On generalisations of the Aharoni-Pouzet base exchange theorem

Zsuzsanna Jankón ${ }^{1,2}$ | Attila Joó ${ }^{3,4}$

${ }^{1}$ Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest, Budapest, Hungary
${ }^{2}$ Institute of Economics, Centre for Economic and Regional Studies, Budapest, Hungary
${ }^{3}$ Department of Mathematics, University of Hamburg, Hamburg, Germany
${ }^{4}$ Set Theory, Logic and Topology Research Division, Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Correspondence

Attila Joó, Department of Mathematics, University of Hamburg, Hamburg, Germany.
Email: attila.joo@uni-hamburg.de

Funding information

NKFIH, Grant/Award Numbers: OTKA-K143858, OTKA-129211; Alexander von Humboldt Foundation

Abstract

The Greene-Magnanti theorem states that if M is a finite matroid, B_{0} and B_{1} are bases and $B_{0}=\bigcup_{i=1}^{n} X_{i}$ is a partition, then there is a partition $B_{1}=\bigcup_{i=1}^{n} Y_{i}$ such that $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ is a base for every i. The special case where each X_{i} is a singleton can be rephrased as the existence of a perfect matching in the base transition graph. Pouzet conjectured that this remains true in infinite-dimensional vector spaces. Later, he and Aharoni answered this conjecture affirmatively not just for vector spaces but also for infinite matroids. We prove two generalisations of their result. On the one hand, we show that 'being a singleton' can be relaxed to 'being finite' and this is sharp in the sense that the exclusion of infinite sets is really necessary. In addition, we prove that if B_{0} and B_{1} are bases, then there is a bijection F between their finite subsets such that $\left(B_{0} \backslash I\right) \cup F(I)$ is a base for every I. In contrast to the approach of Aharoni and Pouzet, our proofs are completely elementary, they do not rely on infinite matching theory.

MSC 2020
05B35, 15A03, 03E05 (primary), 05A18, 05C05, 05B40 (secondary)

1 | INTRODUCTION

In the usual axiomatisation of finite matroids in the terms of bases, one of the axioms demands that if B_{0} and B_{1} are bases, then for every $x \in B_{0}$, there is a $y \in B_{1}$ such that $B_{0}-x+y$ is a
© 2023 The Authors. Bulletin of the London Mathematical Society is copyright © London Mathematical Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
base. An important research direction in matroid theory is looking for stronger base exchange properties. Let us mention a few fundamental results in this subfield. First of all, the y above can be chosen in such a way that the exchange is 'symmetric' in the sense that $B_{1}-y+x$ is also a base. Greene's theorem [9] is a strengthening of this symmetric base exchange property, stating that symmetric exchange of subsets of bases is also possible. Namely, for every $X \subseteq B_{0}$ there is a $Y \subseteq B_{1}$ such that $\left(B_{0} \backslash X\right) \cup Y$ and $\left(B_{1} \backslash Y\right) \cup X$ are both bases. The Greene-Magnanti theorem [10] states that the following partition base exchange property also holds: If $B_{0}=\bigcup_{i=1}^{n} X_{i}$ is a partition, then there is a partition $B_{1}=\bigcup_{i=1}^{n} Y_{i}$ such that $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ is a base for every i. Note that Greene's theorem is equivalent with the special case $n=2$ of this. A more recent result by Kotlar, Roda and Ziv [14, Theorem 1.1.] ensures that in the setting of the Greene-Magnanti theorem, one can choose the sets Y_{i} in such a way that not just $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ but also $\left(B_{0} \backslash \bigcup_{i \leqslant j \leqslant n} X_{j}\right) \cup \bigcup_{i \leqslant j \leqslant n} Y_{j}$ is a base for every $i .^{\dagger}$

Pouzet initiated the investigation of base exchange properties of infinite-dimensional vector spaces. In particular, he was interested in the question whether the special case of the GreeneMagnanti theorem where all the sets X_{i} are singletons remains true in this more general setting. This has been settled affirmatively by Aharoni and Pouzet [1, Theorem 2.1] in an even more general context provided by Definition 1.1.

Vector spaces are the motivating examples of matroids but several important vector spaces are infinite (e.g. any non-trivial vector space over the reals) or even have infinite dimension. This led to the following matroid concept where the ground set and the bases are allowed to be infinite.

Definition 1.1. A finitary matroid is a pair $M=(E, \mathcal{I})$ with $\mathcal{I} \subseteq \mathcal{P}(E)$ such that
(I) $\emptyset \in \mathcal{I}$;
(II) \mathcal{I} is closed under taking subsets;
(III) if $I, J \in \mathcal{I}$ with $|I|<|J|$, then there exists an $e \in J \backslash I$ such that $I+e \in \mathcal{I}$;
(IV) if all finite subsets of an infinite set X are in \mathcal{I}, then $X \in \mathcal{I}$.

Remark 1.2.

