
J. Math. Anal. Appl. 531 (2024) 127893
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Operators on anti-dual pairs: Supremum and infimum of positive 

operators ✩

Zsigmond Tarcsay a,b,∗, Ábel Göde b

a Department of Mathematics, Corvinus University of Budapest, IX. Fővám tér 13-15., Budapest H-1093, 
Hungary
b Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Pázmány 
Péter sétány 1/c., Budapest H-1117, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2023
Available online xxxx
Submitted by A. Daniilidis

Dedicated to Professor Zoltán 
Sebestyén on the occasion of his 
80th birthday

Keywords:
Positive operator
Anti-dual pair
Supremum
Infimum
Lebesgue decomposition
Strength function

Our purpose in this note is to investigate the order properties of positive operators 
from a locally convex space into its conjugate dual. We introduce a natural 
generalization of the Busch-Gudder strength function and we prove Kadison’s anti-
lattice theorem and Ando’s result on the infimum of positive operators in that 
context.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let H be a complex (possibly infinite dimensional) Hilbert space. It is well known that the set of bounded 
self-adjoint operators Bsa(H) is a partially ordered set with respect to the most natural Löwner order

A ≤ B ⇐⇒ (Ax |x) ≤ (Bx |x) (∀x ∈ H).

That is to say, ‘≤’ is a reflexive, transitive and anti-symmetric relation. It is however proved by Kadison [7]
that the partially ordered set (Bsa(H), ≤) is as far from being a lattice as possible. In fact, the supremum 
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A ∨ B of the self-adjoint operators A and B can exist only in the trivial case when they are comparable. 
The same is true for the question of the infimum, as we have

A ∧B = −((−A) ∨ (−B)).

If we examine the same questions in the cone B+(H) of positive operators, the answer does not change in 
the case of the supremum. However, it is not difficult to see that the infimum of two orthogonal projections 
P, Q with disjoint ranges is P ∧Q = 0 in B+(H). This simple example suggests that the infimum problem 
considered over the cone of positive operators is a more sophisticated problem than that over Bsa(H).

The problem of the existence of the infimum in the positive cone has been studied by several authors. 
Particularly, Moreland and Gudder [9] solved it finite dimensional case. The general case was completely 
answered by T. Ando [2]. Ando showed that the infimum problem is closely related to the so-called Lebesgue-
type decomposition of positive operators, the theory of which was also developed by him [1]. Namely, given 
two positive operators A, B on H, there exists two positive operators Ba, Bs on H, where Ba is absolutely 
continuous to A, whilst Bs is singular to A, such that Ba +Bs = B (see [1]). It is also proved by Ando that 
such a decomposition is not unique in general, but there is a distinguished positive operator (denoted by 
[B]A := Ba) which satisfies the decomposition and which is the largest among those operators C ≥ 0 such 
that C ≤ A and C 
 B. (We refer the reader to [1] and [15] for the details.) This maximal operator [B]A
is called the B-absolutely continuous part of A.

From the maximality property of the absolutely continuous parts it is easy to check that if [B]A and 
[A]B are comparable, then the infimum of A and B exists, namely,

A ∧B = max{[A]B, [B]A}.

The main result of Ando’s paper [2] states that the reverse of this is also true: A ∧ B exists if and only if 
the corresponding absolutely continuous parts are comparable.

The aim of this note is to investigate the supremum and infimum problem in a much more general context, 
namely, among the positive cone of operators on so called anti-dual pairs. By anti-dual pair we mean a pair 
(E, F ) of complex vector spaces which are connected by a so-called anti-duality function 〈·, ·〉 : F ×E → C. 
The latter differs from the well-known duality function (see [10, Chapter IV]) only in that it is conjugate 
linear in its second variable. The notion of anti-dual pairs allows us to define positivity of linear operators 
of type A : E → F in a way that is formally identical to the positivity of operators over Hilbert spaces (cf. 
[19] and [20]). The set L+(E, F ) of positive operators from E to F is then a partially ordered set via the 
ordering

A ≤ B
def⇐⇒ 〈Ax, x〉 ≤ 〈Bx, x〉 (∀x ∈ E).

