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Abstract
This paper studies matching markets in the presence of middlemen. In our framework, a
buyer–seller pair may either trade directly or use the services of a middleman; and a middle-
man may serve multiple buyer–seller pairs. For each such market, we examine the associated
TU game. We first show that, in our context, an optimal matching can be obtained by con-
sidering the two-sided assignment market where each buyer–seller pair is allowed to use the
mediation services of anymiddleman free of charge. Second, we prove that matchingmarkets
with middlemen are totally balanced: in particular, we show the existence of a buyer-optimal
(seller-optimal) core allocation where each buyer (seller) receives her marginal contribution
to the grand coalition. In general, the core does not exhibit a middleman-optimal allocation,
not even when there are only two buyers and two sellers. However, we prove that in these
small markets the maximum core payoff to each middleman is her marginal contribution.
Finally, we establish the coincidence between the core and the set of competitive equilibrium
payoff vectors.
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1 Introduction

Consider a commodity whose market exhibits three types of agents: buyers, sellers, and
middlemen. Each seller owns one indivisible unit; and each buyer seeks to purchase one
unit (from any of the sellers) in exchange for money. Units need not be homogeneous, i.e., a
buyer may have different valuations for the respective units owned by two distinct sellers. We
assume that utility is transferable between all agents; and this allows the use of cooperative
games with transferable utility (or TU games, for short). A given buyer and a given seller
may trade directly, or they may use the services of a middleman. For example, in the real
estate market, a seller may or may not use a realtor facilitating the sale of her house. In
financial markets, brokers provide their service to investors (in exchange for a fee); and each
investor may or may not hire a broker. As is common in these applications, we assume that
a middleman may serve multiple buyer–seller pairs.

Markets with middlemen have been studied in different contexts (search and matching
models, general equilibrium model, etc.). The work by Rubinstein and Wolinsky (1987) is
the first one to study the activity of middlemen in search markets. In Yavaş (1994) agents can
search for matches on their own, or they can resort to a middleman who mediates between
agents of opposite sides to facilitate their pairing. Fingleton (1997) investigates competition
between middlemen when direct trade between buyers and sellers is available. He shows that
direct trade has a negative effect on the market power of middlemen. Allowing for search
frictions and a monopolistic middleman, Bloch and Ryder (2000) study a market where
buyers and sellers bargain over the surplus. Johri and Leach (2002) study a model in which
sellers and buyers have heterogeneous tastes; and they show that middlemen are better off if
they have a multi-unit inventory of differentiated products.

In their seminal paper, Shapley and Shubik (1971) consider a two-sided housing market
with m buyers and n sellers. In their setting, each buyer is interested in buying at most one
house; and each seller has one house for sale. Each buyer has n valuations (one for each
house) each seller has a reservation value for her house. The valuation matrix represents the
joint surplus generated by each pair formed by a buyer and a seller. Shapley and Shubik
coined the term “assignment game” to describe the TU game associated with their two-
sided market. They studied a solution concept, the core, which is the set of allocations that
cannot be improved upon by any coalition. They showed that the core of an assignment game
is always non-empty and has a lattice structure. Moreover, Demange (1982) and Leonard
(1983) prove that there exists a core allocation at which each buyer attains his/her marginal
contribution to the grand coalition (the buyer-optimal core allocation) and there exists a core
allocation at which each seller attains his/her marginal contribution to the grand coalition
(the seller-optimal core allocation).

Multi-sided matching markets may in general have an empty core under transferable
utility (Kaneko & Wooders, 1982). Thus, the remarkable results obtained for two-sided
markets cannot be generalized to all multi-sided markets. Several authors have examined
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conditions (on the structure of the market) allowing to show the non-emptiness of the core.
Sherstyuk (1999) introduces a subclass of multi-sided matching markets where valuations
are obtained from a supermodular function. She proved that any game in this subclass has
a non-empty core. Some other authors have shown that matching markets exhibiting some
additivity property have a non-empty core (see for instance Quint, 1991; Tejada, 2013; Atay
et al., 2016).

Among different multi-sided matching market models, there is a growing literature on
matching markets with middlemen. Stuart (1997) introduces a three-sided matching game
with middlemen, the so-called supplier-firm-buyer game. In this model, a buyer and a seller
(supplier) can trade only through a middleman (firm). Hence, unlike our model, a mixed-pair
of buyer–seller cannot generate any surplus without a middleman. The author showed that
the class of supplier-firm-buyer games is balanced.

Oishi and Sakaue (2014) consider a model of three-sided matching markets in which
middlemen can mediate at most one trade between a buyer and seller. Buyers and sellers are
allowed to trade directly as well as trade through amiddleman. Unlike our model, middlemen
incur a matching cost and moreover, the associated TU game only considers the matching
situations with exclusive triplets of buyer-middleman-seller (whereas our model allows each
middleman to serve multiple buyer–seller pairs).

In a recent paper, El Obadi and Miquel (2019) study a hybrid model of two-sided and
multi-sided matching markets. They consider a two-sided model with buyers and sellers that
are not disjoint. There exists a so-called central player who can act both as a buyer and as a
seller. In their model, the central player has to be present for a trade between a buyer–seller
pair. Otherwise, a trade cannot be realized. Hence, the central player has veto power and, as
explained by the authors, their model thus induces a veto game (Bahel, 2016).

The presentwork takes a game-theoretical approach tomatchingmarketswithmiddlemen.
We consider a class of three-sided matching market in which buyers and sellers can trade
either directly or indirectly (through middlemen). Each seller owns an object to sell and each
buyer wants to acquire at most one object. A trade between a mixed-pair of a buyer and
a seller can be mediated by at most one middleman, meanwhile any given middleman can
mediate trades between multiple buyer–seller pairs. Utility is transferable and quasi-linear in
money. Given a buyer–seller pair, the surplus generated by their exchange varies depending
on the middleman serving them.

In order to study the core and its structure, we propose a simple procedure allowing to
compute the worth of the grand coalition in any matching market with middlemen. Precisely,
we construct an associated two-sided assignment market where the valuation of every buyer–
seller pair is obtained by taking the maximum surplus that they can achieve either by a direct
trade between themselves or by an indirect trade brokered by any of the middlemen in the
market.1

Our main results are described as follows. First, we show that an optimal matching for a
matchingmarket with middlemen can always be constructed from an optimal matching of the
associated two-sided market, and vice versa. Moreover, the maximum total surplus in the two
markets are equal (Proposition 1). Second, we prove that the core of amarket withmiddlemen
is always non-empty by showing that the set of payoff vectors composed of a core allocation
for the two-sided assignment market and zero payoffs to all middlemen is precisely the subset
of the core of the market with middlemen where all middlemen payoffs are zero (Theorem 2).

1 In a similar fashion, Miquel and Núñez (2011) introduce the maximum assignment game for a given
collection of assignment games where any given coalition attains the maximum possible value among the
given collection of games. However, in their case, the two authors observed that the maximum assignment
game need not be an assignment game, and it may not even be superadditive.
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Furthermore, we prove that there exists a buyer-optimal allocation, that is, a core allocation
that each and every buyer (weakly) prefers to all other core allocations. Likewise, there exists
a seller-optimal core allocation (Theorem 3). Moreover, as in the standard two-sided model,
our results guarantee that, at the buyer-optimal (seller-optimal) core allocation, each buyer
(seller) achieves her marginal contribution to the grand coalition. We show that when there is
a single middleman, she can achieve her marginal contribution when there are two buyers and
two sellers (Proposition 4). Interestingly, we provide an example for the smallest possible
generalization (i.e., a market with two buyers, two sellers, and two middlemen) showing that,
in general, there exists no middleman-optimal core allocation (Example 3): all middlemen do
not necessarily achieve their maximum core payoffs simultaneously. Finally, we characterize
the core in terms of competitive equilibrium payoffs (Theorem 5).

The paper is organized as follows. Section 2 gives some preliminaries about TU games.
Section 3 introduces the model and explores the structure of its outcomes, the matchings. In
Section 4 we prove the non-emptiness of the core and prove that there exists a side-optimal
core allocation respectively for buyers and sellers. In contrast, we demonstrate by means of
an example that a middleman-optimal core allocation need not exist. Section 5 studies the
core when there are only two buyers and two sellers and show that in this case middlemen
also achieve their marginal contribution at a core allocation. In Section 6 we establish the
coincidence between the core and the set of competitive equilibrium payoff vectors. Section
7 concludes. We describe in Appendix A an example showing that the non-emptiness of the
core is not guaranteed when some middlemen are capacity-constrained.

2 Preliminaries

A cooperative game with transferable utility (or TU game) is a pair (N , v)where N is a non-
empty, finite set of players (or agents) and v : 2N → R is a coalitional function satisfying
v(∅) = 0. The number v(S) is the worth of the coalition S ⊆ N . Whenever no confusion
may arise as to the set of players, we will identify a TU game (N , v) with its coalitional
function v.

Given a game v, a payoff allocation (or allocation) is a tuple x ∈ R
N representing the

players’ respective allotments. The total payoff of a coalition S ⊆ N is denoted by x(S) =∑
t∈S xt if S �= ∅ and x(∅) = 0.
In a game v, an allocation x is called efficient if x(N ) = v(N ), individually rational if

xt = x({t}) ≥ v({t}) for all t ∈ N , and coalitionally rational if x(S) ≥ v(S) for all S ⊆ N .
The core of v, denoted by Core(v), is the set of coalitionally rational and efficient payoff
allocations. A game is called balanced if it has a non-empty core, and totally balanced if all
the subgames, i.e. the game restricted to the non-empty coalitions, are balanced. A totally
balanced game v is balanced and also superadditive, i.e. v(S ∪ T ) ≥ v(S) + v(T ) for all
coalitions S, T ⊆ N such that S ∩ T = ∅.

Coalition S �= ∅ is called inessential in game v if v(S) ≤ v(S1) + · · · + v(Sk) for
some of its nontrivial partition S = S1 ∪ . . . ∪ Sk consisting of k ≥ 2 disjoint nonempty
coalitions S1, · · · , Sk . Coalitions which are not inessential in v are called essential in v,
their set is denoted by E(v). Notice that all singleton coalitions {i}, i ∈ N , are essential
in any game (N , v). The core is always the same as the essential-core where coalitional
rationality is required only for the essential coalitions in the game, i.e., Core(N , v) =
Core(N , v, E(v)) := {x ∈ R

N : x(N ) = v(N ), x(S) ≥ v(S) ∀S ∈ E(v)}.
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We call marginal contribution of a player t ∈ N in the game v the quantity mct (v) =
v(N ) − v(N \ {t}). It is well known that the marginal contribution is an upper bound of the
payoffs attainable in the core for a player, i.e., xt ≤ mct (v) for all x ∈ Core(v) and t ∈ N ,
but this bound is not necessarily sharp.

