (PFA) should be specified. Many factors may also be because
there are more than just linear relationships between the variables.
Thus, a better estimate can be obtained by calculating the possible num-
ber of variables with a monotonic (such as Spearman’s and Kendall’s)
or general (such as distance) relationship-based correlation (see Ta-
ble 2). Since GNDA indicates three LVs for Spearman’s, Kendall’s,
and distance correlations, to compare results, three LVs are assumed
for all dimension reduction methods. Because of the great number of
variables, the information content of the biplots (Figs. 7(b,c)) is rather
limited. Nevertheless, all Figs. 7(b,c) show that neither PCA nor PFA
can separate all variables into three groups. Variables in the diagonals
of biplots correlate with at least two factors/components.

Table 2 shows the number of estimated factors based on different
correlation and latent variable estimation methods.

Table 2 shows that Pearson’s and distance correlations provide
the greatest number of factors. Since distance correlation can detect
general relationships between variables, this correlation method is
applied instead of the linear correlation method. Moreover, in 12%
of the runs, the GNDA method also identified three latent variables
in the case of Pearson correlation, while using the other correlations,
the GNDA method identified three latent variables even if 30% of
the observations were randomly removed. Since GNDA detected three
factors when all methods were compared, the number of factors was
assumed to be three. In contrast to the generated example, where we
knew the correct number of LVs in advance, here we did not know how
many LVs were worth examining. Different methods suggested different
kinds of LVs. K1, and MAP, and MAP(2000) methods suggested more
than 10 latent variables. That is why we calculated the five highest
communality indicators of the first 20 variables determined by the PCA
and PFA methods, as well as their possible interpretations, as shown
in the appendix. However, MCVE shows that the first LV explained
more than 60% of the variance, and GNDA only suggested 3 to 4 LVs.
Since nonlinear correlations were employed, to handle ordinal values
and nonlinear connections between variables, three LVs were assumed,
and all methods were compared for three LVs. The different dimension
reduction methods can only be compared if the same LV number was
employed for each method. Even with the same number of LVs, their in-
terpretation may differ depending on which indicators characterize the
LVs or vice versa. Nevertheless, in the case of different LVs, the variable
groups and the interpretation of the latent variables cannot correspond
to each other. Therefore, we assume three LVs in each method, which
was suggested by GNDA. In the main text, we only compare the results
of the correlation-based methods, such as PCA and PFA, with the results
given by GNDA. However, in the appendix, recent methods, such as the
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Fig. 5. Network plots for simulated samples. Figs. (a–b) provide the clustered correlation graph (network plot) for LDHSS, while Figs. (c–d) provide the HDLSS dataset.
results of NNMF, SPCA, KPCA, t-SNE, can also be found (see Table A.8).
At the same time, their reduction mechanism is either significantly
different from correlation-based methods (e.g., NNMF, t-SNE), and/or
there is no known method that would determine the number of LV.
Therefore, the three latent variables estimated by GNDA can only be
considered here with a possible assumption.
8

Fig. 8 shows the word cloud of the terms of the indicators. Col-
orful terms represent the top 10% words, and the size of the font is
proportional to their frequencies.

The frequencies of terms can help to interpret LVs. Fig. 8 shows that
the most frequent terms in PCA were income, household, people, and
police, and in the case of PFA, they were police, income, and people.
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Fig. 6. Communities on Pearson’s partial correlation graph on simulated samples (𝑛 = 300, 𝑚 = 50, 𝑏 = 5, 𝜆 = 1).

Fig. 7. Comparison of PCA and PFA on the Crime 1990 dataset.
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Fig. 8. Word cloud of the terms of the indicators in the case of three factors.
However, these terms were involved in other groups of variables (other
factors) with high frequency.

Fig. 9 shows the results of GNDA without feature selection. The
applied default 𝑐𝑢𝑡 = 0.3 parameter is only used when plotting the
variable correlation network to speed up the layout calculated by
the Force Atlas algorithm. A higher value provides fewer connected
graphs but faster calculation, while a lower threshold provides fewer
components. At the same time, the calculation of the final layout
requires more computational time.

Without variable (i.e., feature) selection, the most frequent terms
were income, police, and people. The correlation graph shows that LV1
(income) and LV2 (police presence) appeared cleaner, while the last one
was mixed.

Table 3 displays the top five indicators for all explored dimension
reduction methods with the greatest loading values. Based on the top
five indicators (which had the greatest communality values), the three
LVs were as follows: (1) income, (2) police presence, and (3) immi-
grants. The word cloud also detected the related term of immigration,
but the people word was more frequent in the description. At the same
time, since the top five indicators were related to immigration, LV3
is referred to as immigration. The first row in every block represents
Pearson’s correlation between LV and the output variable (crimes per
population). None of these methods claim to increase the correlation
between the latent and output variables. Nevertheless, the comparison
of the sign and the value of the correlations helps to validate the
content of the latent variables. Significant differences and even the
sign change in correlations between the given latent and the outcome
variables indicate different contents.