In this article we are going to present the corresponding analogous versions to Kadison’s and Ando’s theorems 
in the ordered set (L+(E, F ), ≤). In the case of supremum, the key is a corresponding generalization of 
the Busch-Gudder strength function [3] to positive operators in L+(E, F ). This will enable us to provide a 
numerical characterization of the ordering. The solution to the infimum problem is based on the Lebesgue 
decomposition theory for operators on anti-dual pairs developed in [19].

2. Preliminaries

Throughout the paper, let E and F be complex vector spaces which are intertwined via a function

〈·, ·〉 : F ×E → C,
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which is linear in its first argument and conjugate linear in its second one, so that it separates the points of 
E and F . We shall refer to 〈·, ·〉 as anti-duality function and the triple (E, F, 〈·, ·〉) will be called an anti-dual 
pair , and shortly denoted by 〈F, E〉.

The prototype of anti-dual pairs is the triple (H, H, (· | ·)), where H is a Hilbert space and (· | ·) is a scalar 
product over H. In that case, of course, the concept of symmetric and positive operators coincides with the 
usual concept of those in functional analysis.

However, the most general example of anti-dual pairs is (X, X̄ ′, 〈·, ·〉), where X is a locally convex Haus-
dorff space, X̄ ′ denotes the set of continuous and conjugate linear functionals on X, and 〈·, ·〉 is the evaluation

〈f, x〉 := f(x) (x ∈ X, f ∈ X̄ ′).

If (E, F ) is an anti-dual pair, then we may consider the corresponding weak topologies w := w(E, F ) on 
E, and w∗ := w(F, E) on F , respectively. Both (E, w) and (F, w∗) are locally convex Hausdorff spaces such 
that

Ē′ = F, F ′ = E. (2.1)

This fact and (2.1) enable us to define the adjoint (that is, the topological transpose) of a weakly continuous 
operator. Let 〈F1, E1〉 and 〈F2, E2〉 be anti-dual pairs and T : E1 → F2 a weakly continuous linear operator, 
then the (necessarily weakly continuous) linear operator T ∗ : E2 → F1 satisfying

〈Tx1, x2〉2 = 〈T ∗x2, x1〉1, x1 ∈ E1, x2 ∈ E2

is called the adjoint of T . In the following, we will use two particularly important special cases of this: on 
the one hand, the adjoint T ∗ of a weakly continuous operator T : E → F is also an operator of type E → F . 
On the other hand, if H is a Hilbert space, then the adjoint of a weakly continuous operator T : E → H
acts as and operator T ∗ : H → F , so that their composition T ∗T : E → F satisfies

〈T ∗Tx, x〉 = (Tx |Tx) (x ∈ E). (2.2)

A linear operator S : E → F is called symmetric if

〈Sx, y〉 = 〈Sy, x〉 (x, y ∈ E),

and positive, if

〈Sx, x〉 ≥ 0 (x ∈ E).

It can be readily checked that every positive operator is symmetric, and every symmetric operator S is weakly 
continuous (see [19]). We shall denote the set of weakly continuous operators T : E → F by L (E, F ), while 
we write L+(E, F ) for the set of positive operators A : E → F .

According to (2.2), T ∗T ∈ L (E, F ) is a positive operator if T ∈ L (E; H). However, if we assume F to 
be w∗-sequentially complete, then we can also state the converse: every positive operator A ∈ L+(E, F ) can 
be written in the form A = T ∗T for some auxiliary Hilbert space H and T ∈ L (E; H) (cf. [19]). Recall that 
the anti-dual pair (X, X̄ ′) is w∗-sequentially complete if X is a barreled space (e.g., a Banach space). Also, 
(X, X̄∗) is w∗-sequentially complete with X being an arbitrary vector space and X̄∗ its algebraic anti-dual 
space.