- If E is finite, then (I)-(III) is the usual axiomatisation of finite matroids in terms of independent sets, while (IV) is redundant.
- It is enough to demand axiom (III) for finite I and J.
- Some authors call the concept defined in Definition 1.1 simply 'matroid' (see, e.g. [2, 13, 16]), other authors refer to it as 'independence structure' [15] or 'independence space' [19] but the term 'finitary matroid' became dominant in the literature.
- The word 'finitary' reflects the fact that by axiom (IV) every circuit (i.e. minimal dependent set) is finite. In other words, the 'span' operator corresponding to the matroid is a finitary closure operator. This is in contrast to the more general concept of matroids (see the definition in Section 2) formulated by Higgs [12] and formulated again by Bruhn et al. [5] where 'infinitary matroids' (i.e. matroids with infinite circuits) also exist.
- Duals of finitary matroids are usually ${ }^{\ddagger}$ infinitary which was originally the main motivation of Rado to express the need [17] for a more general infinite matroid concept than finitary matroids.

[^0]For more information about infinite matroids, we recommend the chapter 'Infinite Matroids' by Oxley in [18] and the habilitation thesis [3] of Bowler with the same title.

On the one hand, we give an example that Greene's theorem may fail even for finite-cycle matroids of infinite graphs.

Theorem 1.3. There is a countably infinite graph $G=(V, E)$ with edge-disjoint spanning trees T_{0} and T_{1} such that there is a partition $E\left(T_{0}\right)=X_{0} \cup X_{1}$ for which there are no edge-disjoint spanning trees S_{0} and S_{1} with $E\left(T_{0}\right) \cap E\left(S_{i}\right)=X_{i}$ for $i \in\{0,1\}$.
(Theorem 1.3 provides the promised counterexample because the symmetric exchange of the set X_{0} corresponding to the bases $B_{i}:=E\left(T_{i}\right)$ for $i \in\{0,1\}$ is impossible.) On the other hand, we prove two generalisations of the Aharoni-Pouzet base exchange theorem.

Theorem 1.4. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid, B_{0} and B_{1} are bases of M and $B_{0}=\bigcup_{i<\kappa} X_{i}$ is a partition where each X_{i} is finite. Then there is a partition $B_{1}=\bigcup_{i<\kappa} Y_{i}$ such that $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ is a base for each $i<\mathcal{K}$.

We will actually prove Theorem 1.4 in a slightly more general form (see Theorem 4.5).

Theorem 1.5. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid and B_{0} and B_{1} are bases of M. Then there is a bijection $F:\left[B_{0}\right]^{<\aleph_{0}} \rightarrow\left[B_{1}\right]^{<\aleph_{0}}$ such that $\left(B_{0} \backslash I\right) \cup F(I)$ is a base for every $I \in\left[B_{0}\right]^{<\aleph_{0}}$.

In the following section, we introduce some notation, and then in Section 3, we present our counterexample in Theorem 1.3. The positive results (Theorems 1.4 and 1.5) are proved in Section 4. Finally, the last section (Section 5) is devoted to some open problems.

2 | BASIC DEFINITIONS AND NOTATION

We use standard set-theoretic notation, in particular: the variable κ stands for cardinal numbers, α and β are ordinals, the set of natural numbers is denoted by ω, we write $[X]^{<\kappa}$ for the set of subsets of X of size less than \mathcal{K} and functions are represented as sets of ordered pairs.

A matroid is an ordered pair $M=(E, \mathcal{I})$ with $\mathcal{I} \subseteq \mathcal{P}(E)$ such that
(I) $\emptyset \in \mathcal{I}$;
(II) \mathcal{I} is closed under taking subsets;
(III') for every $I, J \in \mathcal{I}$ where J is \subseteq-maximal in \mathcal{I} and I is not, there exists an $e \in J \backslash I$ such that $I+e \in \mathcal{I} ;$
(IV') for every $X \subseteq E$, any $I \in \mathcal{I} \cap \mathcal{P}(X)$ can be extended to a \subseteq-maximal element of $\mathcal{I} \cap \mathcal{P}(X)$.
We use the term 'edges' for the elements of the ground set of the matroid. While this might be a bit confusing, it is standard in the literature and consistent with a tradition of terminology, dating back to Edmonds' early papers. The sets in \mathcal{I} are called independent, whereas the sets in $\mathcal{P}(E) \backslash \mathcal{I}$ are dependent. The maximal independent sets are called bases. The $\operatorname{rank} \boldsymbol{r}(\boldsymbol{M})$ of a matroid M is the size of its bases. ${ }^{\dagger}$ The minimal dependent sets are the circuits. Every dependent set contains

[^1]

FIGURE 1 The graph G. Right after the step $n=1$ of the induction, we already know that normal edges must belong to S_{0} and dashed edges are in S_{1}. The affiliation of the dotted edges is unknown at this point.
a circuit (which is a non-trivial fact for infinite matroids). Clearly, a matroid is finitary (see Definition 1.1) if and only if all its circuits are finite. For an $X \subseteq E$, the pair $\boldsymbol{M} \upharpoonright \boldsymbol{X}:=(X, \mathcal{I} \cap \mathcal{P}(X))$ is a matroid and it is called the restriction of M to X. We write $\boldsymbol{M}-\boldsymbol{X}$ for $M \upharpoonright(E \backslash X)$ and call it the minor obtained by the deletion of X. The contraction of X in M is a matroid on $E \backslash X$ in which $I \subseteq E \backslash X$ is independent if and only if $J \cup I$ is independent in M for a (equivalently: for every) maximal independent subset J of X. Contraction and deletion commute, that is, for disjoint $X, Y \subseteq E$, we have $(M / X)-Y=(M-Y) / X$. Matroids of this form are the minors of M. We say that $X \subseteq E$ spans $e \in E$ in matroid M if either $e \in X$ or $\{e\}$ is dependent in M / X. If I is independent in M but $I+e$ is dependent for some $e \in E \backslash I$, then there is a unique circuit $\boldsymbol{C}_{\boldsymbol{M}}(\boldsymbol{e}, \boldsymbol{I})$ of M through e contained in $I+e$ which is called the fundamental circuit of e on I.