Compared to the word clouds of indicators (see Figs. 8–11), which
were based on the frequency of terms of the variable descriptions, the
analysis of the top five indicators (see Table 3) provided cleaner LVs.
The LVs could be interpreted as the (family/household) income, police
10
presence, and immigrants. PCA and PFA found exactly the same top
five indicators. Only Pearson’s correlations between the given LV and
the output variables were slightly different. The sign of the pairs of
correlations between a given LV and the outcome variable was the same
in all dimension reduction methods. There was no significant difference
between correlation values between methods in the cases of LV2 and
LV3, while GNDA provided a lower correlation value between LV1 and
the output variable than PCA and PFA. GNDA suggested several new
indicators in addition to the groups of top five indicators, such as
‘‘population for the community’’ (LV1); ‘‘percent of police officers that
are Caucasian/African American’’, and sworn full-time police officers
in field operations (LV2); and ‘‘percent of people who have immigrated
within the last 5 years’’, and ‘‘percent of family households that are
large (6 or more)’’. In this way, we obtained cleaner LV2 (police
presence) and LV3 (immigrants) than PCA or PFA provided. At the same
time, except for the first indicator (population for community) of LV1
in GNDA, all top indicators were related to income.

5.3. Employing feature selection

Feature selection is optional if the question is simply which indica-
tors belong to which LVs. At the same time, interpretation is facilitated
if those variables that are less correlated to other variables, or in other
words, are located on the periphery in a correlation graph measured
by EVC, are lower than a threshold (𝑐min, only in GNDA) and will
be dropped. Variables can also be dropped if the square correlation
(communality values) between LV and the indicator (original variable)
is lower than a threshold (ℎmin). If this (square) correlation is equally
great between a given indicator and more than one LV, then the
indicator is a common indicator; therefore, it should be dropped if the
difference between the communality is lower than a threshold (𝐶 ).
min
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Fig. 9. Word cloud of terms of the variable descriptions (a-c), distance correlation network of indicators (d), and biplot of latent variables (e) (GNDA without feature selection).
Table 3
Top five indicators with greatest loadings.

Method Income Police presence Immigrants

PC
A,

PF
A

Correlations (PCA) −0.4867 0.4456 0.2618
Correlations (PFA) −0.4835 0.4445 0.2625

Top 5 variables: 1. per capita income police average overtime worked percent of housing units with less than 3
bedrooms

2. percentage of households with wage percentage of people living in areas
classified as urban

percent of population who speak only
English

3. per capita income for caucasian mean people per household percent of family households that are large
(6 or more)

4. rental housing - upper quartile rent police operating budget percent of the population who have
immigrated within the last 10 years

5. median gross rent gang unit deployed percent of the population who have
immigrated within the last 8 years

GN
DA

Correlations (GNDA) −0.1538 0.4146 0.2694

Top 5 variables: 1. population for community police average overtime worked percent of the population who have
immigrated within the last 8 years

2. percentage of households with wage or
salary income

percent of police that are caucasian percent of the population who have
immigrated within the last 10 years

3. per capita income gang unit deployed percent of people who speak only English
4. median gross rent sworn full-time police officers in field

operations
percent of the population who have
immigrated within the last 5 years

5. median gross rent as a percentage of
household income

percent of police officers who are
African American

percent of family households that are large
(6 or more)
11
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Fig. 10. Word cloud of the terms of the indicators after feature selection (ℎmin = 𝐶min = 0.1) in the case of three factors.
Fig. 10 shows that after feature selection, the frequency of terms is
slightly changed. Later, income, police presence, and people/
immigrants can be identified by both PCA and PFA.

Fig. 11(a-c) shows the word cloud of terms of three LVs, where the
most frequent terms were similar to those of PCA and PFA: immigrants,
police, and income. The hyper parameters suggested by Kosztyán et al.
(2022) were 𝑐min = 0.065, ℎmin = 𝐶min = 0.1, indicating that the minimal
EVC must be higher than 𝑐min = 0.065, and the minimal communality
(ℎmin) and the common communality (𝐶min) values should be greater
than 0.1. In Fig. 11(d), black nodes represent the dropped indicators.

Fig. 11(a) shows that the group of indicators was cleaner, and
Fig. 11(d) shows that the selected indicators were closer. The increase
in minimal common communality eliminated the variable in biplot
diagonals (compare Figs. 9(d) and 11(d)), which further promotes the
interpretation.

Table 4 displays the top five indicators for all explored dimension
reduction methods with the greatest loading values. The head row
indicates the interpretation of the 3 LVs, namely, (1) income, (2) police
presence, and (3) immigrants. The first row in every block displays
Pearson’s correlation between LV and the output variable (crimes per
population).

After feature selection, PCA and PFA provided similar results but
not the same top five indicators. The main difference was their ranks.
The signs of correlations for given LVs were the same, but PFA provided
the highest absolute correlation value for LV1 and LV2. GNDA provided
the highest correlation value for LV3. GNDA provided more balanced
correlations between the LVs and the outcome variables.

To be able to compare the results of the given interpretation of LVs
(see the head of Table 4 is used for every dimension reduction method.
Nevertheless, only in the case of GNDA did feature selection provide a
clean set of indicators.
12
The negative correlation value between income and the output vari-
able (crimes per population) indicated that cities with lower household
incomes had higher levels of crime. While police presence increased
most of the detected crimes in the population, the increase in the
number of immigrants increased the number of crimes per population.

GNDA also highlights that these three LV are sufficient to charac-
terize the set of indicators. Fig. 12 shows the spatial distribution of the
scores of LVs.

The map in Fig. 12 indicates that the highest score of immigrants
was near the border of the United States, and the police presence was
greatest in large cities, such as Los Angeles, New York, and Washington.
Table 5 shows the top five cities with the highest score values.