3 Matchingmarkets withmiddlemen

We consider a three-sided market where there are three disjoint sets of agents: the set of
buyers B = {i1, i2, · · · , i|B|}, the set of middlemen M = { j1, j2, · · · , j|M|}, and the set of
sellers S = {k1, k2, · · · , k|S|}. Note that the cardinalities |B|, |M |, |S| of these respective
sets may differ. Let i be a generic buyer, j be a generic middleman and k be a generic seller.
We call B (or S) the short side of the market if it holds that |B| ≤ |S| (or |S| ≤ |B|). Let
N = B ∪ M ∪ S be the set containing all agents. In this market, each buyer–seller pair
(i, k) ∈ B × S can trade directly with each other, or indirectly through some middleman
j ∈ M which results in a trade involving the triple (i, j, k) ∈ B × M × S.

Each seller owns one unit of an indivisible good and each buyer seeks to buy at most one
unit of good. Although a trade between each buyer–seller pair can bemediated by at most one
middleman, any given middleman can mediate trades between multiple buyer–seller pairs.
That is to say, each j ∈ M can potentially serve the entire market by brokering as many
trades as the cardinality of the short side of the market.

Amarket with middlemen can thus be described by specifying two non-negative matrices:
(a) a two-dimensional matrix A = (aik)i∈B;k∈S giving the joint monetary surplus generated
by every buyer–seller pair (i, k) ∈ B × S if they trade directly, and (b) a three-dimensional
non-negative matrix Â = (âi jk)i∈B; j∈M;k∈S representing the joint surplus generated by a
trade between buyer i and seller k that is mediated by middleman j . We do not exclude
the possibility that for a buyer–seller pair (i, k) ∈ B × S direct trade is more effective than
if middleman j ∈ M is also involved, that is aik ≥ âi jk can hold. On the other hand, it is
also possible that direct trade entails higher search costs for the pair (i, k) than the costs of
a mediated trade via the service of middleman j , that is when aik ≤ âi jk holds.

A market with middlemen is fully described by a five-tuple γ = (B, M, S, A, Â). Since
the sets B, M, S are given and fixed, we will often describe such a market with middlemen
by simply specifying the pair of surplus matrices (A, Â).

Call basic coalition any subset of N that is either a singleton {i}, or a pair {i, k} such that
i ∈ B and k ∈ S, or a triple {i, j, k} such that i ∈ B, j ∈ M and k ∈ S. Moreover, let
BN = {{i, j, k} | i ∈ B, j ∈ M, k ∈ S} ∪ {{i, k} | i ∈ B, k ∈ S} ∪ {{h} | h ∈ N } be the
collection of all basic coalitions. Furthermore, for all T ⊆ N , denote by BT the set of basic
coalitions that have all their agents in T , that is, BT = {E ∈ BN | E ⊆ T }. Denote by BT ,
MT , and ST the set of buyers, middlemen, and sellers in coalition T , respectively.

Definition 1 Given any T ∈ 2N \ {∅}, a collection of basic coalitions μ will be called a
T -matching if it satisfies (i) μ ⊆ BT ; (ii) BT ∪ ST ⊆ ⋃

E∈μ

E ; (iii) for any t ∈ BT ∪ ST and

any distinct E, F ∈ μ, t /∈ E ∩ F ; (iv) for all j ∈ MT , [{ j} ∈ μ] ⇒ [ j /∈ E,∀E ∈ μ \ { j}].
Remark that conditions (i)-(iii) in Definition 1 say that a buyer (seller) must belong to

exactly one basic coalition in the collection μ. It is possible for a middleman to belong to
multiple basic triples of μ (since she may mediate multiple trades). However, as stated in
(iv), a middleman appearing in a singleton of μ should not belong to any other element of μ.
With a slight abuse of notation, we write k = μ(i) and i = μ(k) for all (i, k) ∈ B × S such
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that [{i, k} ∈ μ or {i, j, k} ∈ μ for some j ∈ M]. We also write μ(t) = t for all t ∈ N such
that {t} ∈ μ. Let A(T ) denote the set of T -matchings.

Observe that a T -matchingμ induces disjoint groups of buyer–seller pairs that trade via the
same middleman. With a slight abuse of notation, we shorthand the subsets containing only
one agent from each side of the market as an array in which the order specifies the type of the
agents: (i, k)means {i, k}with i ∈ B and k ∈ S; similarly, (i, j, k)means {i, j, k}with i ∈ B,
j ∈ M , and k ∈ S. We call the buyers in the set Bμ

j = {i ∈ BT : (i, j, k) ∈ μ for some k ∈
ST } and the sellers in the set Sμ

j = {k ∈ ST : (i, j, k) ∈ μ for some i ∈ BT } the partners
of middleman j ∈ MT in T -matching μ. Let Mμ

+ denote the set of those middlemen in T
who are involved in some trading triplet under μ. Denote by Bμ

0 (Sμ
0 ) the set of those buyers

(sellers) in coalition T , who are not partners of any middleman but are involved in some
direct trade under μ, as if they were partners of a fictitious middleman denoted by 0. Finally,
denote the set of buyers, middlemen, and sellers in T who are singletons in μ by Bμ

s , M
μ
s ,

and Sμ
s respectively.

Obviously, Mμ
s together with the singletons { j} ( j ∈ Mμ

+ = MT \ Mμ
s ) form a partition

of MT , B
μ
s together with the partner sets Bμ

j ( j ∈ Mμ
+ ∪ {0}) form a partition of BT , and Sμ

s

together with the partner sets Sμ
j ( j ∈ Mμ

+ ∪{0}) form a partition of ST . Moreover, the union
of these three partitions form a partition of coalition T , called the μ-induced partition of T .
Notice that μ induces a (complete) matching, denoted by μ( j), between the partner sets Bμ

j

and Sμ
j of each (real or fictitious) middleman j ∈ Mμ

+ ∪ {0}. Consequently, |Bμ
j | = |Sμ

j | for
all j ∈ Mμ

+ ∪ {0}.
Note that a market with middlemen γ = (B, M, S, A, Â) induces a TU game (B ∪ M ∪

S, vγ ) where the worth of every coalition T is given by

vγ (T ) = max
μ∈A(T )

⎡

⎣
∑

(i,k)∈μ

aik +
∑

(i, j,k)∈μ

âi jk

⎤

⎦ . (1)

Note from (1) that all coalitions T consisting of players of the same side (including singleton
coalitions) are worthless, that is, vγ (T ) = 0 whenever T ⊆ B or T ⊆ M or T ⊆ S. Observe
that vγ ({i, k}) = aik for any buyer–seller pair (i, k) ∈ B × S, and vγ ({i, j, k}) = aik ∨ âi jk
for any buyer-middleman-seller triplet (i, j, k) ∈ B×M× S, where p∨q denote max{p, q}
for any two numbers p, q . Notice that vγ is also induced by themarket γ ′ = (B, M, S, A, Â′)
where â′

i jk = aik ∨ âi jk for any (i, j, k) ∈ B × M × S.
Amatchingμ ∈ A(T )will be called T -optimal in themarket γ if vγ (T ) = ∑

(i,k)∈μ aik+∑
(i, j,k)∈μ âi jk , that is, if μ solves the problem stated in (1). Since A(T ) is non-empty and

finite, remark that there always exists (at least) one T -optimal matching in γ . Given any
T ∈ 2N \ {∅}, we denote by A∗

γ (T ) the set of T -optimal matchings in the market γ . We call
optimal matching any N -optimal matching in γ .

The following example illustrates the notions developed in this section.

Example 1 Consider a market with middlemen γ = (B, M, S, A, Â) where B = {i1, i2},
M = { j1, j2}, and S = {k1, k2} are the set of buyers, the set of middlemen, and the set of
sellers, respectively. The total surplus of those basic coalitions formed by a pair of buyer and
seller is given by the following two-dimensional matrix A = (aik)i∈B;k∈S :

A =
(
k1 k2

i1 3 2
i2 1 5

)
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and joint surplus generated by triplets formed by a buyer, a middleman, and a seller is given
by the following three-dimensional matrix Â = (âi jk)i∈B; j∈M;k∈S :

Â =
k1 k2

i1
i2

(
4 3
3 5

)

j1

k1 k2
i1
i2

(
6 2
2 6

)

j2

.

Notice first that, in this example, for a buyer–seller pair (i, k) ∈ B × S, the total surplus of a
trade with a middleman is at least as good as a direct trade. For instance, consider the buyer–
seller pair (i1, k2) ∈ B × S. They generate a total surplus of 2 = a12 whereas they generate
a strictly greater total surplus if the trade is mediated by middleman j1: â112 = 3 > 2 = a12,
and the same amount of total surplus is generated if middleman j2 mediates the trade between
them: â122 = 2 = a12.

Next, consider the set of all agents N = B∪M ∪ S and two collections of basic coalitions
μ = {{i1, j2, k1}, {i2, j2, k2}, { j1}} and μ′ = {{i1, j1, k1}, {i2, j2, k2}}. In the collection μ,
each buyer and seller belong to exactly one basic coalition whereas middleman j2 appears in
two distinctive basic coalitions and middleman j1 appears as a singleton, and hence μ is an
N -matching. Under μ, Bμ

j2
= {i1, i2} are the buyer partners of j2 and Sμ

j2
= {k1, k2} are the

seller partners of j2, whereas j1 has no partners inμ. Since all buyers and sellers are partners
of middlemen, the induced partitions are Bμ

s ∪ Bμ
0 ∪ Bμ

j1
∪ Bμ

j2
= ∅∪∅∪∅∪ BN = BN = B

for the buyers, Sμ
s ∪ Sμ

0 ∪ Sμ
j1

∪ Sμ
j2

= ∅ ∪ ∅ ∪ ∅ ∪ SN = SN = S for the sellers, and

Mμ
s ∪ Mμ

+ = { j1} ∪ { j2} = MN = M for the middlemen. In the collection μ′ all agents,
even the middlemen, belong to exactly one basic coalition, hence μ′ is also an N -matching.