3 | THE FAILURE OF GREENE'S BASE EXCHANGE THEOREM IN INFINITE MATROIDS

Assume that M is a finitary matroid, B_{0} and B_{1} are disjoint bases and $B_{0}=X_{0} \cup X_{1}$ is a partition. It was shown by McDiarmid in [15] that there are disjoint independent sets I_{0} and I_{1} with $I_{0} \cup I_{1}=$ $B_{0} \cup B_{1}$ and $B_{0} \cap I_{i}=X_{i}$ for $i \in\{0,1\}$. If M has a finite rank, then the sets I_{i} need to be bases because they have together $2 \cdot r(M)$ elements. This argument fails if $r(M)$ is infinite. Is it still true that they need to be bases? If not, is it always possible to choose them to be bases? We demonstrate a negative answer for these questions.

Theorem 1.3. There is a countably infinite graph $G=(V, E)$ with edge-disjoint spanning trees T_{0} and T_{1} such that there is a partition $E\left(T_{0}\right)=X_{0} \cup X_{1}$ for which there are no edge-disjoint spanning trees S_{0} and S_{1} with $E\left(T_{0}\right) \cap E\left(S_{i}\right)=X_{i}$ for $i \in\{0,1\}$.

Proof. To simplify the notation, let us identify the spanning trees with their edge sets. Let $G=$ (V, E) be the graph at Figure 1.

Let us denote the set of edges with exactly one end vertex in $U \subseteq V$ by $\delta(U)$. Consider the spanning trees $T_{0}:=\left\{f_{n}: n<\omega\right\}$ and $T_{1}:=E \backslash T_{0}$. We define $X_{0}:=\left\{f_{2 n}: n<\omega\right\}$ and $X_{1}:=$ $\left\{f_{2 n+1}: n<\omega\right\}$. Suppose for contradiction that S_{0} and S_{1} are edge-disjoint spanning trees with $T_{0} \cap S_{i}=X_{i}$ for $i \in\{0,1\}$. We must have $h_{0} \in S_{1}$ since otherwise v_{0} would be an isolated vertex in S_{1}. But then all the edges in $\delta\left(\left\{v_{0}, v_{1}\right\}\right)$ but e_{0} are in S_{1}, thus we must have $e_{0} \in S_{0}$. Suppose that we already know for some $n<\omega$ that $\left\{h_{i}: i \leqslant n\right\} \subseteq S_{1}$ and $\left\{e_{i}: i \leqslant n\right\} \subseteq S_{0}$. Consider

$$
V_{n}:=\left\{v_{2 n+2-4 k}: k \leqslant \frac{n+1}{2}\right\} \cup\left\{v_{2 n+1-4 k}: k \leqslant \frac{n}{2}\right\} .
$$

(So, $V_{0}=\left\{v_{1}, v_{2}\right\}, V_{1}=\left\{v_{0}, v_{3}, v_{4}\right\}, V_{2}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}, V_{3}=\left\{v_{0}, v_{3}, v_{4}, v_{7}, v_{8}\right\}$, etc.) All the edges in $\delta\left(V_{n}\right)$ but h_{n+1} are in S_{0}, thus necessarily $h_{n+1} \in S_{1}$. But then all the edges in $\delta\left(\left\{v_{m}: m \leqslant\right.\right.$ $2 n+3\}$) but e_{n+1} are in S_{1} therefore $e_{n+1} \in S_{0}$. It follows by induction that

$$
S_{0}=X_{0} \cup\left\{e_{i}: i<\omega\right\} \text { and } S_{1}=X_{1} \cup\left\{h_{i}: i<\omega\right\} .
$$

But then S_{1} consists of two vertex-disjoint rays contradicting the assumption that S_{1} is a spanning tree.

4 | GENERALISATIONS OF THE AHARONI-POUZET BASE EXCHANGE THEOREM

In contrast to matroids of finite rank, in matroids of infinite rank, we cannot perform arbitrary arithmetic operations on the rank function. This makes the literal adaptation of some proofs to infinite matroids impossible. Indeed, the standard proof of the Greene-Magnanti theorem involves subtractions of certain values of the rank function but these subtractions are no longer well defined if the values in question are infinite. Furthermore, the contraction of a single edge in a base does not reduce the rank if it is infinite; thus, the direct adaptation of proofs based on induction on the rank after such a contraction is also impossible.