Despite differences in the top five cities, both the highest income
and the highest challenges related to immigration occurred in Califor-
nia (CA) County. Police presence was high in large cities, such as Los
Angeles, New York, Philadelphia, Miami, and Washington; however, in
these cities, the detected crimes per population were also high.

5.4. Effects of filtering

Although GNDA is a nonparametric method, neither hyperparame-
ter (𝑐min, ℎmin, 𝐶min) used for feature selection influences the proposed
number of LVs. Nevertheless, there are two options to filter or mitigate
the values of connection between indicators. Instead of using square
correlation, a square of partial and semipartial correlations can be
used as a similarity measure between indicators. These types of cor-
relations filter the indirect effects between indicators. They measure
the degree of association between two indicators, with the effect of a
set of controlling indicators removed. Therefore, partial and semipar-
tial correlations are not greater than correlations between indicators.
The filtering indirect effects make the similarity graph sparser and it
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Fig. 11. Word cloud of terms of the variable descriptions (a-c), distance correlation network of indicators (d), and biplot of latent variables (e) (GNDA with feature selection,
𝐶min = ℎmin = 0.1, 𝑐min = 0.065).
Fig. 12. Spatial heatmap of score values of LVs (NDA).
specifies more modules (see Fig. A.15(a) in Appendix). In addition,
semipartial correlation is usually nonsymmetric; therefore, it specifies
a directed similarity graph between indicators (see Fig. A.16(a) in
Appendix). In this case, the communality analysis (see Step 5) of
AFS cannot be used because the communalities can be interpreted
only on correlations. However, peripheral analysis (see Step 4) can be
13
employed. In this way, individual and slightly connected nodes can be
omitted in the case of calculating LVs (see Figs. A.15(b) and A.16(b)
in Appendix). This analysis is worthwhile if indirect effects must be
filtered. In this case, the examination of the abandoned variables
becomes more valuable since the variables thus left-alone variables and
small communities do not directly correlate with any other variables;
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Table 4
Top five indicators with greatest loadings.

Method Income Police presence Immigrants

PC
A

Correlations −0.5047 0.4396 0.2330

Top 5 variables: 1. median family income number of different kinds of drugs
seized

percent of people who do not speak
English well

2. median household income number of people living in areas
classified as urban

percent of the population who have
immigrated within the last 10 years
(numeric

3. per capita income population for community percent of the population who have
immigrated within the last 10 years

4. percentage of households with
investment/rent income

number of police cars percent of people foreign-born

5. rental housing - upper quartile rent percent of sworn full-time police
officers on patrol

percent of the population who have
immigrated within the last 8 years

PF
A

Correlations −0.5106 0.5004 0.3217

Top 5 variables: 1. median family income number of different kinds of drugs
seized

percent of people who do not speak
English well

2. median household income number of people living in areas
classified as urban

percent of persons in dense housing

3. per capita income number of police cars percent of all occupied households that
are large

4. rental housing - upper quartile rent population for community percent of family households that are
large (6 or more)

5. rental housing - median rent a measure of the racial match
between the community and the
police force

percent of the population who have
immigrated within the last 10 years

GN
DA

Correlations −0.3629 0.3211 0.3871

Top 5 variables: 1. median family income number of different kinds of drugs
seized

percent of persons in dense housing
(more than 1 person per room)

2. median household income a measure of the racial match
between the community and the
police force

percent of the population who have
immigrated within the last 5 years

3. rental housing - median rent percent of sworn full-time police
officers on patrol

percent of the population who have
immigrated within the last 10 years

4. rental housing - upper quartile rent number of sworn full-time police
officers in field operations

percent of the population who have
immigrated within the last 8 years

5. median gross rent percent of police that are caucasian percent of the population who have
immigrated within the last 3 years
Table 5
Top five cities with highest scores.

Top five scores LV1 - Income LV2 - Police presence LV3 - Immigrations

1 Piedmontcity CA Los Angeles City CA Huntington Park City CA
2 Orindacity CA New York City CA Paramount City CA
3 Manhattan Beach City CA Philadelphia City PA Santa Ana City CA
4 Rancho Palos Verdes City CA Maimi City FL South El Monte City CA
5 La Canada Flintridge City CA Washington DC Bell City CA
they can show unique phenomena. However, a deeper analysis of this
is beyond the scope of this paper.

The other option is to increase the minimal (square) correlation
(𝑅2

min) value between variables. This leads to a similar situation: the
number of modules can be increased. In this way, the original modules
can be separated. However, this method has two advantages. First,
communality analysis (Step 5) can be used further. Second, this pre-
filtering provides hierarchical clustering, which can be used to test the
robustness of the community of indicators.

Fig. 13 shows the results of GNDA without (see Fig. 13(a)) and
with (see Fig. 13(b)) feature selections, where the minimal number of
variables in the module must not be lower than ten (min_comm=10).

If the minimal variables in a latent variables should be more than
ten, both GNDAs provide seven groups of LVs; however, GNDA without
feature selections dropped variables, which became isolated nodes
after prefiltering. If the minimum number of variables in a module is
reduced, as the prefiltering parameter increases, we obtain not only
isolated points (cluster marked 0) but also variable groups with a
small number of indicators (see Fig. 14(b)). The most frequent terms
14

in groups were living, income, police, kids, people, immigrated, and
age. However, Fig. 13(b) shows that only LVs, where the most fre-
quent terms were police, immigrated, and income, were significantly
correlated with crimes per population.

