
Operations Research Letters 51 (2023) 643–650

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Mixed-strategy equilibrium of the symmetric production in advance 

game: The missing case

Attila Tasnádi

Department of Mathematics, Corvinus University of Budapest, H-1093 Budapest, Fővám tér 8, Hungary
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1. Introduction

We investigate a homogeneous good duopoly model introduced 
by Shubik [12] in which the firms set both their prices and quan-
tities simultaneously. For this game [12] already found that it may 
not have an equilibrium in pure strategies. The existence of a 
mixed-strategy equilibrium (MSE) was established by Maskin [7]
who called this game the production-in-advance game in which 
production takes place before sales are realized. In contrast, in the 
case of production to order, production takes place after prices are 
known.

From one point of view it is the most natural case that the 
firms have the freedom to set their own prices and quanti-
ties though not necessarily simultaneously. Markets of perishable 
goods are usually mentioned as examples of advance production 
in a market. Spot markets in general can also be regarded as 
production-in-advance markets. Phillips et al. [11] emphasized that 
there are also goods that can be traded both in a production-in-
advance and in a production-to-order environment. For example, 
coal and electricity are sold in both types of environments. Based 
on Italian industry data Casaburi and Minerva [1] investigated the 
endogenous mode of production, that is whether firms choose to 
produce to order or in advance. They observed that production in 
advance occurs more frequently in homogenous industries than in 
differentiated ones, while production to order is more prevalent as 
product differentiation increases. In an experimental setting pro-
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duction in advance under the assumption of a non-atomistic buyer 
side has been investigated by Davis [3], Muren [9], and Orland and 
Selten [10].

In an earlier work Tasnádi [14] demonstrated for the case 
of identical capacities and constant unit costs that in equilib-
rium production-in-advance profits are equal to production-to-
order profits, while prices are higher in the former case. Mon-
tez and Schutz [8] considered quantity as an unobservable inven-
tory, hence though in their context the quantity decision precedes 
the price decision their game is equivalent to the production-in-
advance game. Somogyi, Vergote and Virág [13] introduced capac-
ity uncertainty into the model in order to explain the empirical 
observation that large firms set lower prices. Among others Hirata 
and Matsumura [5] analyzed the standard Bertrand price-setting 
game without capacity constraints.

Turning to the results on the MSE in closed form of the 
production-in-advance game, Levitan and Shubik [6] computed the 
MSE for the case of production in advance under linear demand 
and unlimited capacities. In the same framework Gertner [4] deter-
mined the MSE under more general conditions. Montez and Schutz 
[8] resolved limitations and corrected flaws of previous works. 
They calculated the MSE of the production-in-advance game for 
the case of large capacities.

Recently, Tasnádi [15] calculated a symmetric MSE for a large 
range of intermediate capacities. In this paper we address the 
missing region of intermediate capacities on which the MSE is far 
more complex and has to be determined successively in a finite 
number of steps.

The reasons for considering the symmetric setting are related to 
the mentioned experimental works [3] and [11], the technical dif-
le under the CC BY-NC-ND license (http://
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ficulty of the determination of an equilibrium and the complexity 
of the obtained expressions. Proposition 2 points out that for inter-
mediate capacities the game has infinitely many asymmetric MSE 
besides the more plausible symmetric ones. Interestingly, firms can 
choose independently from any of these equilibrium strategies to 
obtain a MSE.

2. Preliminaries

This section contains the necessary assumptions, notations, and 
the required available results in the literature.

Assumption 1. The demand curve D : R+ → R+ is strictly de-
creasing on [0,b], identically zero on [b,∞), continuous at b and 
twice continuously differentiable on (0,b). Furthermore, the rev-
enue function pD(p) is strictly concave on [0,b].

Let a = D (0) and P be the inverse demand function. This 
means that the demand curve intersects the axes at a and b, re-
spectively.

We consider the duopoly model in which both firms set their 
prices and quantities simultaneously.

Assumption 2. Firms 1 and 2 have identical positive unit costs c ∈
(0,b) up to the same positive capacity constraint k. Each of them 
sets its price p1, p2 ∈ [0,b] and production quantity q1, q2 ∈ [0,k].

When referring to firms with A and B , our convention is that 
A, B ∈ {1,2} and A �= B .

Assumption 3. Incorporating the efficient rationing rule, the de-
mand faced by firm A is given by

�A (p1,q1, p2,q2) =

⎧⎪⎨⎪⎩
D (p A) if p A < pB ,

qA
qA+qB

D (p A) if p A = pB ,

(D (p A) − qB)+ if p A > pB ,

where, as usual, f +(x) stands for max{ f (x), 0} for an arbitrary 
function f : R → R. The interpretation of Assumption 3 is as fol-
lows: the low-price firm faces the entire demand, in case of ties 
firms split the demand in proportion to the firms’ quantity deci-
sions and the high-price firm faces the demand minus the quantity 
produced by the low-price firm. For more details on rationing rules 
we refer to [16]. Concerning price ties, our analysis remains valid 
for a large class of tie-breaking rules satisfying that a firm’s de-
mand is strictly increasing in its own quantity.