In contrast to the approach by Aharoni and Pouzet, our proofs do not rely on infinite matching theory but uses the elementary and powerful method by Kotlar, Roda and Ziv introduced in [14]. This method applies symmetric subset base exchange as a subroutine. We are going to show that symmetric subset base exchange works in any matroid as long as the set we intend to exchange is finite.

4.1 | Partition base exchange with finite sets

Recall that the definition of matroid we are using is what was given in Section 2. In contrast to finitary matroids, it is unprovable for general matroids that all the bases of a fixed matroid must have the same size (it is independent of the axiomatic set theory ZFC [4, 11]), but the following weakening is easy to prove.

Lemma 4.1 [5, Lemma 3.7]. If B_{0} and B_{1} are bases of a matroid with $\left|B_{0} \backslash B_{1}\right|<\aleph_{0}$, then $\mid B_{0} \backslash$ $B_{1}\left|=\left|B_{1} \backslash B_{0}\right|\right.$.

Proposition 4.2. Suppose that $M=(E, \mathcal{I})$ is a matroid, B_{0} and B_{1} are bases of M and X is a finite or cofinite subset of B_{0}. Then there is $a Y \subseteq B_{1}$ such that $\left(B_{0} \backslash X\right) \cup Y$ and $\left(B_{1} \backslash Y\right) \cup X$ are both bases.

Proof. By the symmetry between X and $B_{0} \backslash X$, we may assume that X is finite. We can also assume without loss of generality that $B_{0} \cap B_{1}=\emptyset$ since otherwise we consider the matroid $M /\left(B_{0} \cap B_{1}\right)$, bases $B_{0} \backslash B_{1}$ and $B_{1} \backslash B_{0}$ and set $X^{\prime}:=X \backslash B_{1}$. If Y^{\prime} is as desired for the new problem, then $Y:=Y^{\prime} \cup\left(B_{0} \cap B_{1} \cap X\right)$ is suitable for the original one.

We take disjoint sets $Y, Z \subseteq B_{1}$ (see Figure 2) such that $\left(B_{0} \backslash X\right) \cup Y$ and $X \cup Z$ are both independent and for the set $U:=B_{1} \backslash(Y \cup Z)$ of uncovered edges, $|U|$ is as small as possible. The

FIGURE 2 The symmetric exchange of X.
set Z misses at least $|X|$ edges from B_{1} and it misses exactly $|X|$ edges if and only if $X \cup Z$ is a base (see Lemma 4.1). In particular, U must be finite. Similarly, Y can cover at most $|X|$ edges and $\left(B_{0} \backslash X\right) \cup Y$ is a base if and on if $|X|=|Y|$. Therefore, it is enough to prove that $U=\emptyset^{\dagger}$. Suppose for contradiction that this is not the case. By removing edges from Z and adding them to Y, we can assume that $|X|=|Y|$.

Claim 4.3. There is a set S with $U \subseteq S \subseteq B_{1}$ such that S is spanned by both $(Y \cap S) \cup\left(B_{0} \backslash X\right)$ and $(Z \cap S) \cup X$.

Proof. We need the following classical 'augmenting path lemma' developed by Edmonds and Fulkerson in [7]. A discussion of their method in the context of infinite matroids can be found, for example, in [8, Subsection 3.1].

Lemma 4.4 (Edmonds and Fulkerson). Let $\left\{M_{i}: i<\kappa\right\}$ be a family of matroids defined on the common edge set E, let $\left\{I_{i}: i<\kappa\right\}$ be a family of pairwise disjoint sets such that I_{i} is independent in M_{i} and $U:=E \backslash \bigcup_{i<\kappa} I_{i} \neq \emptyset$. Then there is either another family $\left\{J_{i}: i<\kappa\right\}$ of pairwise disjoint sets where J_{i} is independent in M_{i} and an $e \in U$ for which

$$
\bigcup_{i<k} J_{i}=\{e\} \cup \bigcup_{i<k} I_{i}
$$

or there is a set S with $U \subseteq S \subseteq E$ such that $I_{i} \cap S$ spans S in M_{i} for every $i<\mathcal{\kappa}$.
We apply Lemma 4.4 with the matroids $M / X \upharpoonright B_{1}$ and $M /\left(B_{0} \backslash X\right) \upharpoonright B_{1}$ and sets Z and Y. By the choice of Y and Z, it is impossible to cover more edges; thus, the second case of Lemma 4.4 occurs which provides the desired S.

[^2]By the properties of S, the set $X \cup(Z \cap S)$ is a base of $M \upharpoonright(X \cup S)$. Since S is independent in M, there is some $X^{\prime} \subseteq X$ such that $X^{\prime} \cup S$ is also a base of $M \upharpoonright(X \cup S)$. Lemma 4.1 applied to $M \upharpoonright(X \cup S)$ with these two bases and $|X|=|Y|$ ensure that

$$
\left|X^{\prime}\right|=|X|-|Y \cap S|-|U|=|Y \backslash S|-|U|<|Y \backslash S| .
$$

Since $(Y \cap S) \cup\left(B_{0} \backslash X\right)$ spans S and $X^{\prime} \cup S$ spans $X \cup S$, the set $(Y \cap S) \cup\left(B_{0} \backslash X\right) \cup X^{\prime}$ spans X and therefore spans B_{0} as well, and thus contains a base. But it is 'too small' to contain a base according to Lemma 4.1 because $B_{0} \backslash X$ needs at least $|X|$ new edges to become a base and

$$
|Y \cap S|+\left|X^{\prime}\right|<|Y \cap S|+|Y \backslash S|=|Y|=|X|
$$

We prove a slightly stronger statement than Theorem 1.4 because we will need it in the proof of Theorem 1.5.