Fig. 14(a) shows the hierarchy of variable groups with different
prefiltering parameters (𝑅2

min), where the minimal number of variables
in a module is ten (min_comm=10). Fig. 14 shows the alluvial di-
agram, where the minimal number of variables in a module is two
(min_comm=2).

In all levels of the hierarchical GNDA forest, three LVs, namely,
immigrants, income, and police presence, were significantly correlated
with the output (crimes per population) variable (see Fig. 13). Fig. 14
shows that variable group 1 (income) and variable group 3 (police) are
the most stable, while variable group 2 (immigrants) early (𝑟min > 0.1)
is split into a bigger and a smaller modules. These charts provide an
opportunity to check the cross-migration of variables between mod-
ules. The results showed that this cross-migration is lower than 3%.
Nevertheless, in this case, the structure of the correlation graph is also
changing because low-correlated arcs are eliminated. When the mini-
mum square correlation between variables is increased, a separation of

LVs is observed, as shown in Fig. 14(a).
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Fig. 13. Correlation graph and LVs in the case of prefiltering (minimal 𝑅2
min = 0.4, min_comm = 10).
6. Discussion

For unsupervised machine learning problems, we usually do not
know exactly how many groups of variables and, in this way, how
many LVs should be specified. Therefore, even recent methods, such
as SPCA (Zhang et al., 2012), KPCA (Schölkopf et al., 1997, 1998),
NNMF (Wang & Zhang, 2012), t-SNE (Liu et al., 2021), and VAE (Mah-
mud et al., 2021), usually leave it up to the user to choose the
number of latent variables. However, the specification of the adequate
number of LVs has a major impact on the interpretability of the results,
especially when the data contain many variables HDLSS or many
observations LDHSS. Procedures for estimating the number of latent
variables are mainly found in the PCA and PFA methods. However, they
identify a different number of factors (see Figs. 3 and 4 and Table 1).
The paper proposes a method to generate either HDLSS or LDHSS block
matrices to compare estimates of latent variables from dimensionality
reduction methods. The results showed that GNDA was the only method
that always found the exact number of latent variables. All variables are
assigned to the adequate LVs (see Fig. 5).

In the real database, we also find that different methods overes-
timate the number of LVs (see Fig. 7(a) and Table 2), so we can
only compare the results of different dimension reduction methods
15
if we agree on a common number of latent variables (see Fig. 8(b–
c) and 8). Nevertheless, recent methods are still debtor as to how
many LVs can be run with. The estimates of correlation-based (PCA,
PFA) methods and the result of GNDA can only be used as a guide.
Assuming that the number of latent variables is correctly given by
the GNDA method, the results show that the PCA and PFA methods
define latent variables with similar content (compare Figs. 8 and 9(a–
c), and Table 3). Importantly, the analysis was not designed to identify
latent variables that correlate as closely as possible with the explained
variable, which in this case was crime per population. For this reason,
we did not select variables that increase the correlation between latent
variables and the outcome variable the least. This would be a different
supervised learning task, which is not part of this study. Here, the
omission of variables was justified if they did not fit the latent variables.
However, it should be noted that AFS increased the correlation in all
cases. GNDA provided the clearest set of variables (compare Figs. 10
and 11); however, correlation-based methods generally provided higher
correlations between latent and outcome variables (compare Tables 3
and 4). In other words, if a supervised learning version of the GNDA
method is constructed, then other mechanisms for variable selection
must be found than testing the fit to the latent variable.

The GNDA method predetermines the number of latent variables.
The number of groups is not affected by the hyperparameters used in
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Fig. 14. The hierarchical GNDA tree for prefiltering.
AFS. However, two parameters (𝛾 and 𝑟min) can increase the number of
latent variables. Increasing 𝛾 increases the resolution of the modules,
and increasing the prefiltering parameter (𝑟min) makes the correlation
graph sparser; therefore, the original modules, and in this way, the LVs,
are split down (see Figs. 13 and 14). Even though the examination of
missing data was not the subject of our study, if the data are missing,
then correlation relationships between variables are dropped from the
correlation graph in the same way as in the case of increasing the
parameters of the prefiltering. Those modules where the correlation
between the variables is higher do not fall into modules even if the
edges with a low correlation square are removed from the correlation
graph. In the same way, increasing the resolution will not result in a
new group of variables.

If the similarity between variables is the correlation function and
the number of LVs is fixed according to the value of the GNDA method,
then the proposed method can be compared with other dimensional
reduction methods. However, if the similarity function is asymmetric,
16
e.g., partial or semipartial correlation, the results cannot be compared
with state-of-the-art methods. For block matrices, GNDA correctly iden-
tified the number of LVs based on partial (see Fig. 6(a)) and semipartial
correlations (see Fig. 6(b)). At the same time, for real-world data,
partial correlations can give a sparser similarity graph, which is why the
GNDA method will also determine more latent variables (see Fig. A.15).
Remember that, in this case, LVs can also be interpreted differently.

