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Abstract
The Greene–Magnanti theorem states that if 𝑀 is a
finite matroid, 𝐵0 and 𝐵1 are bases and 𝐵0 =

⋃𝑛
𝑖=1 𝑋𝑖

is a partition, then there is a partition 𝐵1 =
⋃𝑛
𝑖=1 𝑌𝑖

such that (𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 is a base for every 𝑖. The spe-
cial case where each 𝑋𝑖 is a singleton can be rephrased
as the existence of a perfect matching in the base transi-
tion graph. Pouzet conjectured that this remains true in
infinite-dimensional vector spaces. Later, he and Aha-
roni answered this conjecture affirmatively not just for
vector spaces but also for infinite matroids. We prove
two generalisations of their result. On the one hand, we
show that ‘being a singleton’ can be relaxed to ‘being
finite’ and this is sharp in the sense that the exclusion
of infinite sets is really necessary. In addition, we prove
that if 𝐵0 and 𝐵1 are bases, then there is a bijection 𝐹
between their finite subsets such that (𝐵0 ⧵ 𝐼) ∪ 𝐹(𝐼) is a
base for every 𝐼. In contrast to the approach of Aharoni
and Pouzet, our proofs are completely elementary, they
do not rely on infinite matching theory.

MSC 2020
05B35, 15A03, 03E05 (primary), 05A18, 05C05, 05B40 (secondary)

1 INTRODUCTION

In the usual axiomatisation of finite matroids in the terms of bases, one of the axioms demands
that if 𝐵0 and 𝐵1 are bases, then for every 𝑥 ∈ 𝐵0, there is a 𝑦 ∈ 𝐵1 such that 𝐵0 − 𝑥 + 𝑦 is a
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base. An important research direction in matroid theory is looking for stronger base exchange
properties. Let us mention a few fundamental results in this subfield. First of all, the 𝑦 above can
be chosen in such away that the exchange is ‘symmetric’ in the sense that𝐵1 − 𝑦 + 𝑥 is also a base.
Greene’s theorem [9] is a strengthening of this symmetric base exchange property, stating that
symmetric exchange of subsets of bases is also possible. Namely, for every𝑋 ⊆ 𝐵0 there is a𝑌 ⊆ 𝐵1
such that (𝐵0 ⧵ 𝑋) ∪ 𝑌 and (𝐵1 ⧵ 𝑌) ∪ 𝑋 are both bases. TheGreene–Magnanti theorem [10] states
that the following partition base exchange property also holds: If 𝐵0 =

⋃𝑛
𝑖=1 𝑋𝑖 is a partition, then

there is a partition 𝐵1 =
⋃𝑛
𝑖=1 𝑌𝑖 such that (𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 is a base for every 𝑖. Note that Greene’s

theorem is equivalent with the special case 𝑛 = 2 of this. A more recent result by Kotlar, Roda
and Ziv [14, Theorem 1.1.] ensures that in the setting of the Greene–Magnanti theorem, one can
choose the sets 𝑌𝑖 in such a way that not just (𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 but also (𝐵0 ⧵

⋃
𝑖⩽𝑗⩽𝑛 𝑋𝑗) ∪

⋃
𝑖⩽𝑗⩽𝑛 𝑌𝑗

is a base for every 𝑖.†
Pouzet initiated the investigation of base exchange properties of infinite-dimensional vector

spaces. In particular, he was interested in the question whether the special case of the Greene–
Magnanti theorem where all the sets 𝑋𝑖 are singletons remains true in this more general setting.
This has been settled affirmatively byAharoni andPouzet [1, Theorem2.1] in an evenmore general
context provided by Definition 1.1.
Vector spaces are the motivating examples of matroids but several important vector spaces

are infinite (e.g. any non-trivial vector space over the reals) or even have infinite dimension.
This led to the following matroid concept where the ground set and the bases are allowed to be
infinite.

Definition 1.1. A finitary matroid is a pair𝑀 = (𝐸,) with  ⊆ (𝐸) such that

(I) ∅ ∈ ;
(II)  is closed under taking subsets;
(III) if 𝐼, 𝐽 ∈  with |𝐼| < |𝐽|, then there exists an 𝑒 ∈ 𝐽 ⧵ 𝐼 such that 𝐼 + 𝑒 ∈ ;
(IV) if all finite subsets of an infinite set 𝑋 are in , then 𝑋 ∈ .

Remark 1.2.

∙ If 𝐸 is finite, then (I)–(III) is the usual axiomatisation of finitematroids in terms of independent
sets, while (IV) is redundant.