Theorem 4.5. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid, B_{0} and B_{1} are bases and $B_{0}=\bigcup_{i<\kappa} X_{i}$ is a partition where all the sets X_{i} are finite. Then there is a partition $B_{1}=\bigcup_{i<k} Y_{i}$ and a bijection $\sigma: \kappa \rightarrow \kappa$ such that $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ and $\left(B_{0} \backslash \bigcup_{i \leqslant j<k} X_{\sigma(j)}\right) \cup \bigcup_{i \leqslant j<k} Y_{j}$ are bases for every $i<\kappa$. For $\kappa \leqslant \omega$, the σ can be chosen to be the identity.

Proof. For $\kappa<\omega$, the conditions imply that E is finite, and hence, the statement is (equivalent to) [14, Theorem 1.1.]. Suppose first that $\kappa=\omega$. Assume that the sets Y_{i} are already defined for $i<n$ for some $n<\omega$ such that for every $i<n$, the sets $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ and $\left(B_{0} \backslash \bigcup_{i \leqslant j<\omega} X_{j}\right) \cup\left(B_{1} \backslash\right.$ $\bigcup_{j<i} Y_{j}$) are bases. We apply Proposition 4.2 with the matroid $M / \bigcup_{i<n} X_{i}$, bases $B_{0} \backslash \bigcup_{i<n} X_{i}$ and $B_{1} \backslash \bigcup_{i<n} Y_{i}$, and set X_{n} to obtain Y_{n}. The recursion is done. Since $Y_{n} \subseteq B_{1} \backslash \bigcup_{i<n} Y_{i}$ for every $n<\omega$, the sets Y_{i} are pairwise disjoint. It follows by induction via Proposition 4.2 that ($B_{0} \backslash$ $\left.X_{i}\right) \cup Y_{i}$ and $\left(B_{0} \backslash \bigcup_{i \leqslant j<\omega} X_{j}\right) \cup\left(B_{1} \backslash \bigcup_{j<i} Y_{j}\right)$ are bases for every $i<\omega$. In order to show that $B_{1}=\bigcup_{i<\omega} Y_{i}$, let $e \in B_{1}$ be arbitrary. Since $C\left(e, B_{0}\right)$ is finite, there is an $i<\omega$ that $C\left(e, B_{0}\right)-e \subseteq$ $\bigcup_{j<i} X_{j}$. But then we must have $e \in \bigcup_{j<i} Y_{j}$ because $\left(B_{0} \backslash \bigcup_{i \leqslant j<\omega} X_{j}\right) \cup\left(B_{1} \backslash \bigcup_{j<i} Y_{j}\right)$ is a base. Therefore $B_{1} \backslash \bigcup_{j<i} Y_{j}=\bigcup_{i \leqslant j<\omega} Y_{j}$ which completes the proof of the case $\kappa=\omega$.

Suppose that $\kappa>\omega$. We reduce this to the countable case by the following technical lemma. Let us state the lemma in a slightly more general form than it is actually needed (it does not change the proof and having a reference in more general form could be helpful).

Lemma 4.6. Assume that $M=(E, \mathcal{I})$ is a matroid without uncountable circuits, B_{0} and B_{1} are bases of M with $\aleph_{0}<\left|B_{0}\right|=: \kappa$ and $B_{0}=\bigcup_{i<\kappa} X_{i}$ is a partition where each X_{i} is countable. Then there is a family $\left\{B_{j}^{\alpha}: j \in\{0,1\}, \alpha<\kappa\right\}$ such that
(1) $B_{0}^{0}=B_{1}^{0}=\emptyset$;
(2) $\bigcup_{\alpha<\kappa} B_{j}^{\alpha}=B_{j}$ for $j \in\{0,1\}$;
(3) $B_{j}^{\alpha} \subseteq B_{j}^{\alpha+1}$ with $\left|B_{j}^{\alpha+1} \backslash B_{j}^{\alpha}\right|=\aleph_{0}$ for every $\alpha<\kappa$ and $j \in\{0,1\}$;
(4) for a limit ordinal $\alpha<\chi$ and $j \in\{0,1\}$ we have $B_{j}^{\alpha}=\bigcup_{\beta<\alpha} B_{j}^{\beta}$;
(5) B_{0}^{α} and B_{1}^{α} span each other in M for every α;
(6) whenever $B_{0}^{\alpha} \cap X_{i} \neq \emptyset$ for some $\alpha, i<\kappa$, then $X_{i} \subseteq B_{0}^{\alpha}$.