The firms’ profits are given by

πA ((p1,q1) , (p2,q2)) = p A min {�A (p1,q1, p2,q2) ,qA} − cqA

for both A ∈ {1, 2}, where we have taken into account that the 
firms are demand or capacity constrained.

From Dasgupta and Maskin [2, Theorem 6∗] it follows that 
the symmetric production-in-advance game possesses a symmet-
ric MSE. In the following, a mixed strategy μA is a probability 
measure defined on the σ -algebra of Borel measurable sets on 
[0,b] × [0,k], which can be restricted without loss of general-
ity to S = [c,b] × [0,k]. In equilibrium each firm is playing a 
best response. Such an equilibrium is denoted by (μ∗

1, μ∗
2). A MSE (

μ∗
1,μ

∗
2

)
can be calculated by the following two conditions:

π1
(
(p1,q1) ,μ∗

2

) ≤ π∗
1 , π2

(
μ∗

1, (p2,q2)
) ≤ π∗

2 (1)

holds true for all (p1,q1) , (p2,q2) ∈ S , and
644
π1
((

p∗
1,q∗

1

)
,μ∗

2

) = π∗
1 , π2

(
μ∗

1,
(

p∗
2,q∗

2

)) = π∗
2 (2)

holds true μ∗
1-almost everywhere and μ∗

2-almost everywhere, 
where π∗

1 , π∗
2 stand for the equilibrium profits corresponding to (

μ∗
1,μ

∗
2

)
. If a mixed strategy appears in the argument of the profit 

function πA , we mean expected profits.
We define the market-clearing price p∗ by

p∗ =
{

D−1 (2k) if D (0) > 2k

0 if D (0) ≤ 2k.

The function π r (p) = (p − c) (D (p) − k) equals a firm’s resid-
ual profit whenever its opponent sells k and D (p) ≥ k. Let p =
arg maxp∈[c,b] π

r (p) be the profit maximizing price on the residual 
demand curve and π = π r

(
p
)

be the respective profit. Assump-
tions 1 and 2 assure that p∗ and p are well defined. Furthermore, 
let p the price at which a firm is indifferent between selling its en-
tire capacity and maximizing profits on the residual demand curve, 
i.e. p = c + π/k.

For the case of small capacities, i.e. p∗ ≥ p, the game has 
a unique equilibrium in pure strategies in which the firms pro-
duce at their capacity limits and set the market-clearing price 
[14, Proposition 2]. The MSE for the case of large capacities, i.e. 
D(c) ≤ k, has been determined in [8]. Recently, we have deter-
mined a symmetric MSE on a subregion of intermediate capacities 
(i.e. p > max {p∗, c}).

Before recalling our recent proposition, we need to introduce 
several further notations. We shall denote by p̂ = inf{p ∈ [c,b] |
μ ((p,b] × [0,k]) = 0} the highest possible price set by a firm 
when playing a strategy μ. Let F (p) = μ∗

([
p, p

]
× [0,k]

)
denote 

the cumulative distribution of equilibrium prices and let G(q|p)

be the conditional cumulative distribution function of equilibrium 
quantities given p ∈

[
p, p̂

]
in a symmetric equilibrium.

In the symmetric MSE at prices p ∈ [c, p
) ⊂ [c, b] firms set at 

most one quantity s(p) ∈ [0, k] [14, Proposition 7]. At least in that 
price region the associated quantity was proven to be unique and 
equals k. Furthermore, in a subregion of intermediate capacities for 
any p ∈ [p, p̂] ⊂ [c, b] there is a symmetric MSE in which the firms 
set at most one quantity s(p) ∈ [0, k] at price p [15, Proposition 
2]. Therefore, such a symmetric MSE can be given by the triple 
(̂p, s, F ).

Proposition 1 ([15], Proposition 2). Let Assumptions 1-3 hold. If p >

max {p∗, c}, then a symmetric MSE (μ∗,μ∗) of the production-in-
advance game is given by the following equilibrium price distribution

F (p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if 0 ≤ p < p,

(p−c)k−π
p(2k−D(p))

if p ≤ p < p,

1 − c
p if p ≤ p < p̂, and

1 if p̂ ≤ p ≤ b

(3)

and by the ‘supply’ function s(p) given by s(p) = k for all p ∈
[

p, p
)

and determined by

s(p) = D ′(p)

(
p2

c
− p

)
+ D(p) + π

c
(4)

for all p ∈ [p, p̂] if

p̂ ≤ P (k), (5)

where ̂p is the unique solution of s(r) = D(r)/2.
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Fig. 1. Four different cases.

To illustrate the region of intermediate capacities covered by 
Proposition 1 we consider the demand curve D(p) = 1 − p. Hence, 
without loss of generality we can restrict ourselves to c, k ∈ [0, 1]. 
Note that for a given demand function only c and k are the param-
eters of the model, and therefore a pair of c and k determines the 
type of equilibrium. A higher c decreases the range of reasonable 
prices a firm can set, while a higher k increases the competition 
between firms and leads to lower prices at least in a stochastic 
sense. In particular, whether the price p∗ = P (2k) at which full 
capacity can be sold or the unit cost c is higher effects the equi-
librium outcome.

