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Abstract
In recent years, several screening methods have been published for ultrahigh-dimensional data that
contain hundreds of thousands of features, many of which are irrelevant or redundant. However,
most of these methods cannot handle data with thousands of classes. Prediction models built to
authenticate users based on multichannel biometric data result in this type of problem. In this
study, we present a novel method known as random forest-based multiround screening (RFMS) that
can be effectively applied under such circumstances. The proposed algorithm divides the feature
space into small subsets and executes a series of partial model builds. These partial models are used
to implement tournament-based sorting and the selection of features based on their importance.
This algorithm successfully filters irrelevant features and also discovers binary and higher-order
feature interactions. To benchmark RFMS, a synthetic biometric feature space generator known as
BiometricBlender is employed. Based on the results, the RFMS is on par with industry-standard
feature screening methods, while simultaneously possessing many advantages over them.

1. Introduction

The understanding of human motor coordination and the building of prediction models to meet various
business needs have become widely studied topics in fields such as neurology and cybersecurity. With the
help of adequate sensors, gestures, walking, handwriting, eye movement, or any other human motor activity
can be transformed into a multidimensional time series. However, in general, any fixed set of features is
either not representative of these time series or too large for resource-efficient classification. Thus, instead of
computing an a priori defined, conveniently small set of features, a promising alternative strategy is to create
an ultrahigh-dimensional dataset that consists of hundreds of thousands of features and search for the most
informative minimal subset [1]. In this process, as well as in many other machine learning (ML)
applications, the evaluation of feature importance and the elimination of irrelevant or redundant predictors
have become crucial elements in improving the performance of algorithms [2]. This elimination can increase
the accuracy of the learning process and reduce the resource needs of model building. The statistical
challenges of high dimensionality have been thoroughly reviewed in [3].

Traditional variable selection methods do not usually work well in ultrahigh-dimensional data analysis
because they aim to specifically select the optimal set of active predictors [4]. It has also been reported that
traditional dimensionality reduction methods, such as principal component analysis (PCA), do not yield
satisfactory results for high dimensional data (for example, see [5, 6]). In contrast to these methods, feature
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screening uses rough but fast techniques to select a larger set that contains most or all of the active predictors
[7]. Although several screening methods have been published for ultrahigh-dimensional data in recent years,
only a few of them can be used in cases when the response variable contains numerous classes. In particular,
in the domains of neuroscience and biometric authentication, datasets with these properties are often
encountered.

To reduce various ultrahigh-dimensional feature spaces in binary classification problems, Fan and Lv [8]
proposed a sure independence screening method in the context of linear regression models with thousands
of features and only hundreds of samples to generalize from. This paper introduced the concept of sure
screening, which means that all the important variables survive after variable screening with probability
tending to one. According to Fan and Fan [9], all features that effectively characterize both classes can be
extracted by using two-sample t-test statistics, resulting in features annealed independence rules, however,
the t-tests evaluate the features one-by-one without considering feature interactions. Mai and Zou [10] used
a Kolmogorov filter (KF) method, which is also applied for the ultrahigh-dimensional binary classification
problem with a dependent variable in Lai et al [11]. Roy et al [12] proposed a model-free feature screening
method based on energy distances (see [13, 14]). Note that all the papers cited in this paragraph deal with
binary classification only.

Mai and Zou [15] extended the KF method to handle multiclass response, however, the simulated
datasets used in the paper had only about 5000 features and a couple hundred samples. Ni et al [16]
proposed adjusted Pearson chi-square feature screening based on weighting for multiclass classification, an
approach that estimates the information value of the features one-by-one, ignoring potential interactions. Ni
and Fang [17] applied information entropy theory to model-free feature screening for
ultrahigh-dimensional, multiclass classification. Their method introduces categorical covariates, but also
ignores interactions. Soft computing techniques, in particular meta-heuristic approaches such as genetic
algorithms (GAs) and particle swarm optimization (PSO) have also found application in this domain.
Hybrid techniques combining GAs with an elastic net embedded method [18], binary GAs with feature
granulation [19], and competitive swarm optimization [20] have shown promise in addressing the
complexity of feature screening. While these approaches do account for feature interactions, the evaluated
datasets include up to 5000 features only. Harnessing fuzzy cost-based feature selection through interval
multi-objective PSO [21] is directed toward addressing high-dimensional data challenges, however, it focuses
on minimizing the cost of retrieving the necessary features, rather than finding the few relevant covariates.
Evolutionary feature subset selection grounded in interaction information [22] and the application of
self-adaptive PSO [23] are also notable results in this area, but the former method was evaluated on datasets
with only two classes in the cases when the number of features was high enough, and the latter was only
shown to work on UCI ML repository [24] databases with up to no more than 6400 features and 26 classes.
Moreover, Saadatmand and Akbarzadeh [25] introduced the set-based integer-coded fuzzy granular
evolutionary (SIFE) algorithm, applicable to ultrahigh-dimensional, multiclass feature spaces, but it was only
evaluated on datasets with ten classes at most.