Proof. The proof is a straightforward transfinite recursion (or alternatively a basic application of a chain of elementary submodels). Suppose that B_{0}^{α} and B_{1}^{α} are already defined. We set $B_{j}^{\alpha, 0}:=B_{j}^{\alpha}$
for $j \in\{0,1\}$ and let $B_{0}^{\alpha, 1}:=B_{0}^{\alpha} \cup X_{i}$ for the smallest i with $B_{0}^{\alpha} \cap X_{i}=\emptyset$. If $B_{0}^{\alpha, n+1}$ and $B_{1}^{\alpha, n}$ are defined for some $n<\omega$, then

$$
\begin{aligned}
& B_{1}^{\alpha, n+1}:=B_{1}^{\alpha, n} \cup \bigcup\left\{C\left(e, B_{1}\right)-e: e \in B_{0}^{\alpha, n+1} \backslash B_{0}^{\alpha, n}\right\}, \\
& B_{0}^{\alpha, n+2}:=B_{0}^{\alpha, n+1} \cup \bigcup\left\{X_{i}:\left(\exists e \in B_{1}^{\alpha, n+1} \backslash B_{1}^{\alpha, n}\right)\left(C\left(e, B_{0}\right) \cap X_{i} \neq \emptyset\right)\right\} .
\end{aligned}
$$

It is easy to check that $B_{j}^{\alpha+1}:=\bigcup_{n<\omega} B_{j}^{\alpha, n}$ for $j \in\{0,1\}$ are suitable. Since limit steps obviously preserve all the conditions, we are done.

Let B_{j}^{α} for $j \in\{0,1\}$ and $\alpha<\mathcal{K}$ as in Lemma 4.6. Properties (3) and (6) guarantee that for every $\alpha<\kappa$, the set $B_{0}^{\alpha+1} \backslash B_{0}^{\alpha}$ is the union of countably infinitely many X_{i}. Let σ_{α} be an ω-type enumeration of the sets X_{i} that are contained in $B_{0}^{\alpha+1} \backslash B_{0}^{\alpha}$. We choose σ to be the concatenation of the sequences σ_{α}. Properties (3) and (5) guarantee that $B_{0, \alpha}:=B_{0}^{\alpha+1} \backslash B_{0}^{\alpha}$ and $B_{1, \alpha}:=B_{1}^{\alpha+1} \backslash B_{1}^{\alpha}$ are bases of $M_{\alpha}:=M \upharpoonright\left(B_{0}^{\alpha+1} \cup B_{1}^{\alpha+1}\right) / B_{0}^{\alpha}$. For every $\alpha<\mathcal{K}$, we apply the already proved countable case with matroid M_{α}, bases B_{0}^{α} and B_{1}^{α} and partition $B_{0, \alpha}=\bigcup_{n<\omega} X_{\sigma_{\alpha}(n)}$. Let $B_{1, \alpha}=\bigcup_{n<\omega} Y_{\alpha, n}$ be the resulting partition. We shall prove that letting $Y_{\omega \alpha+n}:=Y_{\alpha, n}$ results in a desired partition of B_{1}. The sets $B_{1, \alpha}$ for $\alpha<\kappa$ form a partition of B_{1} by the properties (1)-(4). The sets $Y_{\alpha, n}$ for $n<\omega$ partition $B_{1, \alpha}$ by construction. Thus, the sets Y_{i} for $i<\kappa$ partition B_{1}. Let $\omega \alpha+n<\kappa$ be arbitrary. By construction,

$$
\left(B_{0, \alpha} \backslash X_{\sigma(\omega \alpha+n)}\right) \cup Y_{\omega \alpha+n} \text { and }\left[\left(B_{0, \alpha} \backslash \bigcup_{n \leqslant m<\omega} X_{\sigma(\omega \alpha+m)}\right)\right] \cup \bigcup_{n \leqslant m<\omega} Y_{\omega \alpha+m}
$$

are bases of M_{α}. But then their respective union with B_{0}^{α} results in bases of $M \upharpoonright\left(B_{0}^{\alpha+1} \cup B_{1}^{\alpha+1}\right)$. By property (5), such bases can be extended to bases of M by adding any of $B_{0} \backslash B_{0}^{\alpha+1}$ and $B_{1} \backslash B_{1}^{\alpha+1}=$ $\bigcup_{\omega(\alpha+1) \leqslant \beta<k} Y_{\beta}$. Thus, the desired exchange properties hold.

From the proof above, it is clear that Proposition 4.2 has the following extension.

Corollary 4.7. Suppose that $M=(E, \mathcal{I})$ is a matroid, B_{0} and B_{1} are bases, $n<\omega$ and $B_{0}=\bigcup_{i \leqslant n} X_{i}$ is a partition where all but at most one X_{i} are finite. Then there is a partition $B_{1}=\bigcup_{i \leqslant n} Y_{i}$ such that $\left(B_{0} \backslash X_{i}\right) \cup Y_{i}$ and $\left(B_{0} \backslash \bigcup_{i \leqslant j \leqslant n} X_{j}\right) \cup \bigcup_{i \leqslant j \leqslant n} Y_{j}$ are bases of M for each $i \leqslant n$.

4.2 Exchanging all finite subsets of a base

In this subsection, we prove another generalisation of [1, Theorem2.1], namely, the extension of a theorem due to Donald and Tobey (see [6, Theorem 1]) to finitary matroids. We repeat it here for convenience.