Let us now recall briefly the Hilbert space factorization method of a positive operator A. Let (E, F ) be 
a w∗-sequentially anti-dual pair and let A ∈ L+(E, F ). Then
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(Ax |Ay)
A

:= 〈Ax, y〉 (x, y ∈ E)

defines an inner product on the range space ranA under which it becomes a pre-Hilbert space. We shall 
denote the completion by HA. The canonical embedding operator

JA(Ax) = Ax (x ∈ E) (2.3)

of ranA ⊆ HA into F is weakly continuous. By w∗-sequentially completeness, it uniquely extends to a 
weakly continuous operator JA ∈ L (HA, F ). It can be checked that the adjoint operator J∗

A ∈ L (E, HA)
satisfies

J∗
Ax = Ax ∈ HA (x ∈ E), (2.4)

that yields the fallowing factorization of A:

A = JAJ
∗
A. (2.5)

At this point, we note that the idea of factoring A in the above form comes from Z. Sebestyén [11], where 
the procedure was used to provide positive extensions of a given sub-operator.

In order to discuss the infimum problem of positive operators, we will need some concepts and results 
related to the Lebesgue decomposition theory of positive operators. Hence, for sake of the reader, we briefly 
summerize the content of [19] which is essential for the understanding of this article. The details can be 
found in the mentioned paper.

We say that the positive operator B ∈ L+(E, F ) is absolutely continuous with respect to another 
positive operator A ∈ L+(E, F ) (in notation, B 
 A) if, for every sequence (xn)n∈N of E, 〈Axn, xn〉 → 0
and 〈B(xn−xm), xn−xm〉 → 0 imply 〈Bxn, xn〉 → 0. A and B are said to be mutually singular (in notation, 
A ⊥ B) if the only positive operator C ∈ L+(E, F ) for which C ≤ A and C ≤ B are satisfied is C = 0. It 
is easy to check that B ≤ A implies B 
 A, however the converse is apparently not true (cf. [19, Theorem 
5.1]).

In [19, Theorem 3.3] it was proved that every positive operator B has a Lebesgue-type decomposition 
with respect to any other positive operator A. More precisely, there exists a pair Ba and Bs of positive 
operators such that

B = Ba + Bs, Ba 
 A, Bs ⊥ A. (2.6)

Such a decomposition is not unique in general (cf. [19, Theorem 7.2], however, there is a unique operator 
Ba ∈ L+(E, F ) satisfying (2.6) which is maximal among those positive operators C such that C ≤ B and 
C 
 A. We shall call this uniquely determined operator Ba the A-absolutely continuous part of B, and 
adopting Ando’s [1] notation, we shall write [A]B := Ba for it.

3. The strength of a positive operator

Throughout the section let (E, F ) be a w∗-sequentially complete anti-dual pair. Let us introduce the 
partial order on L+(E, F ) by

A ≤ B ⇐⇒ 〈Ax, x〉 ≤ 〈Bx, x〉 (x ∈ E).

In what follows, inspired by the paper [3] of Busch and Gudder, we associate a function to each positive 
operator A (called the strength function) which can be used to characterize that ordering.
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Let f ∈ F be a non-zero vector and set

(f ⊗ f)(x) := 〈f, x〉 · f (x ∈ E),

so that f ⊗ f ∈ L+(E, F ) is a rank one positive operator with range space C · f . For a given positive 
operator A ∈ L+(E, F ) we set

λ(A, f) := sup{t ≥ 0 : t · f ⊗ f ≤ A}.

Following the terminology of [3], the nonnegative (finite) number λ(A, f) will be called the strength of A
along the ray f , whilst the function

λ(A, ·) : F \ {0} → [0,+∞)

is the strength function of A. To see that λ(A, f) is always finite, consider an x ∈ E such that 〈f, x〉 �= 0. 
Then λ(A, f) = +∞ would result equality 〈Ax, x〉 = +∞, which is impossible.