Fig. 1 shows the four different cases we can have. The triangle 
labeled ‘Large’ depicts the case of large capacities (c ≥ 1 − k), the 
triangle labeled ‘Small’ (c ≤ 1 −3k) depicts the case of small capac-
ities, the shaded area labeled ‘Int1’ in the middle (s(1 − k) ≤ k/2) 
depicts the case of intermediate capacities covered by Proposi-
tion 1, and the white area labeled ‘Int2’ depicts the region of 
intermediate capacities for which this paper determines a MSE.

3. Supply functions

In this section we investigate the relationship between prices 
and quantities. We start with a simple observation.

Lemma 1. Let Assumptions 1-3 and p > max {p∗, c} hold. In a symmet-
ric MSE for each price in case of price ties firms’ total production exceeds 
market demand with probability zero.

Proof. For any p we cannot have μ({p}, (D(p)/2, min{k, D(p)}]) >
0, since otherwise undercutting (that is shifting a probability mass 
to a price slightly below p) would be beneficial. �

For a given symmetric mixed-equilibrium strategy μ and a p ∈
[p, ̂p] let

q∗(p) = sup
{

q ∈ [0,k] | μ
([

p, p
]
× [0,q)

)
= 0

}
and note that

k = inf
{

q ∈ [0,k] | μ
([

p, p
]
× (q,k]

)
= 0

}
by Proposition 1. Then q∗(p) and k are the ‘lowest’ and ‘highest’ 
quantities set by a firm at price p, respectively, when its opponent 
plays its symmetric equilibrium strategy μ. For simplicity we omit 
the subscript μ of q∗(p).

We continue with a statement on the shape of the profit func-
tion in function of q.
645
Lemma 2. Let Assumptions 1-3 hold. If p > max {p∗, c}, then in a sym-
metric MSE both firms’ profit functions are constant in quantity on 
(q∗(p), k] at any price p ∈ [p, ̂p] given that its opponent plays its re-
spective equilibrium strategy.

Proof. Without loss of generality we consider π1. Assume that 
q∗(p) ≤ q < q′ ≤ min{k, D(p)} are two different quantities that can 
be set at p in a symmetric MSE (μ, μ). Then

π1 ((p,q) ,μ) = π1
((

p,q′) ,μ
) = π. (6)

Note that

π1 ((p,q) ,μ) = (1 − F (p))pq + (F (p) − lim
p∗↑p

F (p∗)) ·

p

D(p)/2∫
(D(p)−k)+

min

{
q,

q

q + q
D(p)

}
dG(q|p) +

p

p∫
p

k∫
0

min{q, D(p) − q}dG(q|r)dF (r) − cq, (7)

where the first summand equals firm 1’s revenue if it is the low-
price firm, the second summand equals its revenue if both firms 
set price p and the third summand equals its revenue if it is the 
high-price firm. We have taken Lemma 1 in the limits of the first 
integral into account. Since the first integrand is concave (and also 
increasing) in q for any q ∈ [q∗(p), min{k, D(p)}] its integral is also 
concave. The second summand equals zero if F does not have an 
atom at p and does not contribute to the revenue at p. Let q(λ) =
λq + (1 −λ)q′ , where λ ∈ [0, 1]. By considering four cases it can be 
verified that for any given q ∈ [0, D(p)] and any λ ∈ [0, 1]
min{q(λ), D(p) − q}

≥ λmin{q, D(p) − q} + (1 − λ)min{q′, D(p) − q}. (8)

Therefore, for the third summand in (7) we have

p∫
p

k∫
0

min{q(λ), D(p) − q}dG(q|r)dF (r) ≥

p∫
p

k∫
0

λmin{q, D(p) − q}dG(q|r)dF (r)+

p∫
p

k∫
0

(1 − λ)min{q′, D(p) − q}dG(q|r)dF (r),

while the first summand minus costs in (7) is linear, and therefore

π1 ((p,q) ,μ) = π1 ((p,q(λ)) ,μ) = π1
((

p,q′) ,μ
) = π,

which completes the proof. �
To have that s(p) is at most single-valued we would require 

strict concavity in addition to the result of Lemma 2. However, by 
striving for strict concavity we can exclude at least the following 
price-quantity pairs in a symmetric MSE.

Lemma 3. Let Assumptions 1-3 and p > max {p∗, c} hold. Then at any 
price p ∈ [p, ̂p] in a symmetric MSE strategy firms never produce less 
than D(p)/2.
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Proof. Suppose that (6) holds true and let

λ∗ = q′ − (D(p) − q)

q′ − q
.

Inspecting inequality (8), we find that the inequality is strict if and 
only if q < D(p) − q < q′ .