7. Summary and conclusion

Dimensionality reduction methods are essential parts of data anal-
ysis. The paper provides a new approach to transforming data into
a network and allows scholars to combine descriptive network sci-
ence and exploratory analytical methods. The proportion of observa-
tions and variables often varies. Therefore, robust methods should be
used to compare results. Usually, different methods are used to solve
HDLSS and LDHSS problems. The number of LVs is the most difficult
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but crucial step in interpreting results. In this paper, we proposed a
nonparametric network-based dimensionality analysis method, which
determines the number of LVs. The proposed method works in HDLSS
but also in a high number of observations. Hyperparameters, such as
minimal EVC (𝑐min), minimal communality (ℎmin), and common commu-
ality values (𝐶min), are only used for feature selection, but prefiltering

which increases the minimal (square) correlation between variables,
2
min) – can separate modules of variables and provides a hierarchy of
ariable groupings. For both simulated and real-world data, GNDA best
dentifies the number of LVs. In addition, GNDA can provide a cleaner
roup of variables. Finally, the proposed set of visual and analysis tools,
uch as correlation graphs, word clouds of terms, and the list of greatest
ommon communalities, also supports the interpretation in the case
f a high number of variables and observations. The replacement of
pplied methods, such as the correlation method, modularity method,
nd measure of centrality, provides possible further improvements.
NDA is implemented by MATLAB and R, and the developer version
f GNDA is freely available at https://github.com/kzst/nda (accessed:
3 April 2023).

. Limitations and future works

Our earlier study (Kosztyán et al., 2022) showed the employment of
DA in the case of HDLSS datasets. This paper focused on the case of a

arger number of observations than variables. The implemented GNDA
mploys only Person’s, Spearman’s, Kendall’s, and distance correlation
ethods; however, further distances, such as contingency and Jaccard’s
istance, can be implemented to handle this method for topic mining,
here one of the crucial problems is to specify the number of topics.
urthermore, combining GNDA with advanced artificial intelligence
echniques offers a promising approach to enhance the performance
f the original algorithm. Another possible improvement would be to
xtend this method for biclustering and multiclustering, which would
pen this method up for further applications. Since the explored dimen-
ionality reduction methods can only handle a symmetric correlation
atrix or a symmetric distance matrix, it was not possible to compare

he proposed method with existing methods. At the same time, the
ppendix contains the proposed dimensionality reduction methods ob-
ained for partial and semipartial correlations. The discussion of these
esults should be elaborated on in a subsequent study not only due to
age limitations but also because the factor loading and communality
alues must then be interpreted differently.

cronyms

AFS Automated Feature Selection
BDLRR Block-Diagonal Low-Rank Representation
CFA Common Factor Analysis
DENLR Discriminative Elastic-Net Regularized

Linear Regression
EFA Explanatory Factor Analysis
EVC eigenvector centrality
FA Factor Analysis
GNDA Generalized Network-based Dimensionality

Analysis
HDLSS High-Dimension Low-Sample-Size
K1 Kaiser’s Rule
KPCA Kernel Principal Component Analysis
17
LDHSS Low-Dimension High-Sample-Size
LV latent variable
MAP Minimum Average Partial
MCVE Minimal cumulative variance explained
MSRL Marginally Structured Representation

Learning
NDA Network-based Dimensionality Reduction

and Analysis
NNMF Non-Negative Matrix Factorization
PA Parallel Analysis
PCA Principal Component Analysis
PFA Principal Factor Analysis
SNA Social Network Analysis
SPCA Sparse Principal Component Analysis
t-SNE t-distributed stochastic neighbor

embedding
VAE Variational Autoencoder

ode availabilty

The R package of GNDA can be downloaded from the CRAN official
ite: https://cran.r-project.org/web/packages/nda/index.html. The test
ersion can be downloaded from https://github.com/kzst/nda or from
he Code Ocean cite (Kosztyán, 2023).
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https://github.com/kzst/nda
https://cran.r-project.org/web/packages/nda/index.html
https://github.com/kzst/nda


Expert Systems With Applications 238 (2024) 121779Z.T. Kosztyán et al.
Table A.6
20 LVs of PCA and the IDs of top five indicators.

PCA LV1 LV2 LV3 LV4 LV5

1 LemasSwFTFieldOps RentHighQ PctRecImmig10 PctIlleg PersPerOccupHous
2 LemasSwFTFieldPerPop RentMedian PctRecImmig8 pctWPubAsst PersPerFam
3 LemasSwFTPerPop MedRent PctRecImmig5 racePctWhite household size
4 PolicPerPop OwnOccLowQuart PctRecentImmig PctUnemployed PersPerOwnOccHous
5 NumKindsDrugsSeiz OwnOccMedVal PctForeignBorn PctNotHSGrad PctLargHouseOccup

LV6 LV7 LV8 LV9 LV10

1 population PctImmigRec5 pctWSocSec PctHousLess3BR agePct16t24
2 NumUnderPov PctImmigRec8 agePct65up MedNumBR agePct12t29
3 NumInShelters PctImmigRec10 pctWWage PctHousOwnOcc agePct12t21
4 NumIlleg PctImmigRecent pctWRetire PctPersOwnOccup MalePctNevMarr
5 HousVacant PctSameHouse85 PctEmploy PctFam2Par PctHousOwnOcc

LV11 LV12 LV13 LV14 LV15

1 TotalPctDiv PctSameState85 PctEmplProfServ MedOwnCostPctIncNoMtg PctWorkMomYoungKids
2 FemalePctDiv PctSameCity85 PctEmplManu MedYrHousBuilt PctWorkMom
3 MalePctDivorce PctBornSameState PctBSorMore PctUsePubTrans PctEmploy
4 PctFam2Par PctSameHouse85 PctOccupMgmtProf PopDens PctUnemployed
5 PctSameHouse85 PctEmplManu PctOccupManu PctVacMore6Mos pctWPubAsst