At this point, we note that in [3], the strength function was only defined along vectors from the unit 
sphere of a Hilbert space. In that case, the strength function has the uniform upper bound ‖A‖. By the 
above interpretation of the strength function, λ(A, ·) will not be bounded, but this fact is not of considerable 
importance for the applications.

In our first result, we examine along which ‘rays’ f the strength function takes a positive value. The 
factorization (2.5) of the positive operator A and the auxiliary Hilbert space HA will play an important 
role in this.

Theorem 3.1. Let A ∈ L+(E, F ) and f ∈ F , f �= 0. The following are equivalent:

(i) λ(A, f) > 0,
(ii) there is a constant m ≥ 0 such that |〈f, x〉|2 ≤ m · 〈Ax, x〉, (x ∈ E),
(iii) there is a (unique) ξf ∈ HA such that JAξf = f .

In any case, we have

λ(A, f) = 1
‖ξf‖2

A

= 1
mf

, (3.1)

where mf > 0 is the smallest constant m that satisfies (ii).

Proof. (i)⇒(ii): Fix a real number 0 < t < λ(A, f), then

〈(f ⊗ f)x, x〉 ≤ 1
t
· 〈Ax, x〉 x ∈ E,

that implies (ii).
(ii)⇒(iii): Inequality (ii) expresses just that

ϕ(Ax) := 〈f, x〉, x ∈ E,

defines a continuous conjugate linear functional from ranA ⊆ HA to C, namely ‖ϕ‖2 ≤ m. Denote by 
ξf ∈ HA the corresponding Riesz representing vector. Then

〈f, x〉 = (ξf |Ax)
A

= (ξf | J∗
Ax)

A
= 〈JAξf , x〉, x ∈ E,
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and hence f = JAξf .
(iii)⇒(i): Suppose that JAξf = f for some ξf ∈ HA. Then

|〈f, x〉|2 = |(ξf |Ax)
A
|2 ≤ ‖ξf‖2

A〈Ax, x〉,

hence λf ⊗ f ≤ A with λ = ‖ξf‖−2
A . �

As a corollary we retrieve [3, Theorem 3]. The proof presented here is significantly shorter and simpler.

Corollary 3.2. Let H be a Hilbert space, A ∈ B(H) and f ∈ H, then λ(A, f) > 0 if and only if f ∈ ranA1/2. 
In that case,

λ(A, f) = 1
‖A−1/2f‖2 , (3.2)

where A−1/2 denotes the (possibly unbounded) inverse of A1/2 restricted to kerA⊥.

Proof. The first part of the statement is clear because A1/2A1/2 = A = JAJ
∗
A implies ranA1/2 = ran JA. In 

order to prove (3.2), consider the linear functional

ϕ : ranA1/2 → C, ϕ(A1/2x) := (x | f) (x ∈ H)

which is well-defined and bounded with norm ‖ϕ‖2 = λ(A, f)−1. By the Riesz representation theorem, there 
is a unique vector ζ ∈ ranA1/2 = kerA⊥ such that

(x | f) = (A1/2x | ζ) = (x |A1/2ζ) (x ∈ H).

Hence A1/2ζ = f and thus ζ = A−1/2f . Furthermore, ‖ζ‖2 = ‖ϕ‖2 = λ(A, f)−1 that completes the 
proof. �

Below we establish the most useful property of the strength function for our purposes. Namely, it can be 
used to characterize the ordering.

Theorem 3.3. Let A, B ∈ L+(E, F ) be positive operators then the following assertions are equivalent:

(i) A ≤ B,
(ii) λ(A, f) ≤ λ(B, f) for every 0 �= f ∈ F .