It induces the partitions Bμ
s ∪ Bμ′

0 ∪ Bμ′
j1

∪ Bμ′
j2

= ∅ ∪ ∅ ∪ {i1} ∪ {i2} = BN = B of

the buyers, Sμ′
s ∪ Sμ′

0 ∪ Sμ′
j1

∪ Sμ′
j2

= ∅ ∪ ∅ ∪ {k1} ∪ {k2} = SN = S of the sellers, and

Mμ
s ∪ Mμ

+ = ∅ ∪ { j1, j2} = MN = M of the middlemen.
Finally, let us consider theTUgamevγ associatedwith themarketγ . Consider the coalition

T = {i1, j1, k1, k2}. Then, the worth of T is obtained by maximizing, over all possible T -
matchings, the total surpluses of basic coalitions in amatching.By ignoring the 0 surplus of the
non-basic coalitions, vγ (T ) = max{a11, a12, â111, â112} = max{3, 2, 4, 3} = 4. The optimal

T -matching isμT = {{i1, j1, k1}, {k2}}. It induces the partition BμT

s ∪ BμT

j1
= ∅∪{i1} = BT

of the set of buyers and the partition SμT

s ∪ SμT

j1
= {k2} ∪ {k1} = ST of the set of sellers in

coalition T .
Now, consider again the grand coalition, N . The sum of the value of basic coalitions under

the matching μ′ is â111 + â222 = 4 + 6 = 10, whereas under the matching μ it is equal
to 12 = 6 + 6 = â121 + â222. It is easily checked that the worth of N , vγ (N ), is obtained
under the matching μ which maximizes (1), thus, the matching μ is an optimal matching. It
induces matchings in the partner sets of the middlemen:μ(0) = ∅ on the direct tradematrix A
(associated with the unpartnered fictitious middleman 0), μ( j1) = ∅ on the two-dimensional
submatrix [âi1k : i ∈ B, k ∈ S] related to the unpartnered middleman j1 ∈ Mμ

s , and
μ( j2) = {{i1, k1}, {i2, k2}} on the two-dimensional submatrix [âi2k : i ∈ B, k ∈ S] related
to the partnered middleman j2 ∈ Mμ

+. The value of μ equals the sum of the values of these
inducedmatchings in the corresponding two-dimensional (sub)matrices, 12 = 0+0+(6+6).

In the next section we examine the core of the TU game vγ associated with the matching
market with middlemen γ . We will show in particular that this game, called middlemen
market game, vγ is always totally balanced.
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4 The core of a market withmiddlemen

Given any market with middlemen γ = (B, M, S, A, Â), one can define the matrix A∗ =
(a∗

ik)i∈B,k∈S by
a∗
ik = max

j∈M0
âi jk, ∀(i, k) ∈ B × S, (2)

where M0 = M ∪ {0} denotes the set of middlemen augmented by a fictitious middleman
0. We use this fictitious middleman 0 for notational convenience: this write the direct trade
surpluses aik as triplet surpluses of the type ai0k . This means that we will sometimes identify
a buyer–seller pair (i, k) with the triplet (i, 0, k) and write âi0k = aik . Note from (2) that a∗

ik
gives the highest surplus possible in a trade involving buyer i and seller k. Moreover, for all
(i, k) ∈ B × S, we will use the notation m(i, k) to refer to the (arbitrarily chosen middleman
among) agent(s) j ∈ M0 such that a∗

ik = âi jk . That is to say, m(i, k) ∈ argmax j∈M0
âi jk . If

there exists multiple middlemen j in the set argmax j∈M0
âi jk then note that our definition

above selects an arbitrary middleman in that set argmax j∈M0
âi jk ; and our upcoming results

are not affected by which one these middlemen is chosen as m(i, k).
Thus, for any market γ = (A, Â), one can define the standard (two-sided) assignment

market γ ∗ = (B, S, A∗), where A∗ is given by (2). Note that a matching ν in γ ∗ is a partition
of B∪S into singletons andmixed pairs {i, k} such that i ∈ B, k ∈ S.Wewrite ν(t) = t for all
t ∈ B∪ S such that {t} ∈ ν. In addition, we write ν(i) = k and ν(k) = i for all (i, k) ∈ B× S
such that {i, k} ∈ ν. A matching ν in γ ∗ is optimal if

∑
{i,k}∈ν a

∗
ik ≥ ∑

{i,k}∈ν′ a∗
ik , for all

matchings ν′ in γ ∗.
We connect the matchings, in particular the optimal matchings, of the respective markets

γ and γ ∗. For expositional simplicity, we only consider the grand coalition, the concepts are
analogously defined and the statements are straightforwardly derived for any subcoalition.

Let μ be a matching in a market with middlemen γ = (B, M, S, A, Â). As it induces
partitions of the set of buyers B and sellers S, and matchings μ( j) ( j ∈ M0) between the
partner sets for each middleman (including the fictitious middleman 0) which are pairwise
disjoint for different middlemen, the union

⋃
j∈M0

μ( j) augmented with the singletons in
Bμ
s and Sμ

s defines a matching between B and S. We denote it by μ∗. The value of μ in the
market γ is clearly less than or equal to the value of μ∗ in the two-sided market γ ∗, that is,

μγ (B ∪ M ∪ S) =
∑

(i,k)∈μ

aik +
∑

(i, j,k)∈μ

âi jk ≤
∑

(i,k)∈μ∗
a∗
ik = μ∗

γ ∗(B ∪ S). (3)

Conversely, if σ is a matching for the two-sided market γ ∗, then σ� = {(i,m(i, k), k) :
(i, k) ∈ σ } ∪ {{t} ∈ σ } ∪ {{ j} : j ∈ M s.t. j �= m(i, k),∀(i, k) ∈ σ } is a matching for the
market with middlemen γ . The value of σ� in the market γ is clearly the same as the value
of σ in the two-sided market γ ∗, that is

σγ ∗(B ∪ S) =
∑

(i,k)∈σ

a∗
ik =

∑

(i,m(i,k),k)∈σ�
âim(i,k)k = σ�

γ (B ∪ M ∪ S). (4)

Based on (3) and (4), we derive the following relations between the optimal matchings
and the optimum total surpluses in the two markets.

Proposition 1 Let γ = (B, M, S, A, Â) be a market with middlemen and γ ∗ = (B, S, A∗)
be the associated two-sided assignment market. Then

(1) if σ is an optimal matching for γ ∗ then σ� is an optimal matching for γ ;
(2) if μ is an optimal matching for γ then μ∗ is an optimal matching for γ ∗.
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Moreover, the optimum values of the two markets are the same.

Proof First, it follows from (3) that the optimum value of the three-sided market γ is less
than or equal to the optimum value of the associated two-sided market γ ∗.

To see that the two market optimums coincide, let σ be an optimal matching for the two-
sided market γ ∗. Then, by (4), (3), and the optimality of σ , we get respectively, σγ ∗(B∪S) =
σ

�
γ (B ∪ M ∪ S) ≤ (σ�)∗γ ∗(B ∪ S) ≤ σγ ∗(B ∪ S). Thus, both inequalities must hold as

equalities, implying that in the three-sided market γ , the matching σ� attains the optimum
value of the two-sided market γ ∗ that, as observed above, is an upper bound for the optimum
value of the three-sided market γ . Therefore, σ� is an optimal matching for γ , proving claim
(1) and the coincidence of the two market optimum values.

To show claim (2), letμ be an optimal matching for γ . Then, by (3), (4), and the optimality
of μ in the three-sided market, μγ (B ∪ M ∪ S) ≤ μ∗

γ ∗(B ∪ S) = (μ∗)�γ (B ∪ M ∪ S) ≤
μγ (B∪M∪S). Thus, both inequalitiesmust hold as equalities, implying that in the two-sided
market γ ∗, the matching μ∗ attains the optimum value of the three-sided market γ , that, as
proved above, equals the optimum value of the two-sided market γ ∗. Therefore, μ∗ is an
optimal matching for γ ∗, proving claim (2). ��

Proposition 1 shows that one can always construct an optimal matching in the market with
middleman γ by first finding an optimal matching of the associated two-sided market γ ∗.
Next, we reconsider Example 1 to illustrate Proposition 1.

Example 2 (Example 1 Revisited) Recall that, for themarket γ , the total surplus of those basic
coalitions formed by a pair of buyer and seller is given by the following two-dimensional
matrix A = (aik)i∈B;k∈S :

A =
(
k1 k2

i1 3 2
i2 1 5

)

and joint surplus generated by triplets formed by a buyer, a middleman, and a seller is given
by the following three-dimensional matrix Â = (âi jk)i∈B; j∈M;k∈S :

Â =
k1 k2

i1
i2

(
4 3
3 5

)

j1

k1 k2
i1
i2

(
6 2
2 6

)

j2

.

First, we construct the associated two-sided market (B, S, A∗) where the set of buyers and
the set of sellers are the same, and A∗ = (a∗

ik)i∈B;k∈S is the valuationmatrix defined by a∗
ik =

max j∈M0 âi jk, ∀(i, k) ∈ B × S. For instance, a∗
11 = max{a11, â111, â121} = max{3, 4, 6} =

6 = â121. Then, A∗ = (a∗
ik)i∈B;k∈S is

A∗ =
(
k1 k2

i1 6 3
i2 3 6

)

,

where a∗
11 = â121, a∗

12 = â112, a∗
21 = â211, and a∗

22 = â222. Thus, m(1, 1) = m(2, 2) = j2
and m(1, 2) = m(2, 1) = j1.

Notice that σ = {{i1, k1}, {i2, k2}} is the unique optimal matching in γ ∗. Following
Proposition 1,we construct thematchingσ� for themarket γ : {i1, j2, k1} ∈ σ�, {i2, j2, k2} ∈
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σ�, and { j1} ∈ σ� since there does not exists a pair {i, k} ∈ σ such that j1 = m(i, k). By
Proposition 1, the matching σ� = {{i1, j2, k1}, {i2, j2, k2}, { j1}} thus obtained is optimal
in γ – which was already known from our calculations in Example 1. Finally, the optimum
values in the two markets are equal: σ�

γ (B ∪ M ∪ S) = 12 = σγ ∗(B ∪ S).

The following result proves that the TU-game associated with a market with middlemen
is always totally balanced.

Theorem 2 Let γ = (B, M, S, A, Â) be a market with middlemen. Then the associated
middlemen matching market game vγ is totally balanced. Moreover,

{
(x; y; z) ∈ Core(vγ ) : y = 0

} =
{
(x; 0; z) ∈ R

B × R
M × R

S : (x; z) ∈ Core(wγ ∗)
}

(5)

that is, the facet of Core(vγ ) where all middlemen receive zero payoff is “essentially the
same”as the core of the two-sided assignment gamewγ ∗ induced by the two-sided assignment
market γ ∗ = (B, S, A∗).