While most existing feature screening approaches are unsuitable for examining higher-order interactive
structures and nonlinear structures, random forest (RF) [26] can overcome such difficulties [27]. To provide
a robust screening solution for ultrahigh-dimensional, multiclass data, we propose the RF-based multiround
screening (RFMS)method. The Julia package that implements RFMS is publicly available on GitHub [28].
The RFMS improves the accuracy and scalability of both traditional selection methods and existing RF-based
screening by organizing the screening process into rounds. As an advantage, the input is processed in larger
chunks, and we can iteratively distill a well-predicting subset of features.

The main contributions of the paper are outlined as follows:

• Introduction of the RFMSmethod, a novel approach for feature screening in ultrahigh-dimensional, multi-
class datasets. RFMS efficiently selects informative features and feature combinations (accounting for feature
interactions), even when the features are largely irrelevant, and the information content in any relevant fea-
ture is relatively small. This makes RFMS particularly suitable for domains with large and complex datasets,
such as biometric authentication.

• Comprehensive benchmarking analysis of RFMS against established feature screeningmethods such as PCA,
factor analysis (FA), and k-best screening. The benchmarking employs three basic classifiers on synthetic
data emulating real signature datasets.

• Availability of the RFMS implementation through a Julia package on GitHub, fostering reproducibility and
further advancement of the proposed method.
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The paper is organized as follows. Section 2 introduces the dataset that was used for benchmarking and the
proposed feature screening method. Section 3 presents the performance of the novel screening method and
compares it with other reduction algorithms. Finally, section 4 provides our conclusions and suggests future
research directions.

2. Data andmethodology

2.1. Synthetic dataset
To compare the performance of the proposed RFMS with a wide range of feature screening methods, an
ultrahigh-dimensional, multiclass feature space—with ground truth and some additional side information
on the usefulness of the features—was employed. This feature space imitates the key properties of the private
signature dataset of Cursor Insight, which was the winner of the ICDAR competition on signature
verification and writer identification in 2015 [29]. Moreover, it was compiled by using the BiometricBlender
data generator [30]. The BiometricBlender Python package provides an alternative to real biometric datasets,
which are typically not freely accessible and cannot be published for industrial reasons. The package is
publicly available on GitHub [31].

The following parameters were set during the data generation process:

• n-classes = 100;
• n-samples-per-class = 64;
• n-true-features = 100;
• n-fake-features = 300;
• min-usefulness = 0.5;
• max-usefulness = 1;
• location-sharing-extent = 50;
• location-ordering-extent = 20;
• n-features-out = 10 000;
• blending-mode = ‘logarithmic’;
• min-count = 4;
• max-count = 8;
• random-state = 137.

The resulting dataset contains a categorical target variable with 100 unique classes and 10 000 intercorrelated
features. The features are composed in two steps. First, true and fake features are drawn from a given
distribution. These are called hidden features. The {min/max}-usefulness parameters regulate how much
information a true feature reveals about the class identity. A shared location creates groups of classes such
that the samples of any particular class are indistinguishable based on the feature values drawn at this
location. The ordering makes true features correlated, so their information content becomes subadditive.
Fake features contain random noise. In the second step, the output features are produced as a combination of
a number of features, set by the {min/max}-count parameter. Logarithmic blending results in higher-order
correlations. For an illustration, see figure 1. For details, please refer to the related paper [30].