Proof. (i)⇒(ii): If A ≤ B and λ · f ⊗ f ≤ A for some λ then also λ · f ⊗ f ≤ B hence λ(A, f) ≤ λ(B, f).
(ii)⇒(i): Assume λ(A, ·) ≤ λ(B, ·) everywhere on F \ {0}. By contradiction suppose 〈Ax, x〉 > 〈Bx, x〉

for some x and set f := 〈Ax, x〉−1 ·Ax. For every y ∈ E,

〈(f ⊗ f)(y), y〉 = |〈Ax, y〉|2
〈Ax, x〉 ≤ 〈Ay, y〉

by the Cauchy-Schwarz inequality |〈Ax, y〉|2 ≤ 〈Ax, x〉〈Ay, y〉. Hence λ(A, f) ≥ 1 and thus, by assumption,

〈Bx, x〉 ≥ 〈(f ⊗ f)(x), x〉 = 〈Ax, x〉,

which leads to a contradiction. �
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Corollary 3.4. Two positive operators are identical if and only if so are their strength functions.

Remark 3.5. From the very definition of the strength function it is readily check the following elementary 
properties:

Let A, B ≥ 0 and 0 �= f ∈ F , then

(1) λ(αA, f) = αλ(A, f) for every α ≥ 0,
(2) λ(αA, f) + λ((1 − α)B, f) ≥ αλ(A, f) + (1 − α)λ(B, f) for every α ∈ [0, 1],
(3) λ(A + B, f) ≥ λ(A, f) + λ(B, f).

For further interesting and useful properties of structure of strength functions we refer to [8].

4. Supremum of positive operators

In this section, we are going to prove the Kadison’s anti-lattice theorem in the setting of positive operators 
on an anti-dual pair. Namely, we show that the supremum of two positive operators A and B exists if and 
only if they are comparable (that is, A ≤ B or B ≤ A).

Theorem 4.1. Let (E, F ) be a w∗-sequentially complete anti-dual pair and let A, B ∈ L+(E, F ) positive 
operators. Then the following two statements are equivalent:

(i) the supremum A ∨B exists,
(ii) A and B are comparable.

Proof. The comparability of A and B trivially implies the existence of A ∨B. For the opposite direction we 
suppose that T ∈ L+(E, F ) \{A, B} such that T ≥ A and T ≥ B and show that there exists S ∈ L+(E, F )
such that S ≥ A and S ≥ B, but S is not comparable with T .

In the first case we suppose that the intersection of ran(JT−A) and ran(JT−B) contains a non-zero vector 
e ∈ ran(JT−A) ∩ran(JT−B). By Theorem 3.1 there exists λ > 0 such that λ ·e ⊗e ≤ T−A and λ ·e ⊗e ≤ T−B. 
Let f ∈ F \C · e, then with

S := T − λ · e⊗ e + f ⊗ f

we have S ≥ A and S ≥ B, but S is apparently not comparable with T .
In the second case we suppose that ran(JT−A) ∩ ran(JT−B) = {0}. By Theorem 3.1 there exist e ∈

ran(JT−A) and f ∈ ran(JT−B) such that e ⊗ e ≤ T −A and f ⊗ f ≤ T −B. Let us define

S0 := e⊗ e + 2e⊗ f + 2f ⊗ e + f ⊗ f

and

S := T + 1
3S0.

Clearly, S0 and S are symmetric operators. We claim that S ≥ A and S ≥ B. Indeed, we have

S0 + 3e⊗ e = (2e + f) ⊗ (2e + f) ≥ 0,

which implies
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−1
3S0 ≤ e⊗ e ≤ T −A,

therefore

1
3S0 ≥ A− T.