Theorem 1.5. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid and B_{0} and B_{1} are bases of M. Then there is a bijection $F:\left[B_{0}\right]^{<\aleph_{0}} \rightarrow\left[B_{1}\right]^{<\aleph_{0}}$ such that $\left(B_{0} \backslash I\right) \cup F(I)$ is a base for every $I \in\left[B_{0}\right]^{<\aleph_{0}}$.

Proof. We will make use of the following special case of Theorem 4.5 where the partition consists of singletons.

Corollary 4.8. Assume that $M=(E, \mathcal{I})$ is a finitary matroid and B_{0} and B_{1} are bases. Then there are enumerations $B_{0}=\left\{e_{\alpha}: \alpha<\kappa\right\}$ and $B_{1}=\left\{f_{\alpha}: \alpha<\kappa\right\}$ such that $B_{0}-e_{\alpha}+f_{\alpha}$ and $\left(B_{0} \backslash\left\{e_{\beta}\right.\right.$: $\alpha \leqslant \beta<\kappa\}) \cup\left\{f_{\beta}: \alpha \leqslant \beta<\kappa\right\}$ are bases for every $\alpha<\kappa$.

It is enough to show that for every $k<\omega$, there is a bijection $F_{k}:\left[B_{0}\right]^{k} \rightarrow\left[B_{1}\right]^{k}$ for which $\left(B_{0} \backslash I\right) \cup F_{k}(I)$ is a base for every $I \in\left[B_{0}\right]^{k}$ because then $F:=\bigcup_{k<\omega} F_{k}$ is suitable. We define $F_{0}:=\emptyset$. Suppose that we already know for some k and every M, B_{0} and B_{1} that such a bijection $F_{k}=F_{k, M, B_{0}, B_{1}}$ exists. Let M, B_{0} and B_{1} be fixed. We also fix enumerations as in Corollary 4.8 and let us well-order B_{0} and B_{1} according to these enumerations. In order to define a desired F_{k+1}, it is enough to give for every $\alpha<\kappa$ a bijection $F_{k+1, \alpha}$ between the k-subsets of B_{0} with the smallest edge e_{α} and the k-subsets of B_{1} with the smallest edge f_{α}. Indeed, if this is done, then $F_{k+1}:=\bigcup_{\alpha<k} F_{k+1, \alpha}$ is appropriate. Corollary 4.8 guarantees that $B_{0, \alpha}:=\left\{e_{\beta}: \alpha<\beta<\kappa\right\}$ and $B_{1, \alpha}:=\left\{f_{\beta}: \alpha<\beta<\kappa\right\}$ are bases in $M_{\alpha}:=M /\left(\left\{e_{\beta}: \beta<\alpha\right\} \cup\left\{f_{\alpha}\right\}\right)$. Let $F_{k+1, \alpha}^{\prime}$ be what we get by applying the induction hypothesis for k with $M_{\alpha}, B_{0, \alpha}$ and $B_{1, \alpha}$. Then Corollary 4.8 and the induction hypothesis ensure that defining

$$
F_{k+1, \alpha}(I):=F_{k+1, \alpha}^{\prime}\left(I-e_{\alpha}\right)+f_{\alpha}
$$

is suitable.

5 | OPEN PROBLEMS

Our positive results (Theorems 1.4 and 1.5) are about finitary matroids. Their extension to arbitrary matroids cannot be provable because the equicardinality of bases is independent of ZFC and the statements fail when $\left|B_{0}\right| \neq\left|B_{1}\right|$. Even so, they might be true for other important matroid classes. A matroid is called cofinitary if its dual is finitary and it is tame if the intersection of any circuit with any cocircuit is finite.

Question 5.1. Do Theorems 1.4 and 1.5 remain true for matroids having only countable circuits? Do they hold for cofinitary or even for tame matroids? Are they consistently true for every matroid?

One can obtain equivalent forms of [14, Theorem 1.1] (see in the Introduction) by reversing the enumeration of the partition or phrasing it from the perspective of the dual matroid. Since the reverse of an infinite well-order is no longer a well-order and the dual of a finitary matroid may fail to be finitary, these lead to new problems in the infinite case.

Question 5.2. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid, B_{0} and B_{1} are bases and $B_{0}=$ $\bigcup_{n<\omega} X_{n}$ is a partition where all the sets X_{n} are finite. Is there always a partition $B_{1}=\bigcup_{n<\omega} Y_{n}$ such that $\left(B_{0} \backslash X_{n}\right) \cup Y_{n}$ and $\left(B_{0} \backslash \bigcup_{m \leqslant n} X_{m}\right) \cup \bigcup_{m \leqslant n} Y_{m}$ are bases for every $n<\omega$?

Question 5.3. Suppose that $M=(E, \mathcal{I})$ is a finitary matroid, B_{0} and B_{1} are bases and $B_{1}=$ $\bigcup_{n<\omega} Y_{n}$ is a partition where all the sets Y_{n} are finite. Is there always a partition $B_{0}=\bigcup_{n<\omega} X_{n}$ such that $\left(B_{0} \backslash X_{n}\right) \cup Y_{n}$ and $\left(B_{0} \backslash \bigcup_{m \leqslant n} X_{m}\right) \cup \bigcup_{m \leqslant n} Y_{m}$ are bases for every $n<\omega$?