∙ It is enough to demand axiom (III) for finite 𝐼 and 𝐽.
∙ Some authors call the concept defined in Definition 1.1 simply ‘matroid’ (see, e.g. [2, 13, 16]),
other authors refer to it as ‘independence structure’ [15] or ‘independence space’ [19] but the
term ‘finitary matroid’ became dominant in the literature.

∙ The word ‘finitary’ reflects the fact that by axiom (IV) every circuit (i.e. minimal dependent
set) is finite. In other words, the ‘span’ operator corresponding to the matroid is a finitary clo-
sure operator. This is in contrast to the more general concept of matroids (see the definition in
Section 2) formulated by Higgs [12] and formulated again by Bruhn et al. [5] where ‘infinitary
matroids’ (i.e. matroids with infinite circuits) also exist.

∙ Duals of finitary matroids are usually‡ infinitary which was originally the main motivation of
Rado to express the need [17] for amore general infinitematroid concept than finitarymatroids.

† They formulated originally the dual of this and exchanged initial segments instead of terminal segments.
‡ The exceptions are exactly the direct sums of finite matroids.
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1542 JANKÓ and JOÓ

For more information about infinite matroids, we recommend the chapter ‘Infinite Matroids’
by Oxley in [18] and the habilitation thesis [3] of Bowler with the same title.
On the one hand, we give an example that Greene’s theorem may fail even for finite-cycle

matroids of infinite graphs.

Theorem 1.3. There is a countably infinite graph 𝐺 = (𝑉, 𝐸) with edge-disjoint spanning trees 𝑇0
and 𝑇1 such that there is a partition 𝐸(𝑇0) = 𝑋0 ∪ 𝑋1 for which there are no edge-disjoint spanning
trees 𝑆0 and 𝑆1 with 𝐸(𝑇0) ∩ 𝐸(𝑆𝑖) = 𝑋𝑖 for 𝑖 ∈ {0, 1}.

(Theorem 1.3 provides the promised counterexample because the symmetric exchange of the
set 𝑋0 corresponding to the bases 𝐵𝑖 ∶= 𝐸(𝑇𝑖) for 𝑖 ∈ {0, 1} is impossible.) On the other hand, we
prove two generalisations of the Aharoni–Pouzet base exchange theorem.

Theorem 1.4. Suppose that 𝑀 = (𝐸,) is a finitary matroid, 𝐵0 and 𝐵1 are bases of 𝑀 and
𝐵0 =

⋃
𝑖<𝜅 𝑋𝑖 is a partition where each 𝑋𝑖 is finite. Then there is a partition 𝐵1 =

⋃
𝑖<𝜅 𝑌𝑖 such that

(𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 is a base for each 𝑖 < 𝜅.

We will actually prove Theorem 1.4 in a slightly more general form (see Theorem 4.5).

Theorem 1.5. Suppose that𝑀 = (𝐸,) is a finitary matroid and 𝐵0 and 𝐵1 are bases of𝑀. Then
there is a bijection 𝐹 ∶ [𝐵0]<ℵ0 → [𝐵1]<ℵ0 such that (𝐵0 ⧵ 𝐼) ∪ 𝐹(𝐼) is a base for every 𝐼 ∈ [𝐵0]<ℵ0 .

In the following section, we introduce some notation, and then in Section 3, we present
our counterexample in Theorem 1.3. The positive results (Theorems 1.4 and 1.5) are proved in
Section 4. Finally, the last section (Section 5) is devoted to some open problems.

2 BASIC DEFINITIONS AND NOTATION

We use standard set-theoretic notation, in particular: the variable 𝜅 stands for cardinal numbers,
𝛼 and 𝛽 are ordinals, the set of natural numbers is denoted by 𝜔, we write [𝑋]<𝜅 for the set of
subsets of 𝑋 of size less than 𝜅 and functions are represented as sets of ordered pairs.
Amatroid is an ordered pair𝑀 = (𝐸,) with  ⊆ (𝐸) such that

(I) ∅ ∈ ;
(II)  is closed under taking subsets;
(III’) for every 𝐼, 𝐽 ∈  where 𝐽 is ⊆-maximal in  and 𝐼 is not, there exists an 𝑒 ∈ 𝐽 ⧵ 𝐼 such that

𝐼 + 𝑒 ∈ ;
(IV’) for every 𝑋 ⊆ 𝐸, any 𝐼 ∈  ∩ (𝑋) can be extended to a ⊆-maximal element of  ∩ (𝑋).