The properties of the residual demand curve imply (D(p) −
k)+ ≤ q∗(p) for any p ∈ [p, ̂p]. The profit function (7) is larger 
than π in [q∗(p), k] if for the second integrand in (7) we have 
q∗(p) < D(p) −q < k on a subset of quantities q ∈ [q∗(p), k] of pos-
itive measure within the limits of the integral since the remaining 
part of the profit function (7) is linear or convex in q. Hence, q
has to satisfy q∗(p) + q < D(p) and D(p) < k + q, where the for-
mer implies q∗(p) < D(p)/2 and the latter is fulfilled by p > p. For 
any price p ∈ (p, ̂p] we conclude that we can exclude the case of 
q∗(p) < D(p)/2, since otherwise profits would be higher for quan-
tities within the interval (q∗(p), k); a contradiction.

Finally, let us consider price p = p. If there is no atom at p, 
then the quantity at this price can be chosen arbitrarily since 
changing quantities for a set of prices of probability zero does still 
yield a symmetric MSE strategy. By Lemma 1 and the argument 
of the paragraph above the one and only case which has to be 
covered is when there is an atom at price p and firms only pro-
duce quantity D(p) − k at that price. Let α = μ 

({(p, D(p) − k)}). 
Intuitively, this leads to a more favorable residual demand than 
D(p) − k, and therefore firm A can benefit from a price increase. 
Formally, we get a lower bound on firm A’s profit if firm B has at 
price p and quantity k another atom of mass β = 1 −α− (1 − p/c). 
Any other mixed strategy of firm B distributing β differently on 
prices greater than or equal to p leads to even higher profits for 
firm A. Note that if firm A has an atom at (p, D(p) − k) too but 
distributes the probability mass β over prices higher than p, then 
firm B achieves still π profits. For simplicity we assume that firm 
A produces D(p) − (D(p) − k) and we show that firm A can gain 
from setting prices higher than p. Then the ‘modified’ residual 
profit function equals

π∗(p) = αp
(

D(p) − (D(p) − k)
) + (1 − α)p(D(p) − k) −

c(D(p) − (D(p) − k))

= α(p − c)
(

D(p) − (D(p) − k)
) +

(1 − α)(p − c)(D(p) − k) − (1 − α)c(2k − D(p))

for any p ≥ p, and taking its derivative

d

dp
π∗(p) = α

(
D(p) − (D(p) − k)

) + α(p − c)D ′(p) +
(1 − α)(D(p) − k + pD ′(p)) − (1 − α)cD ′(p)

= (D(p) − k + (p − c)D ′(p)) + α(2k − D(p)),

which is positive at p = p since the first summand equals zero (be-
cause it is the derivative of π r with a unique maximum at p) and 
the second summand is positive. Therefore, firm A would benefit 
from increasing its price, and thus we cannot have a symmetric 
MSE in which firm B has an atom at (p, D(p) − k). �

From Lemmas 1 and 3 we arrive to the next corollary.

Corollary 1. An atom is only possible at p if firms’ supply equals D(p)/2
and at that p they share the market without superfluous production.

We have not shown that the supply correspondence is deter-
ministic. However, to the contrary, we will point out that the sup-
ply can be stochastic.
646
By Lemma 1 and Corollary 1 firms either set different prices 
or the tie-breaking does not matter. Therefore, considering profit 
function (7), or more specifically, focusing on the inner integral

k∫
0

min{q, D(p) − q}dG(q|p) =
k∫

0

D(p) − qdG(q|p)

= D(p) − E(q|p), (9)

we can see that only the expected supply curve E(q|p) matters. 
The intuition behind this result is that if a firm is undercut by 
its opponent at price p, then only the quantity distribution of 
the opponent matters given that the latter is the low-price firm. 
Therefore, at which lower prices certain quantities are set is in-
different. This and the even stronger result (9) also implies that a 
deterministic supply curve exits, which equals the expected supply 
curve. Henceforth, with a slight abuse of notation we write s(p)

for both the expected supply curve and the deterministic supply 
curve. From equation (9) it follows that there are infinitely many 
nondeterministic supply correspondences resulting in a symmetric 
MSE. Furthermore, since as already mentioned only the quantity 
distribution of the low-price firm matters there is no coordination 
problem between the firms, or put it otherwise, we can pair equi-
librium strategies arbitrarily to obtain a MSE. Then all underlying 
either symmetric or asymmetric equilibria are payoff equivalent.

We summarize our findings in the next proposition.

Proposition 2. Under Assumptions 1-3 and p > max {p∗, c}, there ex-
ists a class of infinitely many MSE in which both firms’ expected supply 
functions are the same and the expected supply functions specify a sym-
metric MSE with a deterministic supply function.

4. Mixed-strategy equilibrium

In this section we calculate a symmetric MSE for the missing 
range of intermediate capacities on which s(p) is only piecewise 
strictly decreasing. Nevertheless, the price distribution F specified 
in Proposition 1 remains still the equilibrium price distribution 
in the upper range of intermediate capacities. Furthermore, the 
expression on the right-hand side of (4) still specifies s(p) on 
[p, P (k)] since in this case in the proof of Proposition 1 D(p) − s(r)
is non-negative for any p ∈ [p, P (k)] and any r ∈ [p, p]. Since s will 
be defined piecewise on a finite set of disjoint and consecutive in-
tervals, we shall denote by s1 the expression on the right-hand 
side of (4). Since we determine s iteratively and at the same time 
the respective intervals with the boundary points (i.e. prices) too 
for notational convenience we let p0 = p, p1 = P (k) and s0(p) = k

for any p ∈
[

p, p
]

. From here on the subscripts of p stand for in-

dexing the steps of the iterative process and not for the labeling of 
firms, which we highlight by using i and j as indexes instead of A
and B .