A similar argument shows that 1
3S0 ≥ B − T . As a consequence we see that

S = T + 1
3S0 ≥ T + (B − T ) = B,

and similarly, S ≥ A. However, the symmetric operator S0 is not positive. For let x ∈ E be such that 
〈e, x〉 = 1, and 〈f, x〉 = −1, then 〈S0x, x〉 = −2. Consequently, S and T are not comparable, which proves 
the theorem. �
5. Infimum of positive operators

Let A, B ∈ L+(E, F ) be positive operators and consider the corresponding A-, and B-absolute continuous 
parts [A]B and [B]A, arising from the corresponding Lebesgue decompositions in the sense of (2.6). Thus,

[A]B = max{C ∈ L+(E,F ) : C ≤ B,C 
 A}, (5.1)

and

[B]A = max{C ∈ L+(E,F ) : C ≤ A,C 
 B}, (5.2)

see [19, Theorem 3.3]. Assume for a moment that [A]B ≤ [B]A, then clearly, [A]B ≤ A, [A]B ≤ B and for 
every C ∈ L+(E, F ) such that C ≤ A, C ≤ B we also have C ≤ [A]B. This in turn means that [A]B is the 
infimum of A and B in the cone L+(E, F ). The situation is essentially same if we assume that [B]A ≤ [A]B.

Ando’s result [2, Theorem 6] states that, in the context of positive operators on Hilbert spaces, the 
infimum of two operators only in one of the above two cases exists. That is, if A ∧ B exists in the cone 
B+(H), then [A]B and [B]A are comparable (and the smaller one is the infimum).

Our aim in the present section is to establish the anti-dual pair analogue of Ando’s mentioned result:

Theorem 5.1. Let (E, F ) be a w∗-sequentially complete anti-dual pair and let A, B ∈ L+(E, F ) positive 
operators. Then the following two statements are equivalent:

(i) the infimum A ∧B exists in L+(E, F ),
(ii) the corresponding absolute continuous parts [A]B and [B]A are comparable.

In any case, A ∧B = min{[A]B, [B]A}.

Proof. We only prove the non-trivial implication (i)⇒(ii). First of all we remark that A ∧B exists if and 
only if [A]B ∧ [B]A exists, and in that case these two operators coincide. This is easily obtained from the 
maximality properties (5.1) and (5.2). Recall also that [A]B and [B]A are mutually absolutely continuous 
according to [19, Theorem 3.6], so we may assume without loss of generality that A 
 B and B 
 A.

Consider now the auxiliary Hilbert space H := HA+B associated with the sum A + B, and denote by 
(· | ·) its inner product and by J := JA+B the corresponding canonical embedding of H into F . Since the 
nonnegative forms
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((A + B)x, (A + B)y) �→ 〈Ax, y〉, ((A + B)x, (A + B)y) �→ 〈Bx, y〉,

defined on the dense subspace ran(A + B) ⊆ H are obviously bounded by norm ≤ 1, the Lax-Milgram 
lemma (see e.g. [4, Exercise 3.21]) provides us two positive operators Ã, B̃ ∈ B(H) with ‖Ã‖, ‖B̃‖ ≤ 1, 
which satisfy

(Ã(A + B)x | (A + B)y) = 〈Ax, y〉, (B̃(A + B)x | (A + B)y) = 〈Bx, y〉.

Using the canonical property

J∗x = (A + B)x, x ∈ E

we obtain that

A = JÃJ∗ and B = JB̃J∗.

Observe also that

((Ã + B̃)J∗x | J∗y) = 〈(A + B)x, y〉 = (J∗x | J∗y), (x, y ∈ E),

whence

Ã + B̃ = I,

where I stands for the identity operator on H. Note also that

ker Ã = ker B̃ = {0}, (5.3)

because A 
 B and B 
 A (see [19, Lemma 5.2]).
Denote by C := A ∧B and let C̃ ∈ B(H) be the positive operator such that C = JC̃J∗. We claim that 

C̃ = Ã ∧ B̃ in B+(H). Indeed, it is clear on the one hand that C̃ ≤ Ã and C̃ ≤ B̃. On the other hand, 
consider a positive operator D̃ ∈ B+(H) such that D̃ ≤ Ã, B̃. It is readily seen that D := JD̃J∗ ∈ L+(E, F )
satisfies D ≤ A, B, whence D ≤ C which implies D̃ ≤ C̃.