Proof First we show that the middlemen matching market game vγ is balanced for any
matching market with middlemen γ , by showing the relation ⊇ between the two payoff
sets in (5) and observing that the set on the right is non-empty due to the balancedness of
assignment games (Shapley & Shubik, 1971).

To this end, let (x; z) ∈ Core(wγ ∗) be arbitrary, but fixed. Then
∑

i∈B xi + ∑
k∈S zk =

wγ ∗(B ∪ S) = vγ (B ∪ M ∪ S), because by Proposition 1, the optimum values in the two
markets, hence, the grand coalition values in the two associated games are the same. Thus,
the augmented payoff vector (x; 0; z) is efficient in vγ . To see its coalitional rationality, let
T ⊆ B∪M∪S be arbitrary, but fixed. Letμ be an optimal T -matching in γ . By Proposition 1,
the value of the related two-sidedmatchingμ∗ between BT and ST in γ ∗ is at least vγ (T ).We
get vγ (T ) ≤ ∑

(i,k)∈μ∗ a∗
ik ≤ ∑

(i,k)∈μ∗(xi + zk) ≤ ∑
i∈BT

xi + ∑
k∈ST zk = (x; 0; z)(T ),

where the last two inequalities come from the coalitional rationality of core payoff (x; z) ∈
Core(wγ ∗). Therefore, the augmented payoff vector (x; 0; z) is in the core of vγ .

To show the reverse inclusion ⊆ in (5), take any payoff vector of the form (x; 0; z) from
Core(vγ ). As we proved above, such payoff vectors exist. By Proposition 1, (x; z)(B∪ S) =
(x; 0; z)(B∪M∪S) = vγ (B∪M∪S) = wγ ∗(B∪S), thus, the restricted payoff vector (x; z) is
efficient inwγ ∗ . To see its coalitional rationality, let R ⊆ B∪S be arbitrary, but fixed. Let σ be
an optimal R-matching in γ ∗. By Proposition 1, the value of the related three-sided matching
σ� equalswγ ∗(R). We getwγ ∗(R) = ∑

(i,m(i,k),k)∈σ� âim(i,k)k ≤ ∑
(i,m(i,k),k)∈σ�(xi +0+

zk) ≤ ∑
i∈BR

xi + ∑
k∈SR zk = (x; z)(R), where the last two inequalities come from the

coalitional rationality of core payoff (x; 0; z) ∈ Core(vγ ). Therefore, the restricted payoff
vector (x; z) is in the core of wγ ∗ .

Finally, the total balancedness of a middlemen matching market game straightforwardly
follows from the observation that the submarket obtained by restricting the surplus matrices
to agents in a subcoalition induces precisely the subgame related to that subcoalition. ��

Shapley and Shubik (1971) show that any two-sided assignment market exhibits two
distinguished core allocations, namely the buyer-optimal allocation and the seller-optimal
allocation. Under the buyer-optimal (seller-optimal) allocation all buyers (sellers) simultane-
ously achieve their maximum core payoff. Moreover, Demange (1982) and Leonard (1983)
show that for each agent the maximum core payoff is the marginal contribution of the agent to
the grand coalition. It is known that this property does not extend to the arbitrary multi-sided
markets. Nevertheless, Atay and Núñez (2019) study a special case of multi-sided markets
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where each of the m sides has an optimal core allocation under which all agents of that side
achieve their marginal contribution. Based on these results, it follows from Theorem 2 that
any matching market with middlemen has two special core vertices, where all buyers (sell-
ers) simultaneously achieve their maximum core payoff in those core allocation at which all
middlemen receive 0 payoff.2 We investigate whether analogous statements can be made for
the whole core.

Our next result states that, in a matching market with middlemen (and no capacity con-
straints), there exists an optimal core allocation for buyers (sellers): under their optimal
allocation, all buyers (sellers) simultaneously achieve their marginal contribution to the grand
coalition that is the theoretical maximum of core payoffs.

Theorem 3 Let γ = (A, Â) be a market with middlemen. Then the following statements
hold.

(i) There exists (a buyer-optimal core allocation) (x B; yB; zB) ∈ Core(vγ ) such that x Bi =
mci (vγ ), for all i ∈ B.

(ii) There exists (a seller-optimal core allocation) (x S; yS; zS) ∈ Core(vγ ) such that zSk =
mck(vγ ), for all k ∈ S.

Proof It is shown in the proof of Theorem 2 that, if an allocation (x∗; z∗) ∈ R
B∪S+ is in the

core of vγ ∗ , then the augmented allocation (x∗; 0M ; z∗) ∈ R
N+ is in the core of the original

market vγ . We will use this fact twice in the proof of Theorem 3.
(i) It is known from Shapley and Shubik (1971) that there exists a buyer-optimal core

allocation (x B; zB) in the two-sided market γ ∗ at which each buyer attains his/her maximum
core payoff. Moreover, Demange (1982) and Leonard (1983) prove that the maximum core
payoff of any player equals his/her marginal contribution to the grand coalition, that is to
say, x Bi = mci (vγ ∗) for all i ∈ B. As noted above, we have (x B; 0M ; zB) ∈ Core(vγ ).
Proposition 1 gives vγ (N ) = vγ ∗(B ∪ S). Clearly the same holds for the subgames in vγ

and vγ ∗ corresponding to coalitions N \ i and B ∪ S \ i , respectively, for any i ∈ B. Thus,
mci (vγ ) = vγ (N ) − vγ (N \ i) = vγ ∗(B ∪ S) − vγ ∗(B ∪ S \ i) = mci (vγ ∗). It follows that
x Bi = mci (vγ ) for all i ∈ B at (x B; 0M ; zB) ∈ Core(vγ ).

(ii) Letting (x S; zS) be the seller-optimal core allocation in the two-sided market γ ∗ and
taking (x S; 0M ; zS), the same argument allows to write zSk = mck(vγ ∗) = mck(vγ ) for all
k ∈ S at (x S; 0M ; zS) ∈ Core(vγ ). ��

Remark that Theorem3 claims the existence of a buyer-optimal (seller-optimal) allocation,
but not that of a middleman-optimal allocation. Indeed, it is not true in general that there
exists an allocation where all middlemen achieve their highest payoff in the core (this is
shown in the next section, where we present results and examples with two buyers and two
sellers).

5 Core payoffs inmarkets with two buyers and two sellers

Let us consider a matching market with middlemen γ = (B, M, S, A, Â) where there are
two buyers B = {i1, i2}, two sellers S = {k1, k2}. Let N = B∪M∪ S be the set of all agents.

2 The assumption that the middlemen do not have any capacity constraints plays an important role in the
results of Theorem 2. Indeed, in a context where some middlemen are capacity-constrained, the core may well
be empty (see Appendix A).

123



550 Annals of Operations Research (2023) 322:539–563

First, we assume that there is only one middleman M = { j}. The total surplus of direct
trade between a buyer and a seller is given by the two-dimensional non-negative matrix
A = (aik)i∈B;k∈S and the joint surplus generated by triplets formed by a buyer, a seller,
and the middleman is given by the following non-negative matrix Â = (âi jk)i∈B;k∈S with j
being the only middleman. Notice that we do not assume any domination relation between
the elements of the two market surplus matrices.

In the corresponding TU-game, the value of any singleton coalition is zero, the value of a
buyer–seller pair (i, k) is their surplus aik ≥ 0. The value of a buyer-middleman-seller triplet
(i, j, k), however, is not necessarily their surplus âi jk ≥ 0, but the maximum added value
these three players can generate, namely, bik := aik ∨ âi jk , where p∨q := max{p, q} for any
two real numbers p, q . It is easily seen that in our special 2×1×2 case the value of any other
coalition is the maximum value of the partitions of the coalition in these three types of basic
coalitions: singletons, buyer–seller pairs, and buyer-middleman-seller triplets. Therefore,
only these basic coalitions are essential in the game. Hence the core is the solution set of
the following system, where the x’s, z’s, and y’s denote the respective payoffs to the buyers,
sellers and middlemen, and α, β denote the respective maximum values of the matchings in
matrix A, A∗.

x1 , x2 , z1 , z2 , y ≥ 0
x1 + x2 + z1 + z2 + y = β

x1 . + z1 . . ≥ a11
x1 . . + z2 . ≥ a12
. x2 + z1 . . ≥ a21
. x2 . + z2 . ≥ a22
x1 . + z1 . + y ≥ b11
x1 . . + z2 + y ≥ b12
. x2 + z1 . + y ≥ b21
. x2 . + z2 + y ≥ b22

(6)

Since bik ≥ aik for all i ∈ B, k ∈ S, note that we trivially have β ≥ α.
We proved in Theorem 2 that the core is not empty; and Theorem 3 guarantees that both

buyers (both sellers) can simultaneously achieve their marginal contributions in the core.
Next, we show that the maximum core payoff to the single middleman j is also her marginal
contribution mc j = vγ (N ) − vγ (N \ { j}) = β − α.

Proposition 4 In a matching market with two buyers, two sellers, and one middleman, the
maximum core payoff to the middleman is her marginal contribution to the grand coalition.

Proof We show that system (6) has a solution with y = β − α. This substitution and the
combination of the two inequalities corresponding to the same buyer–seller pairs give the
following system:

x1 , x2 , z1 , z2 ≥ 0
x1 + x2 + z1 + z2 = α

x1 . + z1 . ≥ c11 := a11 ∨ (b11 − β + α)

x1 . . + z2 ≥ c12 := a12 ∨ (b12 − β + α)

. x2 + z1 . ≥ c21 := a21 ∨ (b21 − β + α)

. x2 . + z2 ≥ c22 := a22 ∨ (b22 − β + α)

(7)

We claim that (7) is the core system of the two-sided assignment game induced by the
2 × 2 matrix C, hence it has a solution. Since matrix C entry-wise weakly majorates the
direct trade matrix A, only the efficiency condition must be checked. The minimum total
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payoff needed to cover all entries in C is clearly at least α, that is the minimum total payoff
needed to cover A. Consequently, system (7) has a solution if and only if the maximum value
of the matchings in the modified 2 × 2 matrix C also equals to α. We show precisely this.