2.2. RFMS
Before we describe the steps of the proposed screening algorithm, several notations have to be introduced.
Let y ∈ {1,2, . . . ,k} be a categorical target variable that contains k different classes (k ∈ N+, k⩾ 2), and let
x= ⟨x1,x2, . . . ,xn⟩ be the tuple of input features (n ∈ N+). (Note that the method may straightforwardly be
applied to continuous target variables as well.) Moreover, let α,β ∈ N+ be predefined parameters such that
1⩽ β ⩽ α⩽ n, where α denotes the size of the subsets that the feature space will be divided into, and β
denotes the number of features that will be selected by the algorithm. For optimal values of α and β, see the
step-size and reduced-size parameters in the appendix.

Preparation. First, the input features of x are arranged in random order. Formally, let π be a random
permutation of {1,2, . . . ,n}, then

xπ =
⟨
xπ(1),xπ(2), . . . ,xπ(n)

⟩

3
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Figure 1. A depiction of the generated feature space. Columns indicate different values of the usefulness parameter: 0.2, 0.4, and
0.6, from left to right. (a)–(c) The distributions of a single true feature. (d)–(f) The shared distribution of the first two true
features. True features carry independent information about the class identity. (g)–(i) The t-SNE representation of the feature
space created by ten true features. (j)–(l) The t-SNE representation of the 100-dimensional output feature space obtained by
logarithmically blending the true features, but excluding fake features. With the inclusion of fake features that contain only noise,
samples from the same class get even more scattered in the feature space.

denotes the randomly ordered tuple of input features. xπ is then divided intom= ⌈n/α⌉ subsets as
follows:

x1π =
⟨
xπ(1),xπ(2), . . . ,xπ(α)

⟩
,

x2π =
⟨
xπ(α+1),xπ(α+2), . . . ,xπ(2α)

⟩
,

...

xjπ =
⟨
xπ(( j−1)α+1),xπ(( j−1)α+2), . . . ,xπ( jα)

⟩
(1⩽ j <m) ,

...

xmπ =
⟨
xπ((m−1)α+1),xπ((m−1)α+2), . . . ,xπ(n)

⟩
.

Iteration. In this step, we iterate over the above mentioned subsets by selecting the β most important
features from a subset, adding them to the next subset, and repeating this process until the β most important
features are selected from the last subset. Formally, for 1⩽ i ⩽m, let

x̄iπ = xiπ ⌢ zi−1 =
⟨
x̄i1, x̄

i
2, . . . , x̄

i
t

⟩
(i.e. the concatenation of the two tuples), where t= |xiπ|+β ⩽ α+β, z0 = ⟨⟩ is an empty tuple, and zi

(1⩽ i <m) will be defined below. (Note that x̄1π = x1π .) The relative feature importance of x̄iπ on y is
identified by using RF classification. The importance of a feature is determined by the total number of times
it appears in the classification forest (often termed the selection frequency).
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Figure 2. Steps of the RFMS.

The most important β features of x̄iπ are stored in:

zi =
⟨
x̄iGi(1)

, x̄iGi(2)
, . . . , x̄iGi(β)

⟩
,

where Gi : {1,2, . . . ,β}→ {1,2, . . . , t} is an injective function that sorts the features in zi in descending order
of their importance.

Result. The β features considered most important by the RFMS are found in:

z= zm =
⟨
x̄mGm(1)

, x̄mGm(2)
, . . . , x̄mGm(β)

⟩
.

The aforementioned steps of the calculation are illustrated in figure 2 and described in algorithm 1.

Algorithm 1. The RFMS algorithm.

Require: RF: random forest classifier with set hyperparameters
Require: X: (s, n)-sized matrix (s: sample count, n: feature count) ▷ input features
Require: y: s-sized vector ▷ target variable
Require: α: integer, st. 1⩽ α⩽ n ▷ number of input features per round
Require: β: integer, st. 1⩽ β ⩽ α ▷ number of features to keep per round

m← ⌈n/α⌉ ▷ number of tournament rounds
π ← permutation(n) ▷ take a random permutation
z← list() ▷ initialize top features as empty list
for j = 1→m do

candidates← z∪ π[( j− 1)α+ 1, . . . ,min( jα,n)]
importances← RF.importances(X[1 : s, candidates], y)
z← candidates[argsort(importances)].take(β) ▷ keep best β

return z

3. Results and discussion

To compare the performance of the RFMS with off-the-shelf screening methods, we completed the following
measurements:

(i) We measured the maximum accuracy of three basic classifiers—k-nearest neighbors (kNN) [32, 33],
support vector classifier (SVC) [34], and RF [26]—on the full feature set by using n-fold
cross-validation. The optimal parameters of the classifiers were identified via a grid search.