LV16 LV17 LV18 LV19 LV20

1 HispPerCap pctWFarmSelf MedRentPctHousInc PctHousOccup fold
2 OtherPerCap pctUrban MedOwnCostPctInc PctVacMore6Mos indianPerCap
3 racePctHisp PctUsePubTrans PctEmplManu pctUrban PctWOFullPlumb
4 PctPersDenseHous PopDens PctEmploy HousVacant MedOwnCostPctInc
5 indianPerCap numbUrban PctPopUnderPov PctHousNoPhone PopDens
Table A.7
20 LVs of PFA and the IDs of top five indicators.

PFA LV1 LV2 LV3 LV4 LV5

1 PctKids2Par perCapInc PctRecImmig10 racePctWhite PctImmigRec8
2 PctFam2Par RentHighQ PctRecImmig8 PctLargHouseFam PctSameHouse85
3 NumUnderPov RentMedian PctRecImmig5 PctPersDenseHous PctImmigRec5
4 PctPopUnderPov OwnOccLowQuart PctRecentImmig PctLargHouseOccup PctImmigRecent
5 PctYoungKids2Par OwnOccMedVal PctNotSpeakEnglWell agePct12t29 PctImmigRec10

LV6 LV7 LV8 LV9 LV10

1 agePct65up PctBSorMore LemasSwFTFieldPerPop agePct12t21 TotalPctDiv
2 pctWSocSec PctOccupManu LemasSwFTFieldOps agePct16t24 MalePctDivorce
3 pctWWage PctOccupMgmtProf LemasSwFTPerPop agePct12t29 FemalePctDiv
4 MedYrHousBuilt PctNotHSGrad PolicPerPop whitePerCap PctEmplManu
5 householdsize PctSameCity85 PctPolicWhite householdsize PctBSorMore

LV11 LV12 LV13 LV14 LV15

1 MedYrHousBuilt racepctblack PctWorkMom PctEmplProfServ pctUrban
2 racepctblack PctImmigRec8 PctWorkMomYoungKids PctUsePubTrans PopDens
3 PctUsePubTrans PctImmigRec10 PctSameHouse85 PctBSorMore MedYrHousBuilt
4 PopDens PctImmigRec5 PctEmploy PctImmigRec5 PctUsePubTrans
5 MalePctNevMarr racePctWhite MedRentPctHousInc PctWorkMom pctWFarmSelf

LV16 LV17 LV18 LV19 LV20

1 PctHousOccup PctHousOccup MedOwnCostPctInc MedRentPctHousInc MedRentPctHousInc
2 PctEmplManu pctUrban PctEmplProfServ MedYrHousBuilt pctUrban
3 HousVacant MedRentPctHousInc pctUrban PctEmplProfServ PctLargHouseFam
4 PersPerOccupHous PctEmplProfServ pctWFarmSelf MedOwnCostPctInc numbUrban
5 PersPerOwnOccHous TotalPctDiv PctPopUnderPov PctPersDenseHous racePctWhite
Table A.8
LVs of state-of-the-art dimension reduction methods, correlations between the output variable and LVs, and top five indicators,
if the number of LVs are assumed as the result of GNDA (i.e., 𝑛 = 3).

LV1 LV2 LV3

NNMF Correlations 0.4967 −0.4983 0.3774

Top 5 variables 1. fold fold fold
2. LemasSwFTFieldOps pctUrban PctSpeakEnglOnly
3. pctUrban PctYoungKids2Par PctBornSameState
4. PctPolicWhite racePctWhite PctSameState85
5. LemasPctPolicOnPatr PctKids2Par PctSameCity85

SPCA Correlations −0.0352 −0.6504 −0.2817

Top 5 variables 1. fold PctYoungKids2Par PctSpeakEnglOnly
2. pctUrban medIncome PctBornSameState
3. RentHighQ PctKids2Par racePctWhite

(continued on next page)
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Table A.8 (continued).
LV1 LV2 LV3

4. medIncome medFamInc PctVacMore6Mos
5. PctYoungKids2Par RentHighQ pctWSocSec

KPCA Correlations −0.4646 −0.2211 0.0392

Top 5 variables 1. PctPolicAsian agePct12t29 fold
2. LemasGangUnitDeploy PersPerFam pctUrban
3. PctPolicHisp PersPerOwnOccHous PctHousOccup
4. LemasPctOfficDrugUn MedRentPctHousInc PctSameState85
5. PctPolicBlack householdsize PctSpeakEnglOnly

t-SNE Correlations 0.2376 −0.0511 −0.5696

Top 5 variables 1. fold LemasGangUnitDeploy OtherPerCap
2. PctHousOccup PctPolicAsian HispPerCap
3. PctEmploy PctPolicWhite OwnOccHiQuart
4. PctTeen2Par LemasSwFTFieldOps RentMedian
5. MedYrHousBuilt PolicReqPerOffic AsianPerCap
Fig. A.15. GNDA employed on Spearman’s partial correlation graph. (Note: black nodes
are dropped from the modules (8 factors).).
19
Fig. A.16. GNDA employed on Spearman’s semipartial correlation graph. (Note: black
nodes are dropped from the modules (16 factors).).
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Table A.9
The list of indicators in the Crimes 1994 dataset.