We assume without loss of generality that the main diagonal is optimal in matrix A, i.e.,
α = a11 + a22. There are two cases depending on which matching is optimal in matrix A∗.
Case 1: β = b11 + b22 ≥ b12 + b21.
Then a11 ≥ b11 − β + α = −b22 + a22 + a11, because of −b22 + a22 ≤ 0. Thus, c11 = a11.
Similarly, c22 = a22 ≥ b22 − β + α. Therefore, the value c11 + c22 of the matching in
the main diagonal equals α. We show that the value c12 + c21 of the matching in the minor
diagonal is at most α. There are four subcases depending on whether the first or the second
term majorates the other in the definition of c12 and c21.
– The case c12 = a12 and c21 = a21 comes trivially from a12 + a21 ≤ α.
– If c12 = a12 and c21 = b21 − β + α then a12 + b21 − β + α ≤ b12 + b21 − β + α ≤ +α,
becasue of a12 ≤ b12 and b12 + b21 ≤ β.
– The case c12 = b12 − β + α and c21 = a21 is seen similarly by interchanging the indices.
– Finally, if c12 = b12 − β + α and c21 = b21 − β + α then b12 − β + α + b21 − β + α ≤ α,
becasue of b12 + b21 ≤ β and α ≤ β.
Case 2: β = b12 + b21 ≥ b11 + b22.
Then a12 ≥ b12 − β + α = −b21 + α, because of −b21 ≥ −a21 and −a21 + α ≤ a12. Thus,
c12 = a12. Similarly, c21 = a21 ≥ b21−β+α. Therefore, the value c12+c21 of the matching
in the minor diagonal is at most α. We show that the value c11 + c22 of the matching in the
main diagonal is also at most α. In fact, it equals to α since c11 +c22 ≥ a11 +a22 = α. There
are four subcases depending on whether the first or the second term majorates the other in
the definition of c11 and c22.
– The case c11 = a11 and c22 = a22 comes trivially from a12 + a21 = α.
– If c11 = a11 and c22 = b22 − β + α then a11 + b22 − β + α ≤ b11 + b22 − β + α ≤ +α,
because of a11 ≤ b11 and b11 + b22 ≤ β.
– The case c11 = b11 − β + α and c22 = a22 is seen similarly by using a22 ≤ b22.
– Finally, if c11 = b11 − β + α and c22 = b22 − β + α then b11 − β + α + b22 − β + α ≤ α,
because of b11 + b22 ≤ β and α ≤ β. ��

We remark that, unfortunately, this proof cannot be easily generalized to markets with
one middleman, |B| ≥ 3 buyers, and |S| ≥ 3 sellers. A practical difficulty is that the num-
ber of matchings whose value must be checked in the modified matrix C grows factorially
in |B| = |S| (due to the dummy-player property of the core, this balancing assumption is
clearly not restrictive), so case enumeration becomes prohibitive. A more fundamental theo-
retical difficulty is that in such larger markets, the core system must also contain inequalities
corresponding to coalitions composed of h buyers, h sellers, and the middleman, for any
size 1 ≤ h ≤ |B| − 1. In case of |B| = |S| = 3, for example, the inequalities of the type
xi + xi ′ + zk + zk′ + y ≥ vγ ({i, i ′, j, k, k′}) must also be present in the core system, thus
after setting y = β − α, the inequalities xi + xi ′ + zk + zk′ ≥ vγ ({i, i ′, j, k, k′}) − β + α

appear in the modified system. In the core system of a two-sided assignment game, however,
such inequalities are redundant. Thus, these inequalities corresponding to larger, (h+h+1)-
member coalitions have no counterpart in an assignment core system, hence the idea of the
above proof, namely that the modified system is precisely the core system of a two-sided
assignment game obtained by possibly increasing some elements in the direct trade matrix,
cannot be applied. At least not in a straightforward manner. Nevertheless, we conjecture that
Proposition 4 generalizes to markets with more than two buyers and sellers: in any matching
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market with a single middleman, the maximum core payoff to the middleman is her marginal
contribution to the grand coalition.

On the other hand, we can generalize Proposition 4 to markets with two buyers, two
sellers, and with more than one middlemen. Our proof is analogous to that of Theorem 2
where we exhibited the existence of core allocations in a market with middlemen by setting
all middlemen payoffs to zero and showing that the reduced core system coincides with the
(non-empty) core of the two-sided assignment game induced by the entrywise maximum of
the surplus matrices. Here we reduce the core system of a two-buyer–two-seller market with
any number of middlemen to one with a single middleman and apply Proposition 4.

Corollary 1 If there are two buyers and two sellers in a matching market with middlemen, the
maximum core payoff to each middleman is her marginal contribution to the grand coalition.

Proof Consider a matching market with middlemen γ = (B, M, S, A, Â) where there are
two buyers B = {i1, i2} and two sellers S = {k1, k2}, and N = B ∪ M ∪ S is the set
of all agents. To avoid repeating Proposition 4, we assume |M | ≥ 2. The core system of
the corresponding game (N , vγ ) consists of the efficiency equation (setting the sum of the
(2+2+|M |) payoffs equal to vγ (N )), the four direct trade constraints verbatim as in the first
block of system (6), and one block of five constraints for each middleman h ∈ M containing
only her payoff yh from the middleman payoffs. Four of these inequalities are related to the
triplets with h ∈ M , the fifth one is the rationality constraint for coalition B ∪ {h} ∪ S.

Schematically, in case of three middlemen M = { j1, j2, j3}, the core system is

x1 , x2 , z1 , z2 , y1 , y2 , y3 ≥ 0
x1 + x2 + z1 + z2 + y1 + y2 + y3 = vγ (N )

xi + zk . . . ≥ vγ (ik) = aik ∀i ∈ B, k ∈ S
xi + zk + y1 . . ≥ vγ (i j1k) = aik ∨ âi j1k ∀i ∈ B, k ∈ S

x1 + x2 + z1 + z2 + y1 . . ≥ vγ (B ∪ { j1} ∪ S)

xi + zk . + y2 . ≥ vγ (i j2k) = aik ∨ âi j2k ∀i ∈ B, k ∈ S
x1 + x2 + z1 + z2 . + y2 . ≥ vγ (B ∪ { j2} ∪ S)

xi + zk . . + y3 ≥ vγ (i j3k) = aik ∨ âi j3k ∀i ∈ B, k ∈ S
x1 + x2 + z1 + z2 . . + y3 ≥ vγ (B ∪ { j3} ∪ S)

(8)

where the payoffs to the buyers, sellers, and middlemen are denoted by x’s, z’s, and y’s,
respectively. For sake of transparency, we list the middleman payoffs last.

Although, in general, any of the x1 + x2 + z1 + z2 + yh ≥ vγ (B ∪ {h} ∪ S) inequalities
(h ∈ M) is not redundant in the core system, but if we set yh = 0 then it is implied by
two of the four xi + zk + yh ≥ vγ (ihk) (i ∈ B, k ∈ S) inequalities in the same block, for
vγ (B ∪ {h} ∪ S) is the maximum of vγ (1h1) + vγ (2h2) and vγ (1h2) + vγ (2h1).

Let middleman j ∈ M be chosen arbitrarily. If we set yh = 0 for all h ∈ M \ { j} then
the corresponding x1 + x2 + z1 + z2 ≥ vγ (B ∪ {h} ∪ S) inequalities can be discarded, and
the four xi + zk ≥ vγ (ihk) inequalities can be combined with the corresponding direct trade
xi + zk ≥ vγ (ik) inequalities for every buyer–seller pair i ∈ B, k ∈ S. The x1 + x2 + z1 +
z2 + y j ≥ vγ (B ∪ { j} ∪ S) inequality with the distinguished middleman j is implied by the
reduced efficiency equation x1+x2+z1+z2+y j = vγ (N ) and themonotonicity of the game
vγ . The core system of vγ reduces to a systemwith |M |−1 less variables and 5 ·(|M |−1)+1
less inequalities. For example, if we choose j = j1 for the specific middleman, set yh = 0
for all h ∈ M \ { j1}, and take into account vγ (ik) = aik and vγ (ihk) = aik ∨ âihk , we get
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the reduced core system

x1 , x2 , z1 , z2 , y1 ≥ 0
x1 + x2 + z1 + z2 + y1 = vγ (N )

xi + zk . ≥ aik ∨ ∨
h �= j âihk ∀i ∈ B, k ∈ S

xi + zk + y1 ≥ aik ∨ âi j1k ∀i ∈ B, k ∈ S

(9)

Notice that for anybuyer–seller pair i ∈ B, k ∈ S, the inequality xi+zk ≥ aik∨∨
h �= j1 âihk

and the non-negativity of y1 implies xi + zk + y1 ≥ aik ∨ ∨
h �= j1 âihk . This combined with

the corresponding inequality xi + zk + y1 ≥ aik ∨ âi j1k in the last block of (9) gives us
xi + zk + y1 ≥ aik ∨ ∨

h∈M âihk .
We claim that the reduced core system (9) has a solution in which y1 = vγ (N ) − vγ (N \

{ j1}). To see this, we define a market γ ′ = (B, { j1}, S, A′, Â′
) with the same two buyers

and two sellers, but with only one middleman, j1. The direct trade surpluses are given by
a′
ik := aik∨max{âihk : h ∈ M\{ j1}}, while the buyer-middleman-seller surpluseswith j1 are
the same as in the originalmarket, that is â′

i j1k
:= âi j1k for all pairs i ∈ B, k ∈ S. Proposition 4

implies that there is an allocation (x ′
1, x

′
2; z′1, z′2; y′

1) in the core of game (B ∪ { j1} ∪ S, vγ ′)
where the payoff to the only middleman j1 is y1 = vγ ′(B ∪ { j1} ∪ S) − vγ ′(B ∪ S). It
means that allocation (x ′

1, x
′
2; z′1, z′2; y′

1) is a solution of system (6) corresponding to market
γ ′, when all right hand sides are replaced with their adjusted (.)′-ed version, in particular,
with β ′ = vγ ′(B ∪ { j1} ∪ S) in the efficiency equation, and b′

ik = a′
ik ∨ â′

i j1k
= aik ∨

∨
h∈M\{ j1} âihk ∨ âi j1k = aik ∨ ∨

h∈M âihk for pair i ∈ B, k ∈ S in the last block.
Since the direct trade surpluses for any pair i ∈ B, k ∈ S in market γ ′ incorporate all

their possibilities to trade via any middlemen except j1 in the original market γ , we get
β ′ = vγ ′(B ∪ { j1} ∪ S) = vγ (N ) and vγ ′(B ∪ S) = vγ (N \ { j1}). Thus, the payoff y′

1 to
middleman j1 is her marginal contribution to the grand coalition also in the original game
(N , vγ ). It is clear that if we augment any solution of the reduced core system (9) with zero
payoff to all middlemen except j , we get a core allocation in game vγ . In particular, inflating
allocation (x ′

1, x
′
2; z′1, z′2; y′

1) with |M | − 1 zero payoffs, we get a core allocation in game vγ

where middleman j = j1 receives her marginal contribution to the grand coalition in game
vγ . This completes our proof. ��

Next we demonstrate that, unlike for the buyers and the sellers, if there are at least two
middlemen, there may not exist a middleman-optimal core allocation (where all middlemen
receive their maximum core payoff at the same time). This can already happen in the smallest
possible non-trivial case, i.e., when there are two buyers, two sellers, and two middlemen,
although as Corollary 1 tells, individually each middleman can achieve the theoretical max-
imum of her core payoffs.