(ii) We performed screening by using four different methods (including our method), thus resulting in the
requested number of screened features (from 10 to 500) per method. The tested screening methods
included PCA [35, 36], FA [37, 38], k-best [39], and RFMS.

(iii) We measured the maximum accuracy of the three classifiers on each of the screened feature sets by
using n-fold cross-validation.

(iv) For every step above, we also measured the CPU usage.

5
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Table 1. Classification results on the 6400× 10 000 dataset for three basic classifiers and various reduction algorithms. (a) Only the best
accuracy among all of the parameters is reported. Bold values indicate the highest accuracies for each classifier. (b) Screening times are
the CPU times of the feature screening step and correspond to the best accuracy shown above. (c) Fitting times are defined as the CPU
times after the reduction step and correspond to the best accuracy shown above.

(a) Classification accuracy

Reduction: None PCA FA k-best RFMS

Class.: kNN 0.043 0.092 0.101 0.313 0.381
SVC 0.244 0.226 0.420 0.518 0.614
RF 0.428 0.155 0.614 0.533 0.604

(b) Screening time

Reduction: None PCA FA k-best RFMS

Class.: kNN — 6.5 s 21 s 1.63 s 11 464 s
SVC — 54.6 s 457 s 1.48 s 11 266 s
RF — 25.8 s 471 s 1.48 s 10 931 s

(c) Fitting time

Reduction: None PCA FA k-best RFMS

Class.: kNN 0.76 s 0.0062 s 0.0061 s 0.010 s 0.0082 s
SVC 185 s 11.9 s 11.9 s 11.3 s 11.6 s
RF 1145 s 223 s 233 s 192 s 59.6 s

We did not benchmark our screening algorithm against artificial neural networks (ANNs) for various
reasons:

• convolutional neural networks (CNNs) are more suited for tasks in which features obey a topology,
e.g. image processing;

• autoencoders implement unsupervised learning and are incapable of finding features which facilitate the
identification of any specific set of classes;

• ANNs in general are not well-suited for generating explainable models, which is often a requirement in the
biometric domain;

• methods using ANNs are often legally restricted to prevent the restoration of original signatures.

Furthermore, we have considered several screening algorithms mentioned in section 1 for benchmarking, but
we have been unable to find one that could be successfully evaluated on our artificial datasets for the
following reasons:

• many of them work only on binary classification problems;
• most of them, according to the cited papers, have only been tested on datasets that are one to twomagnitudes
smaller;

• many of them did not have an off-the-shelf implementation available;
• those few that we could try took an unreasonably long time to finish, e.g. SIFE [25] took 2 h on 1/20th of
the full feature set.

The highest classification accuracies for each combination, along with their screening and fitting times, are
summarized in table 1. The optimized hyperparameters that were used during the application of the RFMS
method can be found in the appendix.

Based on the results, the RFMS and FA methods outperformed both PCA and k-best screening in
accuracy. The highest accuracy was achieved by using the RFMS–SVC and FA–RF pairs (61.4%); however,
the latter combination required considerably lower screening time. Notably, depending on the persistence of
the features (see, e.g. [40]), the screening was performed relatively infrequently in comparison with the
fitting procedure, in which the combination comprising RFMS proved to be relatively fast. Furthermore, in
exchange for a slower screening procedure, RFMS offers several advantages over the FA method. These
advantages are detailed below.

6
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Figure 3. Convergence of highest accuracy as a function of the number of screened features (components). Accuracy is measured
on a scale of 0–1. RFMS converges to the optimum much quicker than FA.

Compatibility with numerical and categorical features, as well as missing values. Since RFMS uses RFs to
determine feature importances, and RFs are inherently insensitive to value domains and ranges and also
tolerate missing values, RFMS itself is very forgiving regarding the feature values in the dataset.