ID Description

state US state (by 2-letter postal abbreviation)(nominal)
county county ID
community community
communityname communityname
fold fold number for nonrandom 10-fold cross-validation, potentially useful for debugging, paired

tests - not predictive (numeric - integer)
population population of the community (numeric - expected to be an integer)
household size mean people per household (numeric - decimal)
racepctblack percentage of the population that is African American (numeric - decimal)
racePctWhite percentage of the population that is Caucasian (numeric - decimal)
racePctAsian percentage of the population that is of Asian heritage (numeric - decimal)
racePctHisp percentage of the population that is of Hispanic heritage (numeric - decimal)
agePct12t21 percentage of the population that is 12-21 in age (numeric - decimal)
agePct12t29 percentage of the population that is 12-29 in age (numeric - decimal)
agePct16t24 percentage of the population that is 16-24 in age (numeric - decimal)
agePct65up percentage of the population that is 65 and over in age (numeric - decimal)
numbUrban number of people living in areas classified as urban (numeric - expected to be an integer)
pctUrban percentage of people living in areas classified as urban (numeric - decimal)
medIncome median household income (numeric - may be an integer)
pctWWage percentage of households with wage or salary income in 1989 (numeric - decimal)
pctWFarmSelf percentage of households with farm or self-employment income in 1989 (numeric - decimal)
pctWInvInc percentage of households with investment/rent income in 1989 (numeric - decimal)
pctWSocSec percentage of households with social security income in 1989 (numeric - decimal)
pctWPubAsst percentage of households with public assistance income in 1989 (numeric - decimal)
pctWRetire percentage of households with retirement income in 1989 (numeric - decimal)
medFamInc median family income (differs from household income for nonfamily households) (numeric -

may be an integer)
perCapInc per capita income (numeric - decimal)
whitePerCap per capita income for Caucasians (numeric - decimal)
blackPerCap per capita income for African Americans (numeric - decimal)
indianPerCap per capita income for native Americans (numeric - decimal)
AsianPerCap per capita income for people with Asian heritage (numeric - decimal)
OtherPerCap per capita income for people with ’other’ heritage (numeric - decimal)
HispPerCap per capita income for people with Hispanic heritage (numeric - decimal)
NumUnderPov number of people under the poverty level (numeric - expected to be an integer)
PctPopUnderPov percentage of people under the poverty level (numeric - decimal)
PctLess9thGrade percentage of people 25 and over with less than a 9th grade education (numeric - decimal)
PctNotHSGrad percentage of people 25 and over that are not high school graduates (numeric - decimal)
PctBSorMore percentage of people 25 and over with a bachelor’s degree or higher education (numeric -

decimal)
PctUnemployed percentage of people 16 and over, in the labor force, and unemployed (numeric - decimal)
PctEmploy percentage of people 16 and over who are employed (numeric - decimal)
PctEmplManu percentage of people 16 and over who are employed in manufacturing (numeric - decimal)
PctEmplProfServ percentage of people 16 and over who are employed in professional services (numeric -

decimal)
PctOccupManu percentage of people 16 and over who are employed in manufacturing (numeric - decimal)

#### No longer sure of a difference from PctEmplManu - may include unemployed
manufacturing workers ####

PctOccupMgmtProf percentage of people 16 and over who are employed in management or professional
occupations (numeric - decimal)

MalePctDivorce percentage of males who are divorced (numeric - decimal)
MalePctNevMarr percentage of males who have never married (numeric - decimal)
FemalePctDiv percentage of females who are divorced (numeric - decimal)
TotalPctDiv percentage of the population who are divorced (numeric - decimal)
PersPerFam mean number of people per family (numeric - decimal)
PctFam2 Par percentage of families (with kids) that are headed by two parents (numeric - decimal)
PctKids2 Par percentage of kids in family housing with two parents (numeric - decimal)
PctYoungKids2 Par percent of children aged 4 and under in two-parent households (numeric - decimal)
PctTeen2 Par percent of children aged 12-17 in two-parent households (numeric - decimal)
PctWorkMomYoungKids percentage of moms of kids 6 and under in labor force (numeric - decimal)
PctWorkMom percentage of mothers of children under 18 in the labor force (numeric - decimal)
NumIlleg Number of illegal immigrants
PctIlleg Percentage of illegal immigrants
NumImmig total number of people known to be foreign born (numeric - expected to be an integer)
PctImmigRecent percentage of _immigrants_ who immigrated within last 3 years (numeric - decimal)
PctImmigRec5 percentage of _immigrants_ who immigrated within the last 5 years (numeric - decimal)
PctImmigRec8 percentage of _immigrants_ who immigrated within the last 8 years (numeric - decimal)
PctImmigRec10 percentage of _immigrants_ who immigrated within the last 10 years (numeric - decimal)

(continued on next page)
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Table A.9 (continued).
ID Description