Example 3 Let us consider a matching market with middlemen γ = (B, M, S, A, Â) where
there are two buyers B = {i1, i2}, two sellers S = {k1, k2}, and twomiddlemenM = { j1, j2}.
Let N = B ∪ M ∪ S be the set of all agents. The total surplus of direct trade between a buyer
and a seller is given by the following two-dimensional non-negative matrix A = (aik)i∈B;k∈S
and the joint surplus generated by triplets formed by a buyer, a seller, and middleman j1 or
j2 are given, respectively, by the following two non-negative matrices A( j1) = (ai j1k)i∈B;k∈S
and A( j2) = (ai j2k)i∈B;k∈S

A =
(
k1 k2

i1 4 6
i2 6 5

)

, A( j1) =
(
k1 k2

i1 5 5
i2 5 7

)

, A( j2) =
(
k1 k2

i1 3 5
i2 6 8

)

.
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Notice that in some cases the direct trade provides a higher surplus than a mediated trade, in
other cases the opposite holds.

In the corresponding TU-game (N , vγ ), the value of the grand coalition is 13 = 5 + 8,
the value of the optimal matching (the diagonal one) in the entry-wise cover matrix A∗ of
matrices A, A( j1), and A( j2) (the leftmost one below):

A∗ =
(
k1 k2

i1 5 6
i2 6 8

)

, A(− j2) =
(
k1 k2

i1 5 6
i2 6 7

)

, A(− j1) =
(
k1 k2

i1 4 6
i2 6 8

)

.

The value of coalition N \{ j2} is 12 = 5+7 = 6+6, the value of the optimalmatching (either
one) in the entry-wise cover matrix A(− j2) of matrices A and A( j1) (the middle one above).
Thus, the marginal contribution of middleman j2 to the grand coalition is 1 = 13 − 12.

Similarly, the value of coalition N \ { j1} is obtained from the entry-wise cover matrix
A(−1) of matrices A and A(2) (the rightmost one above). It is 12 = 4 + 8 = 6 + 6 (again
both matchings are optimal). Thus, the marginal contribution of middleman j1 to the grand
coalition is also 1 = 13 − 12.

Finally, the value of coalition N \ { j1, j2} = B ∪ S is 12 = 6+ 6, the maximum value of
matchings in the direct trade matrix A (attained in the minor diagonal). Thus, the total payoff
to the two middlemen in the core can also be at most 1 = 13 − 12, implying that if y1 = 1
then y2 = 0 must hold, and vice versa.

On the other hand, it is easily checked that the following eight payoff vectors (where the
payoffs to the buyers, sellers, and middlemen are denoted by x’s, z’s, and y’s, respectively)
are all core allocations in our middleman market game (N , vγ ).

x1 x2 z1 z2 y1 y2
5 7 0 1 0 0
5 6 0 2 0 0
0 1 5 7 0 0
0 2 5 6 0 0
4 6 0 2 1 0
0 2 4 6 1 0
5 6 0 1 0 1
0 1 5 6 0 1

The two allocations in the second and the third segments show that both middlemen can
achieve their marginal contribution in the core, illustrating Corollary 1. Therefore, there is no
middleman-optimal core allocation, the maximum core payoffs for both middlemen cannot
be simultaneously attained.

We remark that the four allocations in the first segment give a full description of the y1 = 0,
y2 = 0 facet of the core in (N , vγ ), that is precisely the core of the two-sided assignment
game (B ∪ S, vγ ∗) induced by matrix A∗, illustrating Theorem 2. The first payoff vector
is the buyer-optimal core allocation, in both (N , vγ ) and (B ∪ S, vγ ∗), the third one is the
seller-optimal core allocation, again in both games.

Similarly, the two allocations in the second segment give a full description of the y1 = 1,
y2 = 0 facet of the core in (N , vγ ), that is precisely the core of the assignment game
(B ∪ S, vγ (− j1) ) induced by matrix A(− j1). Likewise, the two allocations in the third segment
give a full description of the y1 = 0, y2 = 1 facet of the core in (N , vγ ), that is precisely the
core of the assignment game (B ∪ S, vγ (− j2) ) induced by matrix A(− j2).
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6 Core and competitive equilibria

The aim of this section is to study the relationship between core and competitive equilibria
in matching markets with middlemen. Gale (1960) defines competitive equilibrium prices
and proves their existence for any assignment problem (see also (Shapley & Shubik, 1971)).
Tejada (2010) extends the coincidence between core and competitive equilibria for the clas-
sical three-sided assignment markets where buyers are forced to acquire exactly one item of
each type. In a similar fashion, Atay et al. (2016) generalize the equivalence result for the
generalized three-sided assignment markets where buyers can buy at most one good of each
type. In both extensions, the existence of a competitive equilibrium is guaranteed whenever
the core is non-empty.

Consider any market with middlemen where the set of buyers is B = {i1, · · · , i|B|}, the
set of middlemen is M = { j1, · · · , j|M|}, and the set of sellers is S = {k1, · · · , k|S|}. Assume
that buyers and sellers trade through the competitive market with the presence of middlemen
and agents in the market are price-takers. Each buyer i ∈ B demands at most one unit of
the good, each seller k ∈ S offers one unit for sale (recall that units owned by different
sellers may be heterogeneous). Assume that buyer i values the good of seller k at hik , and
the production cost of the good for seller k is ck . If buyer i and seller k trade directly, the
transaction (search) cost tik , is incurred by buyer i . If buyer i instead hires middleman j and
ends up purchasing the object owned by seller k, then the transaction cost ti jk is incurred by
buyer i ; and middleman j ∈ M incurs the mediation cost cikj .

Let pk be the price demanded by seller k for her unit; and assume that middleman j ∈ M
charges a fee pikj to buyer i when the latter uses j’s services to purchase the unit owned by
seller k. Note that middlemen need not charge the same fee for each possible buyer–seller
trade. That is, it may happen that pikj �= pi

′k′
j when j is mediating the respective pairs (i, k)

and (i ′, k′) (with the possibility of having either i = i ′ or k = k′).
If the transaction between buyer i and seller k is realized through middleman j , then the

utility of buyer i is given by hik−ti jk−pikj −pk , the benefit of seller k is pk−ck , and the benefit

ofmiddleman j is pikj −cikj . Thus, the total surplus ishik−ti jk−pikj −pk+pikj +pk−cikj −ck =
hik − ti jk − cikj − ck . If hik − ti jk − cikj − ck < 0, no transaction will be realized since a
transaction will go through only if it gives a non-negative utility to each of the three agents i ,
j and k. Thus, for all (i, j, k) ∈ B × M × S, let âi jk = max{0, hik − ti jk − cikj − ck} denote
the surplus generated when a transaction is realized between buyer i and seller k through
middleman j . Similarly, when the transaction is realized directly between buyer i and seller
k, the utility of buyer i is hik − tik − pk , the benefit of seller k is pk − ck , and hence the
total surplus is hik − tik − pk + pk − ck = hik − tik − ck = aik . If hik − tik − ck < 0,
no transaction will be realized between buyer i and seller k. Thus, for all (i, k) ∈ B × S,
let aik = max{0, hik − tik − ck} denote the surplus generated when a transaction is realized
directly between buyer i and seller k. Hence, this detailedmarket situation can be summarized
by a tuple simply giving the set of buyers, the set of middlemen, the set of sellers, and the two
matrices with generic terms aik and âi jk defined above. That is to say, the TU game (N , vγ )

associated with this market is defined precisely by the characteristic function vγ given in (1).
We want to show that each core allocation can be obtained as the result of trading at

competitive prices. To do so, we need some definitions allowing to introduce the notion of
competitive price vector. A price vector p ∈ R

B×M×S+ × R
S+ contains the specific, possibly

differentiated prices, of themediation services for each buyer-middleman-seller configuration
as well as the undifferentiated prices of the goods.
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Given amatchingmarket withmiddlemen γ , a feasible price vector is p ∈ R
B×M×S+ ×R

S+
such that pikj ≥ cikj for all j ∈ M and pk ≥ ck for all k ∈ S. The set of basic coalitions that

contain buyer i ∈ B is Bi = {E ∈ BN | i ∈ E}. Let wi (E) = hik − ti jk be the valuation of
buyer i for E = {i, j, k} and wi (E) = hik − tik be the valuation of buyer i for E = {i, k}.
Observe the relation

vγ (E) = max
{
0, wi (E) − c(E \ {i})

}
(10)

for any basic coalition E ∈ Bi containing buyer i .
Next, for each feasible price vector p ∈ R

B×M×S+ × R
S+ we introduce the demand set of

each buyer i ∈ B.

Definition 2 Let γ = (B, M, S, A, Â) be a matching market with middlemen. The demand
set of buyer i ∈ B at a feasible price vector p ∈ R

B×M×S+ × R
S+ is

Di (p) =
{
E ∈ Bi | wi (E) − p(E \ {i}) ≥ wi (E ′) − p(E ′ \ {i}) for all E ′ ∈ Bi

}
.

Note that Di (p) describes the set of basic coalitions containing buyer i that maximize
the net valuation of buyer i at prices p. Notice also that the demand set of a buyer i ∈ B is
always non-empty since i can always demand E = {i} with a net profit of 0.

Given an N -matchingμ, we say that amiddleman j ∈ M is unassigned (byμ) ifμ( j) = j
and we say that a seller k ∈ S is unassigned (by μ) if there is no i ∈ B such that k = μ(i).
Now, we can introduce the notion of competitive equilibrium for our model. The literature
has adopted the approach of Roth and Sotomayor (1990) for the definition of a competitive
equilibrium in matching markets. We adapt this definition to our context with three-sided
matching with buyers, middlemen, and sellers.

Definition 3 Given a matching market with middlemen γ = (B, M, S, A, Â), a pair (p, μ)

composed of a price vector p and an N -matching μ forms a competitive equilibrium if

(i) p is a feasible price vector, i.e., p ∈ R
B×M×S+ × R

S+ such that pikj ≥ cikj for all j ∈ M
and pk ≥ ck for all k ∈ S,

(ii) for each buyer i ∈ B and basic coalition E ∈ Bi , if E ∈ μ then E ∈ Di (p),
(iii) for each middleman j ∈ M , if j is unassigned by μ, then pikj = cikj for all buyer–seller

pairs (i, k) ∈ B × S,
(iv) for each seller k ∈ S, if k is unassigned by μ, then pk = ck .