When extending s to prices above p one needs to integrate 
D(p) − s1(r) only above prices r on which the integrand is non-
negative. To determine the lowest price from which the integra-
tion of D(p) − s1(r) should start for a given p we define t1(p) =
s−1

1 (D(p)) = r. The strategy for constructing the MSE is to deter-
mine the next piece of s denoted by s2. Then we arrive either to 
a solution delivering an r∗ satisfying s2(r∗) = D(r∗)/2 and r∗ ≤
p2 = P (s2(p1)) or we define t2(p) = s−1

2 (D(p)) = r and continue 
with determining the next piece of s denoted by s3. We repeat the 
whole process until we obtain an r∗ satisfying sn(r∗) = D(r∗)/2
and r∗ ≤ pn = P (sn(pn−1)), where n stands for the required num-
ber of steps. We shall denote by ri the value of r∗ obtained at the 
ith step, that is si(ri) = D(ri)/2.

The next proposition contains the results of the described pro-
cedure and the proof of their correctness.
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Fig. 2. Supply function. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Proposition 3. Let Assumptions 1-3 hold. If p > max {p∗, c} and P (k) =
p1 < r1 , then there exists an n ∈ {1, . . .} such that a symmetric MSE 
(μ∗,μ∗) of the production-in-advance game is given by the equilibrium 
price distribution (3) and by the ‘supply’ function s(p) given by s(p) =
s0(p) = k for all p ∈

[
p, p

]
, given by (4) for all p ∈ (

p, p1], and given 
by

si+1(p) = D ′(p)

⎛⎝ p2

ti(p)
− p +

i−1∑
j=l(p)

(
p2

t j(p)
− p2

p j

)⎞⎠
+ D(p) + π

c
(10)

for all p ∈ (pi,min{pi+1, r∗}] and all i ∈ {1, . . . , n} if

p1 < r1, . . . , pn < rn, rn+1 ≤ pn+1, (11)

where ri is the unique solution of si(ri) = D(ri)/2, ti(p) = s−1
i (D(p)), 

pi = P (si(pi−1)) for all i ∈ {1, . . . , n + 1}, and l(p) ∈ {1, . . . , i} is in-
creasing in p. Then p̂ = rn+1 . Furthermore, the numerical sequence 
(si(pi−1))

n+1
i=1 is strictly decreasing, si(pi) ≤ si+1(pi) and the func-

tions si(p) are strictly decreasing in p on [pi−1, min{pi, r∗}] for all 
i ∈ {1, 2, . . . , n + 1}.

Note that in (10), as usually, if l(p) > i −1, the sum equals zero.
Before giving a proof of Proposition 3 we illustrate the supply 

functions given by (10) and shed light on why the equilibrium sup-
ply function is discontinuous and has kinks. We depict a possible 
supply function in Fig. 2. We would like to emphasize that there 
is definitely a discontinuity at p1, otherwise, we have either a dis-
continuity or kink at pi , where the former case occurs if l(pi) is 
different for si and si+1 in equation (10) and otherwise the latter 
case occurs. A concrete numerical example for the case of linear 
demand will be provided after the proof of Proposition 3. First, ob-
serve that if a firm sets price p ∈ (p0, p1) and its opponent sets 
a price r ∈

[
p, p

)
(i.e. it is the high-price firm), it can always sell 

a positive amount, and therefore D(p) − s(r) is positive. However, 
if p ∈ (p1, p2) and r ∈

[
p, p0

)
, its residual demand equals zero, 

while D(p) − s(r) becomes negative. Second, let us move a bit fur-
ther to the right and pick a price p ∈ (p3, p4) as indicated with 
a green p in Fig. 2. If the firm’s opponent sets a price such that 
s3(r) < D(p) and p ≤ p3, then the firm faces a positive residual 
demand, but this is also true if the firm’s opponent sets a price 
such that s2(r) < D(p) and p ≤ p2. Therefore, in this case we have 
i(p) = 2. A kink in s arises at a price satisfying s3(p3) = D(p).

Now we turn to the proof of Proposition 3.

Proof. Proposition 1 can be considered as the initialization step 
of our recursive procedure, i.e. the statement of our proposition 
holds for n = 1. Then we assume that we have already obtained 
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the sequence of prices p1, . . . , pi , the sequence of supply functions 
s1, . . . , si , and the sequence of functions t1, . . . , ti recursively.