Let E be the spectral measure of Ã. Following the reasoning of [2, Lemma 1] it follows that

Ã ∧ B̃ = Ã ∧ (I − Ã) =
1∫

0

min{t, (1 − t)} dE(t). (5.4)

The statement of the theorem will be proved if we show that either Ã∧ B̃ = Ã or Ã∧ B̃ = B̃. By (5.4) this 
is equivalent to prove that

σ(Ã) ⊆ [0, 1
2 ] or σ(Ã) ⊆ [ 12 , 1] (5.5)

holds on the spectrum of Ã. Suppose that is not the case. By (5.3) we have E({0}) = E({1}) = 0, hence 
there exists some ε > 0 such that none of the spectral projections

P1 := E([ 1 + 3ε, 1 − 3ε]) and P2 := E([3ε, 1 − 3ε])
2 2
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is zero. Suppose that 0 < dimP2 ≤ dimP1 and take a partial isometry V ∈ B(H) such that [kerV ]⊥ ⊆ ranP2
and ranV ⊆ ranP1. Then, following Ando’s treatment used in the proof of [2, Theorem 1], one can prove 
that

D̃ := (Ã− ε) · P2 + (B̃ − ε) · P1 +
√

2ε(V P2 + P2V
∗)

satisfies 0 ≤ D̃ ≤ Ã, B̃, but D̃ is not comparable with C̃. This, however contradicts the fact that C̃ = Ã∧ B̃, 
which proves the theorem. �
Remark 5.2. The proof of Theorem 5.1 essentially used the fact that the absolutely continuous parts of 
A and B are mutually absolutely continuous, i.e., [A]B 
 [B]A and [B]A 
 [A]B. This observation was 
originally discovered by T. Titkos in the context of positive forms, cf. [22, Theorem 1.5]. The same holds 
true for the absolutely continuous parts of measures; a simple proof of this can be found in [23].

A direct application of Theorems 4.1 and 5.1 enables us to analyze the lattice operations among the set 
of non-negative forms over a given vector space. In particular, we recover [21, Theorem 3] by T. Titkos 
concerning the infimum of nonnegative sesquilinear forms. Similarly to the positive operator setting, the 
existence of the infimum is strongly related to the Lebesgue type decomposition of sesquilinear forms, see 
e.g. [6,12–14]. As demonstrated in [24], this type of decomposition is a common generalization of various 
decomposition theorems concerning operators [1,15], measures [12], or even representable functionals on a 
possibly non-commutative *-algebra [5,17,18]. In the context of forms, the absolutely continuous part can 
be constructed by means of the operation called parallel sum, namely [s] t = lim

n→∞
t : (n s) (for more details 

see [6,16] or [21]).

Corollary 5.3. Let s and t be nonnegative forms on a complex vector space D .

(a) The supremum t∨ s exists if and only if t ≤ s or s ≤ t,
(b) The infimum t∧ s exists if and only if [t] s ≤ [s] t or [s] t ≤ [t] s.

Proof. Denote by D̄∗ the conjugate algebraic dual of D (that is, D̄∗ consists of all anti-linear forms f :
D → C). Then (D , D̄∗), endowed with the natural anti-duality 〈·, ·〉, forms a w∗-sequentially continuous 
anti-dual pair. Note that every nonnegative form t on D induces a positive operator T : D → D̄∗ by the 
correspondence

〈Tx, y〉 := t(x, y), (x, y ∈ D).

Conversely, every positive operator T : D → D̄∗ defines a nonnegative form in the most natural way. The 
correspondence t �→ T is an order preserving bijection between nonnegative forms and positive operators, 
so that both statements (a) and (b) of the theorem follow from Theorems 4.1 and 5.1, respectively. �
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