Observe that a competitive equilibrium consists of a set of prices and an N -matchingwhere
each buyer maximizes her utility under the assignment of N -matching and prices. Moreover,
middlemen and sellers are competitive, in the sense that no middleman mediates a trade
unless she can charge a fee (service price) at least equal to her cost and no seller agrees to sell
her good without receiving at least her cost. If a pair (p, μ) is a competitive equilibrium, then
we say that the price vector p is a competitive equilibrium price vector and the N -matching
μ is a compatible matching. The corresponding payoff vector for a given pair (p, μ) is called
competitive equilibrium payoff vector. This payoff vector is (x(p, μ), y(p, μ), z(p, μ)) ∈
R

B × R
M × R

S , defined by

xi (p, μ) = wi (Eμ(i)) − p(Eμ(i) \ {i}) where i ∈ Eμ(i) ∈ μ for all i ∈ B,

y j (p, μ) =
∑

{i, j,k}∈μ

pikj −
∑

{i, j,k}∈μ

cikj = p j (μ) − c j (μ) for all j ∈ M,

zk(p, μ) = pk − ck for all k ∈ S.
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Notice the dependence of the aggregated service prices (fees) p j (μ) and the aggregated
service costs c j (μ) on the matching μ.

We denote the set of competitive equilibriumpayoff vectors ofmarket γ byCE(γ ).We now
study the relationship between the core of γ = (B, M, S, A, Â) and the set of competitive
equilibrium payoff vectors. First, we show that an N -matching μ is an optimal matching
whenever it constitutes a competitive equilibrium with a feasible price vector p.

Lemma 1 Given a matching market with middlemen γ = (B, M, S, A, Â), if (p, μ) is a
competitive equilibrium, then μ is an optimal matching.

Proof Consider a competitive equilibrium (p, μ) and another N -matchingμ′ ∈ M(B, M, S).
For buyer i ∈ B, let Eμ(i) ∈ Bi be the (unique) basic coalition assigned to i under the match-
ing μ, that is, i ∈ Eμ(i) ∈ μ, and Eμ′(i) ∈ Bi be the (unique) basic coalition assigned to i
under thematchingμ′, that is, i ∈ Eμ′(i) ∈ μ′.We can assume, without loss of generality, that
μ′ is such that for any i ∈ B, if Eμ′(i) is not a singleton thenwi (Eμ′(i))−c(Eμ′(i) \{i}) ≥ 0,
for otherwise we could replace Eμ′(i) with the singleton coalitions of its members and get a
(finer) N -matching μ′′ with the same total value for N . Then,

∑

E∈μ

vγ (E)
(1)≥

∑

i∈B

(
wi (Eμ(i)) − c(Eμ(i) \ {i})

)

(2)≥
∑

i∈B

(
wi (Eμ′(i)) − c(Eμ(i) \ {i}) − p(Eμ′(i) \ {i}) + p(Eμ(i) \ {i})

)

(3)=
∑

i∈B

(
wi (Eμ′(i)) − c(Eμ(i) \ {i})

)
− p

(
⋃

i∈B
Eμ′(i) \ B

)

+ p

(
⋃

i∈B
Eμ(i) \ B

)

(4)=
∑

i∈B
wi (Eμ′(i)) − c

(
⋃

i∈B
Eμ(i) \ B

)

− p

((
⋃

i∈B
Eμ′(i) \

⋃

i∈B
Eμ(i)

)

\ B

)

+ p

((
⋃

i∈B
Eμ(i) \

⋃

i∈B
Eμ′(i)

)

\ B

)

(5)=
∑

i∈B
wi (Eμ′(i)) − c

(
⋃

i∈B
Eμ(i) \ B

)

− c

((
⋃

i∈B
Eμ′(i) \

⋃

i∈B
Eμ(i)

)

\ B

)

+ p

((
⋃

i∈B
Eμ(i) \

⋃

i∈B
Eμ′(i)

)

\ B

)

(6)=
∑

i∈B
wi (Eμ′(i)) − c

(
⋃

i∈B
Eμ′(i) \ B

)

− c

((
⋃

i∈B
Eμ(i) \

⋃

i∈B
Eμ′(i)

)

\ B

)

+ p

((
⋃

i∈B
Eμ(i) \

⋃

i∈B
Eμ′(i)

)

\ B

)

(7)≥
∑

i∈B

(
wi (Eμ′(i)) − c(Eμ′(i) \ {i})

)
(8)=

∑

E∈μ′
vγ (E),

where inequality
(1)≥ follows from the relation vγ (E) = max

{
0, wi (E) − c(E \ {i}

}
for

any basic coalition E ∈ Bi , and inequality
(2)≥ follows from the definition of the demand set
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and the fact that (p, μ) is a competitive equilibrium: wi (Eμ(i)) ≥ wi (Eμ′(i)) − p(Eμ′(i) \
{i}) + p(Eμ(i) \ {i}). Equality (4)= is the result of canceling out the common service prices,

while equality
(5)= follows from the fact that for all j ∈

(⋃
i∈B Eμ′(i) \ ⋃

i∈B Eμ(i)
)

∩ M ,

pikj = cikj and for all k ∈
(⋃

i∈B Eμ′(i) \ ⋃
i∈B Eμ(i)

)
∩ S, pk = ck . Equality

(6)= shows the

rearrangement of costs incurred in the union of the two matchings, and inequality
(7)≥ follows

from the feasibility of the price vector p. Finally, equality
(8)= comes from relation (10) under

our assumption on μ′. ��

Now, we can provide the main result of this section. We establish the equivalence between
the core and the set of competitive equilibrium payoff vectors.

Theorem 5 Given a matching market with middlemen γ = (B, M, S, A, Â), the core of the
market, Core(γ ), coincides with the set of competitive equilibrium payoff vectors, CE(γ ).

Proof First, we show that if (p, μ) is a competitive equilibrium, then its corresponding
competitive equilibrium payoff vector X = (x(p, μ), y(p, μ), z(p, μ)) ∈ CE(γ ) is a core
element. Recall that xi (p, μ) = wi (Eμ(i)) − p(Eμ(i) \ {i}) for all buyers i ∈ B where
i ∈ Eμ(i) ∈ μ, y j (p, μ) = ∑

{i, j,k}∈μ pikj − ∑
{i, j,k}∈μ cikj = p j (μ) − c j (μ) for all

middlemen j ∈ M , and zk(p, μ) = pk − ck for all sellers k ∈ S. Let us check that for all
basic coalitions E ∈ B it holds X(E) ≥ vγ (E). Notice that if E does not contain any buyer
i ∈ B, then vγ (E) = 0 and hence the core inequality trivially holds. Otherwise, take E ∈ B
such that i ∈ E for some i ∈ B. Again, if vγ (E) = 0, the core inequality trivially holds.
Thus, assume vγ (E) > 0. Then,

X(E) = wi (Eμ(i)) − p(Eμ(i) \ {i}) + p(E \ {i}) − c(E \ {i})
≥ wi (E) − p(E \ {i}) + p(E \ {i}) − c(E \ {i})
= wi (E) − c(E \ {i}) = vγ (E),

where the inequality follows from the fact that (p, μ) is a competitive equilibrium, and the
last equality comes from relation (10) under our assumption on the value of E . It remains
to check that X is efficient. Since at the matching μ each buyer i ∈ B and each seller
k ∈ S appears in at most one buyer–seller pair or one buyer-middleman-seller triplet and
each middleman can serve arbitrary number of buyer–seller pairs, we get

X(N ) =
∑

i∈B

[
wi (Eμ(i)) − p(Eμ(i) \ {i})

]
+ p(M ∪ S) − c(M ∪ S)

=
∑

i∈B

[
wi (Eμ(i)) − p(Eμ(i) \ {i}) + p(Eμ(i) \ {i}) − c(Eμ(i) \ {i})

]

+
∑

j /∈ ⋃

i∈B
Eμ(i)

(
p j (μ) − c j (μ)

) +
∑

k /∈ ⋃

i∈B
Eμ(i)

(pk − ck)

=
∑

i∈B

[
wi (Eμ(i)) − c(Eμ(i) \ {i})

]

=
∑

i∈B
vγ (Eμ(i)) =

∑

E∈μ

vγ (E),
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where the third equality holds since pikj = cikj for unassignedmiddlemen j ∈ M and pk = ck
for unassigned seller sk ∈ S. The fourth equality holds because of the optimality of μ by
Lemma 1 and the observation that, as in any optimal matching, for any i ∈ B, we must have
wi (Eμ(i)) − c(Eμ(i) \ {i}) ≥ 0.

We have shown that if (p, μ) is a competitive equilibrium, then its competitive equilibrium
payoff vector X ∈ CE(γ ) is a core allocation. Next, we show that the reverse implication
holds. That is, if X ∈ R

B × R
M × R

S is a core allocation, then it is the payoff vector
related to some competitive equilibrium (p, μ), where μ is any optimal matching and p is a
competitive equilibrium price vector.

Let us define pikj = X j +cikj for all basic triplet {i, j, k} ∈ B. Given any optimal matching

μ, take the aggregate service prices p j (μ) = ∑
{i, j,k}∈μ pikj for all middleman j ∈ M .

Define pk = Xk + ck for all sellers k ∈ S. Notice first that, since X ∈ Core(γ ), if seller k
is unassigned by the matching μ, pk = Xk + ck = ck and if a middleman does not mediate
a trade between a buyer–seller pair (i, k) under the matching μ, pikj = X j + cikj = cikj .

Moreover, X(Eμ(i)) = vγ (Eμ(i)) for all i ∈ B and X(E ′) ≥ vγ (E ′) for all E ′ ∈ Bi . Notice
that by the optimality of μ, vγ (Eμ(i)) = wi (Eμ(i)) − c(Eμ(i) \ {i}) ≥ 0 for all i ∈ B. Then,
for all i ∈ B and E ′ ∈ Bi ,

wi (Eμ(i)) − p(Eμ(i) \ {i}) = vγ (Eμ(i)) + c(Eμ(i) \ {i}) − p(Eμ(i)) \ {i})
= X(Eμ(i)) + c(Eμ(i) \ {i}) − p(Eμ(i) \ {i})
= Xi

≥ vγ (E ′) − X(E ′ \ {i})
= vγ (E ′) − [

p(E ′ \ {i}) − c(E ′ \ {i})]

≥ wi (E ′) − p(E ′ \ {i})

where the first inequality follows from the fact that X ∈ Core(γ ) and the second inequality
comes from relation (10). This shows that Eμ(i) ∈ Di (p) which concludes the proof. ��

Wehave shown that the core and the set of competitive equilibrium payoff vectors coincide
under the assumption that middlemen need not charge the same price for two different buyer–
seller trade. Next example shows that if we consider the case where middlemen charge a
fixed price for each buyer–seller trade that they mediate, then a core allocation need not to
be supported by competitive prices.