Since s and F are known for all p ∈
[

p, pi

)
in what follows we 

consider only prices such that p ≥ pi . We would like to emphasize 
that in line with the statement of Proposition 3 we are not show-
ing the uniqueness of the symmetric MSE. Nevertheless, we have 
to deal with the successive construction of the supply function of 
the symmetric MSE. However, we do not derive the cumulative 
distribution function F given in Proposition 3, we just verify its 
correctness. When determining the next piece of s, we shall denote 
by r∗

i+1 ∈ [pi,b] the price at which si+1(r∗
i+1) = D(r∗

i+1)/2 and as-
sume that such a price exists uniquely. We will verify in the proof 
that the si+1 given by (10) is continuous and strictly decreasing on 
p ∈ [pi, pi+1], which implies that r∗

i+1 is uniquely determined by 
the properties of D and si+1.

Step 1: We simplify the functional form of the profit function. Intuitively, 
the simplification results from the observations that at any p each firm 
does not produce more than D(p), less than its worst case residual de-
mand D(p) − k and the functional form of F is utilized.

Given that we are looking for a symmetric MSE we denote the 
rival firm 2’s strategy simply by μ. Then firm 1’s profit equals

π1 ((p,q),μ)

= pq (1 − F (p)) + p

p∫
pi

min
{
(D(p) − si+1(r))

+,q
}

dF (r)

+
i∑

j=l(p)

p

p j∫
t j(p)

min
{

D(p) − s j(r),q
}

dF (r) − cq (12)

for any p ∈ (pi, pi+1] and any q ∈ [0, D(p)], where we have already 
taken into account that D(p) < si+1(p) = q does not make sense 
since then the firms produce a superfluous amount for sure and 
l(p) ≥ 1 is the smallest index for which D(p) > sl(p)(pl(p)). Note 
that l(p) ≥ 1 since for any p ∈ (pi, pi+1] we have D(p) < D(p0) =
k. (12) simplifies to

π1 ((p,q),μ)

= pq (1 − F (p)) + p

p∫
pi

min {D(p) − si+1(r),q}dF (r)

+
i∑

j=l(p)

p

p j∫
t j(p)

min
{

D(p) − s j(r),q
}

dF (r) − cq, (13)

where we could drop the non-negativity operation in the first in-
tegral of (12) because we will speak only about the next piece of 
a solution if p ≤ pi+1 and p ≤ r∗

i+1. In addition, if i = n, then (11)
will hold.

Since the equilibrium price distribution is given by F (p) = 1 −
c/p on 

(
p, p̂

)
(13) takes the following form

π1 ((p,q),μ) = pq
c

p
+ p

p∫
pi

min {D(p) − si+1(r),q}dF (r)

+
i∑

j=l(p)

p

p j∫
t (p)

min
{

D(p) − s j(r),q
}

dF (r) − cq
j
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= p

p∫
pi

min {D(p) − si+1(r),q}dF (r)

+
i∑

j=l(p)

p

p j∫
t j(p)

min
{

D(p) − s j(r),q
}

dF (r). (14)

Step 2: We derive the supply function si+1 by solving the integral equa-
tion which equates the equilibrium profit and the integral of the residual 
demand with respect to prices. In this way we obtain the integral of the 
supply function, and therefore finally we have to take its derivative.

We can see that (14) is strictly increasing in q on [0,

max j=l(p),l(p)+1,...,i+1 D(p) − s j(p j)] and constant on[
max j=l(p),l(p)+1,...,i+1 D(p) − s j(p j), D(p)

]
since F (p) = 1 − c/p, 

and therefore it follows that we can derive si+1 on the respective 
interval by solving π1 ((p,q),μ) =

π = p

p∫
pi

(D(p) − si+1(r))
c

r2
dr

+
i∑

j=l(p)

p

p j∫
t j(p)

(
D(p) − s j(r)

) c

r2
dr

= pD(p)

⎛⎝ c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
−p

i∑
j=l(p)

(
S j(p j) − S j(t j(p))

) − p

p∫
pi

si+1(r)
c

r2
dr, (15)

where

S j(p) =
p∫

p j−1

s j(r)
c

r2
dr (16)

for any p ∈ [
p j−1, p j

)
. By simple rearrangements we get (17)

Si+1(p) = D(p)

⎛⎝ c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
−

i∑
j=l(p)

(
S j(p j) − S j(t j(p))

) − π

p
(17)

from which by differentiation we obtain

S ′
i+1(p) = D ′(p)

⎛⎝ c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
+D(p)

⎛⎝− ct′
i(p)

t2
i (p)

+ c

p2
+

i−1∑
j=l(p)

− ct′
j(p)

t2
j (p)

⎞⎠
+

i∑
j=l(p)

(
s j(t j(p))

c

t2
j (p)

t′
j(p)

)
+ π

p2

= D ′(p)

⎛⎝ c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
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+D(p)

⎛⎝− ct′
i(p)

t2
i (p)

+ c

p2
+

i−1∑
j=l(p)

− ct′
j(p)

t2
j (p)

⎞⎠
+

i∑
j=l(p)

D(p)
c

t2
j (p)

t′
j(p) + π

p2

= D ′(p)

⎛⎝ c

ti(p)
− c

p
+

i−1∑
j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
+D(p)

c

p2
+ π

p2
, (18)

where the fact that l(p) is an increasing step function of p implies 
that Si+1 in not differentiable at at most i points. Since F does not 
have an atom at these points the value of s can be set arbitrarily 
there. Rearranging (18), we get

si+1(p)=D ′(p)

⎛⎝ p2

ti(p)
− p +

i−1∑
j=l(p)

(
p2

t j(p)
− p2

p j

)⎞⎠+ D(p)+ π

c

(19)

It can be verified that s′
i+1(p) < D ′(p) for prices higher than pi .