Potential cost reduction in feature computation. To use FA on an incoming sample, its full feature set must
be computed before the transformation can be applied. The trained model only works on the transformed
feature set. In contrast, the output of RFMS is a transformation-free subset of the original feature set. This
facilitates the interpretation of the resulting features; in addition, once RFMS has finished, and we have the
set of optimal features, only these features need to be computed on any further incoming samples. This could
be a significant factor in saving on cost and time in a production system.

Suitability for several classifiers. Although the combination of FA and RF resulted in a high accuracy and
low screening time, the accuracy of the same FA output with SVC and kNN classifiers produced significantly
weaker results (accuracy of 42% and 10%, respectively). However, for the RFMS output, SVC performed
slightly better than RF (just as well as the FA–RF combination), and even the accuracy of the kNN classifier at
38.1% was much closer to the top performers.

Robustness. If we further investigate past the highest accuracies for every combination and observe how the
accuracy changes with the adjustment of the hyperparameters, we can conclude that FA is quite sensitive. If
we reduce the number of screened features (components) from 500 to 250, the highest achievable accuracy
drops to 33.1%. A further reduction to 125 results in an accuracy of only 25%. A similar performance drop is
observable if we begin to increase the number of features from 500. However, with RFMS, a reduction in the
number of screened features from 500 to 200 only slightly reduces the best accuracy to 60.8%, and with a
further reduction to 100, the accuracy is still 55.4%. We observed this behavior with high probability when
the degrees of freedom of the data were well defined, but the FA was requested to produce fewer features.

Figure 3 summarizes both trends on a single plot, thus demonstrating how the highest achievable
accuracy converges to its global optimum as the number of screened features increases. Note that the
deviation from the plotted accuracy values with the randomization of the selection and measurement process
is negligible.

In addition, by adjusting the RFMS hyperparameters, the screening time can be significantly reduced
without compromising the classification accuracy. For example, with the right combination, the screening
time can be decreased to 2143 s (merely 1/5th of the highest value in table 1), while the achievable accuracy is
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still 60%. The fastest run in our test occurred for 1738 s (15% of the longest screening time), and even that
output could achieve a 57.3% accuracy (93.4% of the overall highest accuracy).

Performance on proprietary datasets.We have extensively used RFMS on our own proprietary biometric
feature sets; although we cannot publicly share these datasets, we can share our experiences. We found that
the FA–RF pair typically performs worse than the combination of RFMS–RF for real feature sets. In one
particular case, we trained both screening methods on a dataset of 10 000 classes, 81 000 samples, and 18 700
input features and targeted 200 output features. We subsequently measured the performance of the screened
features by using a disjunct dataset of 44 classes and 58 000 samples (as well as the same number of features).
The best classification accuracy that we could obtain on an FA transformed feature set was approximately
82%, while the RFMS-filtered output could elicit classification rates up to as high as 93%, albeit with the
screening time being significantly longer (both values have been measured with five-fold cross-validation).
However, given the sensitive and proprietary nature of the dataset, we cannot provide hard evidence for this
claim.

Besides biometric authentication, we have also successfully applied RFMS as part of our ML toolchain in
a pilot project aimed at predicting risk levels of certain financial transactions, such as personal loans, based
on biometric features extracted from the applicants’ signatures. Our predictions, based on our preliminary
measurements, have been found to complement the risk level indicators applied by our partnering financial
institute and increased the overall accuracy of the full risk analysis model by as much as 10% [41].

4. Conclusions and future work

Research on feature screening has grown rapidly in recent years; however, screening ultralarge, multiclass
data is still in its infancy. To narrow this gap in the research, we presented a novel method known as RFMS
that can be effectively applied in such circumstances. Due to the fact that ultrahigh-dimensional, multiclass
data are typically encountered in biometrics, the RFMS was benchmarked on a synthetic feature space that
imitates the key properties of a real (private) signature dataset. Based on the results, the RFMS is on par with
industry-standard feature screening methods, and it also possesses many advantages over these methods due
to its flexibility and robustness, as well as its transformation-free operation. The Julia package that
implements RFMS is publicly available on GitHub [28].