PctRecentImmig percent of _population_ who have immigrated within the last 3 years (numeric - decimal)
PctRecImmig5 percent of _population_ who have immigrated within the last 5 years (numeric - decimal)
PctRecImmig8 percent of _population_ who have immigrated within the last 8 years (numeric - decimal)
PctRecImmig10 percent of _population_ who have immigrated within the last 10 years (numeric - decimal)
PctSpeakEnglOnly percent of people who speak only English (numeric - decimal)
PctNotSpeakEnglWell percent of people who do not speak English well (numeric - decimal)
PctLargHouseFam percent of family households that are large (6 or more) (numeric - decimal)
PctLargHouseOccup percent of all occupied households that are large (6 or more people) (numeric - decimal)
PersPerOccupHous mean persons per household (numeric - decimal)
PersPerOwnOccHous mean persons per owner-occupied household (numeric - decimal)
PersPerRentOccHous mean persons per rental household (numeric - decimal)
PctPersOwnOccup percent of people in owner-occupied households (numeric - decimal)
PctPersDenseHous percent of persons in dense housing (more than 1 person per room) (numeric - decimal)
PctHousLess3BR percent of housing units with fewer than 3 bedrooms (numeric - decimal)
MedNumBR median number of bedrooms (numeric - decimal)
HousVacant number of vacant households (numeric - expected to be an integer)
PctHousOccup percent of housing occupied (numeric - decimal)
PctHousOwnOcc percent of household owner occupied (numeric - decimal)
PctVacantBoarded percent of vacant housing that is boarded up (numeric - decimal)
PctVacMore6Mos percent of vacant housing that has been vacant more than 6 months (numeric - decimal)
MedYrHousBuilt median year housing units built (numeric - may be an integer)
PctHousNoPhone percent of occupied housing units without phones (in 1990, this was rare!) (numeric - decimal)
PctWOFullPlumb percent of housing without complete plumbing facilities (numeric - decimal)
OwnOccLowQuart owner-occupied housing - lower quartile value (numeric - decimal)
OwnOccMedVal owner-occupied housing - median value (numeric - decimal)
OwnOccHiQuart owner-occupied housing - upper quartile value (numeric - decimal)
RentLowQ rental housing - lower quartile rent (numeric - decimal)
RentMedian rental housing - median rent (Census variable H32B from file STF1A) (numeric - decimal)
RentHighQ rental housing - upper quartile rent (numeric - decimal)
MedRent median gross rent (census variable H43A from file STF3A - includes utilities) (numeric -

decimal)
MedRentPctHousInc median gross rent as a percentage of household income (numeric - decimal)
MedOwnCostPctInc median owners cost as a percentage of household income - for owners with a mortgage

(numeric - decimal)
MedOwnCostPctIncNoMtg median owner cost as a percentage of household income - for owners without a mortgage

(numeric - decimal)
NumInShelters number of people in homeless shelters (numeric - expected to be an integer)
NumStreet number of homeless people counted in the street (numeric - expected to be an integer)
PctForeignBorn percent of people foreign born (numeric - decimal)
PctBornSameState percent of people born in the same state as currently living (numeric - decimal)
PctSameHouse85 percent of people living in the same house as in 1985 (5 years before) (numeric - decimal)
PctSameCity85 percent of people living in the same city as in 1985 (5 years before) (numeric - decimal)
PctSameState85 percent of people living in the same state as in 1985 (5 years before) (numeric - decimal)
LemasSwornFT number of sworn full-time police officers (numeric - expected to be an integer)
LemasSwFTPerPop sworn full-time police officers per 100 K population (numeric - decimal)
LemasSwFTFieldOps number of sworn full-time police officers in field operations (on the street as opposed to

administrative, etc.) (numeric - expected to be an integer)
LemasSwFTFieldPerPop sworn full-time police officers in field operations (on the street as opposed to administrative,

etc.) per 100 K population (numeric - decimal)
LemasTotalReq total requests for police (numeric - expected to be an integer)
LemasTotReqPerPop total requests for police per 100 K population (numeric - decimal)
PolicReqPerOffic total requests for police per police officer (numeric - decimal)
PolicPerPop police officers per 100 K population (numeric - decimal)
RacialMatchCommPol a measure of the racial match between the community and the police force. High values

indicate proportions in the community and police force are similar (numeric - decimal)
PctPolicWhite percent of police that are Caucasian (numeric - decimal)
PctPolicBlack percent of police that are African American (numeric - decimal)
PctPolicHisp percent of police that are Hispanic (numeric - decimal)
PctPolicAsian percent of police that are Asian (numeric - decimal)
PctPolicMinor percent of police that are a minority of any kind (numeric - decimal)
OfficAssgnDrugUnits number of officers assigned to special drug units (numeric - expected to be an integer)
NumKindsDrugsSeiz number of different kinds of drugs seized (numeric - expected to be an integer)
PolicAveOTWorked police average overtime worked (numeric - decimal)
LandArea land area in square miles (numeric - decimal)
PopDens population density in persons per square mile (numeric - decimal)
PctUsePubTrans percent of people using public transit for commuting (numeric - decimal)
PolicCars number of police cars (numeric - expected to be an integer)
PolicOperBudg police operating budget (numeric - may be an integer)
LemasPctPolicOnPatr percent of sworn full-time police officers on patrol (numeric - decimal)
LemasGangUnitDeploy gang unit deployed (numeric - integer - but truly nominal - 0 means NO, 10 means YES, 5

means Part Time)
LemasPctOfficDrugUn percent of officers assigned to drug units (numeric - decimal)
PolicBudgPerPop police operating budget per population (numeric - decimal)
ViolentCrimesPerPop total number of violent crimes per 100 K population (numeric - decimal) GOAL attribute (to be

predicted)
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