Step 3: We derive s recursively and we describe the terminal condition. 
In particular, if at price r∗

i+1 the supply is less than or equal to half of the 
demand, the iterative process terminates.

The process of constructing the next piece of s has to be re-
peated if pi+1 < r∗

i+1. After a finite number of steps, we have 
to arrive at an n such that r∗

n+1 ≤ pn+1 since equilibrium profits 
are positive. Clearly, both Sn+1 and sn+1 can be extended through 
equations (17) and (19) for prices higher than r∗

n+1, respectively, 
where for p ≥ r∗

n+1 equation (15) takes the following form

π = p

p∫
pn

sn+1(r)
c

r2
dr

+
n∑

j=l(p)

p

p j∫
t j(p)

(
D(p) − s j(r)

) c

r2
dr

= pD(p)

⎛⎝1 − c

r∗ +
n−1∑

j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
−p

n∑
j=l(p)

(
S j(p j) − S j(t j(p))

) − p

p∫
pi

sn+1(r)
c

r2
dr, (20)

since sn+1(p) < D(p) − sn+1(p) for any p > r∗
n+1.

For any p ≥ r∗
n+1 let

Q (p) =
p∫

r∗
n+1

sn+1(r)
c

r2
dr. (21)

Then we have

Q (r∗
n+1) = 0 and Q ′(p) = sn+1(p)

c

p2
(22)

for any p ∈ [
r∗

n+1, r′), where r′ is uniquely defined by the im-
plicit equation s(r′) = D(r′) − k. Clearly, setting prices above r′
does no make sense, since playing these pure strategies against 
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mixed strategy μs,F will result in less profits than pure strategy 
(p, D(p) − k). From (20) we get

Q (p) = D(p)

⎛⎝1 − c

r∗
n+1

+
n−1∑

j=l(p)

(
c

t j(p)
− c

p j

)⎞⎠
−

n∑
j=l(p)

(
S j(p j) − S j(t j(p))

) − π

p
(23)

for any p ∈ [
r∗

n+1, r′,
)

from which by differentiation we obtain Q ′
and finally by simple rearrangements sn+1(p). With a slight abuse 
of notation we will still denote the obtained function by sn+1(p)

on p ∈ (
r∗

n+1, r′) though, as it will turn out, the firms will not pro-
duce at prices above r∗

n+1. These extensions will be helpful for us 
in the price interval [r∗

n+1, r
′].

Step 4: We show that the highest price set by the firms (specified by the 
terminal condition) is set with positive probability.

Now we will verify that having an atom at price r∗
n+1 of mass 

c/r∗
n+1 = 1 − F (r∗

n+1) completes a symmetric MSE. Assume that 
firm 2 plays the same mixed strategy. Then we already know that 
for any p ∈

[
p, r∗

n+1

)
producing an amount of q = s(p) results 

in π profit. Furthermore, for any p ∈
[

p, r∗
n+1

)
and any quantity 

[D(p) − s(p),k] profits equal π , while they are strictly less for 
quantities less than D(p) − s(p) by (14).

We claim that in the derived symmetric MSE firms produce at 
r∗

n+1 an amount of s(r∗
n+1) = D(r∗

n+1)/2. Suppose that they would 
produce more than D(r∗

n+1)/2. Then there will be superfluous pro-
duction at r∗

n+1, and therefore by the continuity of profits for prices 
below r∗

n+1 profits at r∗
n+1 would be less than at prices r∗

n+1 −ε if ε
is sufficiently small. Suppose that they would produce an amount 
of q∗ less than D(r∗

n+1)/2. Then π1
(
(p,q),μs,F )

)
is continuous at 

(r∗
n+1, q

∗), and therefore π1
(
(r∗

n+1,q∗),μs,F )
)
< π ; a contradiction. 

Thus, we must have indeed s(r∗
n+1) = D(r∗

n+1)/2. By the left conti-
nuity at r∗

n+1 it follows that π1
(
(r∗

n+1, D(r∗
n+1)/2),μs,F )

) = π .
To verify that (̂p, s, F ) specified in the previous paragraphs 

specifies a strategy of a symmetric MSE it remains to be shown 
that prices above r∗

n+1 combined with any quantity q ∈ [0, k] result 
in less profits than π .

Step 4a: To any price above r∗
n+1 (the price where the atom lies), we 

determine the optimal quantity.