The difference in maximum accuracy that was achieved on real and synthetic data suggests that the
synthetic data generator used for tests does not yet reproduce all the properties of real data that challenge
feature screeners, and this scenario is especially true for factor analysis. Therefore, it would be important to
explore the properties of real data that cause this difference and to further develop BiometricBlender in this
direction, which could subsequently enable more realistic tests. However, at the time of writing this paper, we
were unable to find publicly available datasets that were suited for our purposes. The freely available
databases, such as those published in the UCI ML repository [24], either had too few features, samples, or
classes, or the nature of the features clearly destined them for use with other kinds of classifiers—e.g. the
pixels of high-resolution images, for which CNNs, deep neural networks, etc are better candidates.

Note that our method can be straightforwardly generalized through the following modifications:

(i) Replace the RF and importance metrics with less common alternatives that may yield better
performance.

(ii) Explore various forms of elimination tournaments, such as multiple passes through the input or
alternative scoring methods like the Elo or Glicko [42] systems. This could potentially improve
accuracy, particularly when information is intricately distributed across multiple ‘entangled’ features.

(iii) Reduce screening time by employing additional parallel computations (RF construction already
leverages multiple threads when available).

To further develop the RFMS method, the following future works are suggested:

(i) Filter highly correlated variables in every iteration (e.g. [43]) just before classification, as this could
improve the importance of the features that are proposed by the method.

(ii) Identify the means of automatically determining the number of important features to be retained per
cycle, thus allowing for all the important features to be kept and most unnecessary features to be
dropped. This could improve both accuracy and computation time.

(iii) Hyperparameter optimization is typically not viable with brute force due to lengthy computation
times. Handy visualization tools could provide useful hints for manual boosting.
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Data availability statement

The applied feature space was compiled by using the BiometricBlender data generator [30], which is publicly
available on GitHub [31].
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Appendix

RFMS was based on a Julia package that is publicly available on GitHub [28]. Its hyperparameters have been
optimized via a grid search to identify a combination that produces the highest classification accuracy, as well
as to observe the effect of changing the hyperparameters on the outcome.

In all cases, a fixed random seed of 20 230 125 was used to make the process deterministic. A fixed value
of 0.7 was set for the partial-sampling parameter. Finally, 100 random features were added to the mix
before screening as canaries. If any of these features had appeared in the final set of screened features on the
output, we could have been confident that any less important features were simply noise. However, none of
our total 3969 measurements (539 screening configurations combined with nine different classifiers, minus
the contradicting combinations) stumbled upon a random feature among the screened ones; therefore, we
were confident that the screening process identified truly relevant and meaningful features.

Table A1 summarizes the best four hyperparameter combinations, one for each of the three tested
classifiers, plus one that produced the smallest screening time.

To visualize the learning curve of the screening process, we used the highest-performing scenario
from table A1 and ran its SVC classifier on the output of each of the 20 rounds of screening. (After 20 rounds,
each feature is encountered exactly once by the screener.) The highest-ranking random feature appeared at
the 159th position after round 3, therefore we fed the 150 top features of each round to the SVC classifier. (In
the winning scenario, we were able to use 500 screened features and reach an accuracy of 61.4%, because
after the 20th round, the highest-ranking random feature was only 711th. When using only 150, accuracy
tops out at 54%.) The accuracy values are depicted in figure A1. As expected, the accuracy of the classifier
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Table A1. Optimal screening hyperparameters, the corresponding screening times, and the best achievable classification accuracies for
various classifiers and fastest screening according to grid search results.

Parameter kNN SVC RF Fastest

reduced-size 200 500 200 200
step-size 505 505 505 2020
n-subfeatures 200 100 500 1000
n-trees 500 1000 200 100
min-samples-leaf 1 1 1 40
min-purity-increase 0.01 0.1 0.1 0

Screening time: 11 464 s 10 931 s 11 266 s 1738 s
Accuracy:

• with kNN 38.1% 33.9%
• with SVC 61.4% 56.7%
• with RF 60.4% 57.3%

Figure A1. The learning curve of the SVC classifier after each RFMS screening round of the highest performing scenario.

increases with each round in a roughly logarithmic manner, flattening out as we get closer to the end of the
screening procedure.
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