Example 4 Consider a market with middlemen γ = (B, M, S, A, Â) where B = {i1, i2},
M = { j1, j2}, and S = {k1, k2} are the set of buyers, the set of middlemen, and the set of
sellers, respectively. The total surplus of those basic coalitions formed by a pair of buyer and
seller is given by the following two-dimensional matrix A = (aik)i∈B

k∈S
:

A =
(
k1 k2

i1 3 2
i2 1 5

)

and joint surplus generated by triplets formed by a buyer, a middleman, and a seller is given
by the following three-dimensional matrix Â = (âi jk) i∈B

j∈M
k∈S

:
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Â =
k1 k2

i1
i2

(
4 3
3 5

)

j1

k1 k2
i1
i2

(
6 2
2 6

)

j2

.

Notice first that there is a unique optimal matching, μ = {(i1, j2, k1), (i2, j2, k2)}. If the
service price of each possible trade was fixed for any middlemen, then under the optimal
matching μ, middleman j2 would charge the same price for both trades she mediates, i.e.,
pi1k1j2

= pi2k2j2
. Suppose now that costs for sellers andmiddlemen assigned under thematching

μ are equal to zero, ck1 = ck2 = ci1k1j2
= ci2k2j2

= 0. Then, following (10), net valuations

of buyer i1 and buyer i2 are wi1({i1, j2, k1}) = v({i1, j2, k1}) = 6 and wi2({i2, j2, k2}) =
v({i2, j2, k2}) = 6.

Now, take the core allocation X = (3, 5; 0, 3; 1, 0). Since all costs are equal to zero,
z1(p, μ) = pk1−ck1 = 1 implies that pk1 = 1 for seller k1, z2(p, μ) = 0 implies that pk2 = 0
for seller k2. For middleman j1, y1(p, μ) = 0 since she is unassigned under the optimal
matchingμwhereas y2(p, μ) = pi1k1j2

−ci1k1j2
+ pi2k2j2

−ci2k2j2
= 1.5−0+1.5−0 = 3. Together

with pi1k1j2
= 1.5, pk1 = 1 imply that, under the matchingμ,wi1({i1, j2, k1})− pi1k1j2

− pk1 =
6 − 1.5 − 1 = 3.5 �= 3 = x1(p, μ) and pi2k2j2

= 1.5 together with pk2 = 0 imply that

wi2({i2, j2, k2}) − pi2k2j2
− pk2 = 6 − 1.5 − 0 = 4.5 �= 5 = x2(p, μ). Hence, the core

allocation X is not supported by the competitive equilibrium (p, μ)when middlemen charge
a fixed service price for each trade they mediate.

Note that the core allocation X = (3, 5; 0, 3; 1, 0) can be supported by the competi-
tive prices when middleman j2 have different service prices for each trade she mediates
under the matching μ. Take pi1k1j2

= 2 and pi2k2j2
= 1, pk1 = 1, and pk2 = 0. Sup-

pose again that costs for sellers and middlemen assigned under the matching μ are equal
to zero, ck1 = ck2 = ci1k1j2

= ci2k2j2
= 0. Then, following (10), wi1({i1, j2, k1}) =

v({i1, j2, k1}) = 6 and wi2({i2, j2, k2}) = v({i2, j2, k2}) = 6. One can easily see that,
x1(p, μ) = wi1({i1, j2, k1}) − pi1k1j2

− pk1 = 6− 2− 1 = 3, x2(p, μ) = wi2({i2, j2, k2}) −
pi2k2j2

− pk2 = 6 − 1 − 0 = 5, y1(p, μ) = 0 since she is unassigned under the matching μ,

y2(p, μ) = pi1k1j2
−ci1k1j2

+pi2k2j2
−ci2k2j2

= 2−0+1−0 = 3, z1(p, μ) = pk1−ck1 = 1−0 = 1,
z2(p, μ) = pk2 − ck2 = 0.

Remark 1 There is a one-to-one correspondence between the core and the set of competitive
prices when middlemen charge possibly different prices for two different buyer–seller trade,
whereas if middlemen charge the same price for each buyer–seller pair trade, then she need
not be competitive, i.e., core can be a superset of the set of competitive prices.

7 Concluding remarks

We have considered a class of multi-sided matching markets where a trade between buyer–
seller pairs can be realized with or without middlemen. We allow a middleman to serve the
entire market by mediating as many trades as the size of the short side of the market while
buyer–seller pairs can also trade directly.We have associated a classical two-sided assignment
market with a matching market with middlemen by taking for each buyer–seller pair the
maximum surplus that this pair can achieve with the free-of-charge help of middlemen. We
have shown that the non-empty core of this associated two-sided assignment market can be
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embedded in the core of the matching market with middlemen by allocating zero payoff to
all middlemen.

For these markets we have introduced an associated TU game, thereby extending the clas-
sical (two-sided) assignment markets of Shapley and Shubik (1971) to a special multi-sided
case. We have shown that every matching market with middlemen has a non-empty core. In
addition, we have proved that there exists a buyer-optimal and a seller-optimal core allocation
for every matching market with middlemen. Unlike in other extensions previously studied,
it is shown that all buyers (sellers) achieve their marginal contribution simultaneously at the
buyer-optimal (seller-optimal) core allocation. In addition, we have provided an example to
show that it is not the case for middlemen: in general there does not exist an allocation that
every middleman weakly prefers to any other allocation in the core. Finally, we have studied
the relationship between the core and the set of competitive equilibria. We have established
the coincidence between the core and the set of competitive equilibrium payoff vectors.

A possible direction for further research is to study the relationship between the core and
another set-wise solution concept, the bargaining set. Solymosi (1999) proves the equivalence
between the core and the classical bargaining set of Davis and Maschler (1967), a set-wise
solution concept based on bargaining possibilities of players, for two-sided assignment games
(see also Solymosi (2008) for related results on other partitioning games). Bahel (2021)
generalizes this result among others to a larger class known as (quasi)-hyperadditive games.
For multi-sidedmatchingmarkets, the coincidence result between the classical bargaining set
and the core is exhibited only to the class of supplier-firm-buyer games (Atay & Solymosi,
2018). Nevertheless, the methods used in the aforementioned papers do not seem to carry
over to our model and we leave exploring the relationship between the bargaining set and the
core for future research.

Another interesting direction for the future research is to study the extension of Shapley
(1962)’s and Mo (1988)’s results on comparative statistics. Following the results of Shapley
(1962) showing that agents of the same side of the market are substitutes, whereas agents
of different sides are complements in the two-sided assignment game, Mo (1988) provides a
number of comparative statistics results referred as theLawofDiminishingReturns. However,
two-sided nature of the assignment game is crucial for their results. Tejada (2013) provides
counterexamples to show that the law of diminishing returns does not hold for (standard)
multi-sided assignment markets with more than two sectors even when the associated game
is balanced. Hence, we leave for the future a fully fledged analysis on comparative statistics
for matching markets with middlemen under the transferable utility.
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A Example: capacity constraint and empty core

Note that our results stated in Theorem 2 do not necessarily hold if middlemen have capacity
constraints. We provide here a simple example (with one middleman, two buyers and two
sellers) illustrating this observation.

Example 5 Consider a market with middlemen γ = (B, M, S, A, Â) where B = {i1, i2},
M = { j1}, and S = {k1, k2} are the set of buyers, the set of middlemen, and the set of sellers,
respectively. The total surplus of each basic coalition formed by a buyer–seller pair is given
by the following two-dimensional matrix A = (aik)i∈B

k∈S
:

A =
(
k1 k2

i1 3.5 3
i2 3 3

)

;

and the joint surplus generated by each buyer-middleman-seller triplet is given by the fol-
lowing three-dimensional matrix Â = (âi jk) i∈B

j∈M
k∈S

:

Â =
k1 k2

i1
i2

(
4 4
4 3.5

)

j1

.

The key assumption in this example is that middleman j1 can serve at most one buyer–
seller pair, which means that matchings such as μ = {(i1, j1, k1), (i2, j1, k2)} are no longer
feasible. It is not difficult to check that (a) the worth of the grand coalition is 7; and (b) there
are four optimal (feasible) matchings, each consisting of a buyer–seller pair and a buyer-
middleman-seller triplet whose surpluses (in the above matrices) are of the same color. For
example, the matching μ∗ = {(i1, j1, k2), (i2, k1)} is optimal.

We show next that the core of this assignment market (with capacity constraint) is empty.
Suppose by contradiction that (x; y; z) ∈ R

B × R
M × R

S is a core allocation. Since μ∗ =
{(i1, j1, k2), (i2, k1)} is an optimal matching, it comes from the two matrices above that
x1 + y1 + z2 = 4 and x2 + z1 = 3. Moreover, the core constraint for {i2, j1, k1} gives
x2 + y1 + z1 ≥ 4 and (combining this with x2 + z1 = 3) it hence follows that y1 ≥ 1. Next,
subtracting y1 ≥ 1 from the efficiency requirement x1 + x2 + y1 + z1 + z2 = 7, we can write
x1 + x2 + z1 + z2 ≤ 6; but this is a contradiction (since the top matrix A allows to see that
x1 + x2 + z1 + z2 ≥ 6.5 for every core allocation).

We have thus shown that the non-emptiness of the core cannot be guaranteedwhenmiddle-
men have capacity constraints. Intuitively, with a (unique) capacity-constrained middleman,
one can explain the vacuity of the core as follows. The middleman j1 is entitled to a (positive)
minimum payoff (z̄) in the core whenever there exists an optimal matching containing some
buyer–seller pair that is not allowed to use the middleman’s services (due to the capacity
constraint). Unfortunately, the minimum payoff z̄ may in some cases be greater than the mid-
dleman’s marginal contribution to the grand coalition; and this obviously leads to an empty
core. In our example above, we have computed z̄ = 4 − 3 = 1; and it is easy to see that
mc j1 = 7 − 6.5 = 0.5 (hence, z̄ > mc j1 ).
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