The profit function of firm 1 in response to firm 2 playing the 
mixed strategy associated with (̂p, s, F ) for prices p ≥ r∗

n+1 equals

π1
(
(p,q),μs,F

) = p min

{
D(p) − D(r∗

n+1)

2
,q

}
c

r∗
n+1

+p

r∗
n+1∫

pn

(D(p) − sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

p j∫
t j(p)

(
D(p) − s j(r)

) c

r2
dr − cq, (24)

from which we get

∂π1

∂q
((p,q),μ)

=

⎧⎪⎨⎪⎩
−c if D(p) − D(r∗

n+1)

2 < q,

p c
r∗ − c if D(p) − D(r∗

n+1)

2 > q ≥ D(p) − s(p)

(25)
n+1
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for any p > p̂ = r∗
n+1. Since pc/r∗

n+1 − c > 0 we get that quantity 
q = D(p) − D(r∗

n+1)/2 results in the highest profit in (24) for any 
price p > p̂ = r∗

n+1.

Step 4b: Utilizing the result of Step 4a, we show that prices higher than 
r∗

n+1 lead to a decrease in profits.

We define the profit function of firm 1 at the best quantities 
for prices p ≥ r∗

n+1 by

π∗(p) = p

(
D(p) − D(r∗

n+1)

2

)
c

r∗
n+1

+p

r∗
n+1∫

pn

(D(p) − sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

p j∫
t j(p)

(
D(p) − s j(r)

) c

r2
dr

−c

(
D(p) − D(r∗

n+1)

2

)
(26)

It can be verified that π∗(p) is strictly concave, and it would be 
straightforward to check that the derivative π∗(p) is non-positive 
at r∗

n+1, which unfortunately does not result in a manageable in-
equality. Therefore, we consider the equality in (20) defining s and 
let us denote by

π s(p) = p

p∫
r∗

n+1

s(r)
c

r2
dr + p

r∗
n+1∫

pn

(D(p) − sn+1(r))
c

r2
dr

+
n∑

j=l(p)

p

p j∫
t j(p)

(
D(p) − s j(r)

) c

r2
dr = π (27)

for prices p ∈ [
r∗

n+1, r′]. Clearly, dπ s(p)/dp = 0 for any p ∈[
r∗

n+1, r′] by the definition of s, which we will utilize by consider-
ing �(p) = π∗(p) − π s(p) =

= p

(
D(p) − D(r∗

n+1)

2

)
c

r∗
n+1

−

c

(
D(p) − D(r∗

n+1)

2

)
− p

p∫
r∗

n+1

s(r)
c

r2 dr

=
(

D(p) − D(r∗
n+1)

2

)(
p

c

r∗
n+1

− c

)
− p

p∫
r∗

n+1

s(r)
c

r2
dr. (28)

Then

�′(p) = D ′(p)

(
p

c

r∗
n+1

− c

)
+

(
D(p) − D(r∗

n+1)

2

)
c

r∗
n+1

−
p∫

r∗
n+1

s(r)
c

r2
dr − ps(p)

c

p2
. (29)

By substituting r∗
n+1 for p in (29) and taking s(r∗

n+1) = D(r∗
n+1)/2

into consideration we get �′(r∗
n+1) = 0, which implies dπ∗(p)/dp =

0, which completes the proof. �
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Fig. 3. The equilibrium supply function of Example 1.

Now we consider a numerical example and provide its numeri-
cal solution based on Proposition 3.

Example 1. Let D(p) = 1 − p, c = 0.38 and k = 0.46.

It can be verified that the cost and capacity pair given in Ex-
ample 1 is very close to the Int1 region, but within the Int2 region 
shown in Fig. 1. Since the derivation of the cumulative distribution 
function is straightforward we only present the supply function 
s(p) in Fig. 3, which is drawn in green and has four pieces s0, s1, 
s2 and s3. We can see that the termination condition is satisfied at 
r∗ = r3 since there s3 crosses D(p)/2 left to p3. r∗ determines also 
the position of the atom of the cumulative distribution function F
of the symmetric MSE prices. We can see that at p2 the supply 
curve s(p) just has a kink and no discontinuity.

It is worthwhile to note that in the case of linear demand there 
is no symmetric MSE just requiring two steps. Though s1, s2 and 
s3 look linear in Fig. 3 they are highly nonlinear. To determine s3, 
we need to find the appropriate root of a polynomial of degree 4. 
Thus, considering an example requiring an additional step seems 
to be intractable since the degree of the polynomial to be solved 
could be only approximated numerically and we would even need 
to determine t3, which is an inverse function of s3. For the same 
reasons we did not draw an extended version of Fig. 1 containing 
the area on which in case of linear demand we would have an 
equilibrium in three steps.

5. Concluding remarks

We found that though the cumulative distribution function of 
prices remains simple the construction of the supply function re-
quired a recursive procedure, which resulted in only a piecewise 
continuous supply function with kinks. From an economic point 
of view the discontinuities in s imply that certain unsold amounts 
are more likely than others. This may have implications on opti-
mal store sizes or disposal units, but requires a richer model and 
further analysis.

It is straightforward to see that the closer we are coming to 
the large capacity region the number of discontinuities of s(p) is 

increasing, the lowest price in the support of the equilibrium price 
distribution tends to c, the equilibrium profits tend to zero, r∗ to 
b and the price distribution tends to the Montez and Schutz [8]
equilibrium price distribution in distribution. Furthermore, it can 
be verified that s(p) approximates D(p), and therefore the solution 
approaches to the solution obtained in [8] for the case of large 
capacities.
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