Question 5.4. Is it true for every finitary matroid M and bases B_{0} and B_{1} that there exists a bijection $F: \mathcal{P}\left(B_{0}\right) \rightarrow \mathcal{P}\left(B_{1}\right)$ such that $\left(B_{0} \backslash I\right) \cup F(I)$ is a base for every $I \subseteq B_{0}$?

ACKNOWLEDGEMENTS

Jankó is grateful for the support of NKFIH OTKA-K143858. Joó would like to thank the generous support of the Alexander von Humboldt Foundation and NKFIH OTKA-129211.

Open access funding enabled and organized by Projekt DEAL.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES

1. R. Aharoni and M. Pouzet, Bases in infinite matroids, J. Lond. Math. Soc. 2 (1991), no. 3, 385-392. https://doi. org/10.1112/jlms/s2-44.3.385.
2. R. Aharoni and R. Ziv, The intersection of two infinite matroids, J. Lond. Math. Soc. 58 (1998), no. 3, 513-525. https://doi.org/10.1112/s0024610798006723.
3. N. Bowler, Infinite matroids, Habilitation thesis, University of Hamburg, 2014. https://www.math.unihamburg.de/spag/dm/papers/Bowler_Habil.pdf.
4. N. Bowler and S. Geschke, Self-dual uniform matroids on infinite sets, Proc. Amer. Math. Soc. 144 (2016), no. 2, 459-471. https://doi.org/10.1090/proc/12667.
5. H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh, and P. Wollan, Axioms for infinite matroids, Adv. Math. 239 (2013), 18-46. https://doi.org/10.1016/j.aim.2013.01.011.
6. J. Donald and M. Tobey, A generalised exchange theorem for matroid bases, Bull. Aust. Math. Soc. 43 (1991), no. 2, 177-180. https://doi.org/10.1017/s0004972700028938.
7. J. Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nal. Bureau Standards Sect. B Math. Math. Phys. 69B (1965), no. 3, 147. https://doi.org/10.6028/jres.069b.016.
8. J. Erde, J. P. Gollin, A. Jooó, P. Knappe, and M. Pitz, Base partition for mixed families of finitary and cofinitary matroids, Combinatorica 41 (2021), no. 1, 31-52. https://doi.org/10.1007/s00493-020-4422-4.
9. C. Greene, A multiple exchange property for bases, Proc. Amer. Math. Soc. 39 (1973), no. 1, 45-50. https://doi. org/10.1090/s0002-9939-1973-0311494-8.
10. C. Greene and T. L. Magnanti, Some abstract pivot algorithms, SIAM J. Appl. Math. 29 (1975), no. 3, 530-539. https://doi.org/10.1137/0129045.
11. D. A. Higgs, Equicardinality of bases in B-matroids, Canad. Math. Bull 12 (1969), 861-862. https://doi.org/10. 4153/cmb-1969-112-6.
12. D. A. Higgs, Matroids and duality, Colloq. Math. 2 (1969), 215-220. http://eudml.org/doc/267207.
13. P. Komjáth, E. C. Milner, and N. Polat, A compactness theorem for perfect matchings in matroids, J. Combin. Theory Ser. B 44 (1988), no. 3, 253-262. https://doi.org/10.1016/0095-8956(88)90035-4.
14. D. Kotlar, E. Roda, and R. Ziv, On sequential basis exchange in matroids, SIAM J. Discrete Math. 35 (2021), no. 4, 2517-2519. https://doi.org/10.1137/19M1291261.
15. C. J. H. McDiarmid, An exchange theorem for independence structures, Proc. Amer. Math. Soc. 47 (1975), no. 2, 513-514. https://doi.org/10.1090/s0002-9939-1975-0363960-9.
16. N. Polat, A compactness result for perfect matchings, Discrete Math. 64 (1987), no. 2-3, 229-237. https://doi.org/ 10.1016/0012-365x(87)90192-0.
17. R. Rado, Abstract linear dependence, Colloquium Mathematicum, vol. 14, Institute of Mathematics Polish Academy of Sciences, Warsaw, pp. 257-264, https://doi.org/10.4064/cm-14-1-257-264.
18. N. White, Matroid applications, vol. 40, Cambridge University Press, Cambridge, 1992. https://doi.org/10.1017/ cbo9780511662041.
19. J. Wojciechowski, Infinite matroidal version of Hall's matching theorem, J. Lond. Math. Soc. 71 (2005), no. 3, 563-578. https://doi.org/10.1112/S0024610705006320.

[^0]: ${ }^{\dagger}$ They formulated originally the dual of this and exchanged initial segments instead of terminal segments.
 ${ }^{\ddagger}$ The exceptions are exactly the direct sums of finite matroids.

[^1]: ${ }^{\dagger}$ The rank is just consistently well defined, and for the details, see Subsection 4.1.

[^2]: ${ }^{\dagger}$ For finitary matroids, one can simplify the proof by applying the main result of [15] in order to choose Y and Z in such a way that $U=\emptyset$.