We use the term ‘edges’ for the elements of the ground set of the matroid. While this might be a
bit confusing, it is standard in the literature and consistent with a tradition of terminology, dating
back to Edmonds’ early papers. The sets in  are called independent, whereas the sets in (𝐸) ⧵ 

are dependent. The maximal independent sets are called bases. The rank 𝒓(𝑴) of a matroid𝑀 is
the size of its bases.† The minimal dependent sets are the circuits. Every dependent set contains

† The rank is just consistently well defined, and for the details, see Subsection 4.1.
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ON GENERALISATIONS OF THE AHARONI–POUZET BASE EXCHANGE THEOREM 1543

F IGURE 1 The graph 𝐺. Right after the step 𝑛 = 1 of the induction, we already know that normal edges
must belong to 𝑆0 and dashed edges are in 𝑆1. The affiliation of the dotted edges is unknown at this point.

a circuit (which is a non-trivial fact for infinite matroids). Clearly, a matroid is finitary (see Defi-
nition 1.1) if and only if all its circuits are finite. For an 𝑋 ⊆ 𝐸, the pair𝑴 ↾ 𝑿 ∶= (𝑋, ∩ (𝑋))
is a matroid and it is called the restriction of 𝑀 to 𝑋. We write 𝑴 −𝑿 for 𝑀 ↾ (𝐸 ⧵ 𝑋) and call
it the minor obtained by the deletion of 𝑋. The contraction of 𝑋 in 𝑀 is a matroid on 𝐸 ⧵ 𝑋 in
which 𝐼 ⊆ 𝐸 ⧵ 𝑋 is independent if and only if 𝐽 ∪ 𝐼 is independent in 𝑀 for a (equivalently: for
every)maximal independent subset 𝐽 of𝑋. Contraction and deletion commute, that is, for disjoint
𝑋,𝑌 ⊆ 𝐸, we have (𝑀∕𝑋) − 𝑌 = (𝑀 − 𝑌)∕𝑋. Matroids of this form are the minors of𝑀. We say
that 𝑋 ⊆ 𝐸 spans 𝑒 ∈ 𝐸 in matroid𝑀 if either 𝑒 ∈ 𝑋 or {𝑒} is dependent in𝑀∕𝑋. If 𝐼 is indepen-
dent in𝑀 but 𝐼 + 𝑒 is dependent for some 𝑒 ∈ 𝐸 ⧵ 𝐼, then there is a unique circuit 𝑪𝑴(𝒆, 𝑰) of𝑀
through 𝑒 contained in 𝐼 + 𝑒 which is called the fundamental circuit of 𝑒 on 𝐼.

3 THE FAILURE OF GREENE’S BASE EXCHANGE THEOREM IN
INFINITEMATROIDS

Assume that𝑀 is a finitarymatroid,𝐵0 and𝐵1 are disjoint bases and𝐵0 = 𝑋0 ∪ 𝑋1 is a partition. It
was shown by McDiarmid in [15] that there are disjoint independent sets 𝐼0 and 𝐼1 with 𝐼0 ∪ 𝐼1 =
𝐵0 ∪ 𝐵1 and 𝐵0 ∩ 𝐼𝑖 = 𝑋𝑖 for 𝑖 ∈ {0, 1}. If 𝑀 has a finite rank, then the sets 𝐼𝑖 need to be bases
because they have together 2 ⋅ 𝑟(𝑀) elements. This argument fails if 𝑟(𝑀) is infinite. Is it still true
that they need to be bases? If not, is it always possible to choose them to be bases?We demonstrate
a negative answer for these questions.

Theorem 1.3. There is a countably infinite graph 𝐺 = (𝑉, 𝐸) with edge-disjoint spanning trees 𝑇0
and 𝑇1 such that there is a partition 𝐸(𝑇0) = 𝑋0 ∪ 𝑋1 for which there are no edge-disjoint spanning
trees 𝑆0 and 𝑆1 with 𝐸(𝑇0) ∩ 𝐸(𝑆𝑖) = 𝑋𝑖 for 𝑖 ∈ {0, 1}.

Proof. To simplify the notation, let us identify the spanning trees with their edge sets. Let 𝐺 =
(𝑉, 𝐸) be the graph at Figure 1.
Let us denote the set of edges with exactly one end vertex in 𝑈 ⊆ 𝑉 by 𝛿(𝑈). Consider the

spanning trees 𝑇0 ∶= {𝑓𝑛 ∶ 𝑛 < 𝜔} and 𝑇1 ∶= 𝐸 ⧵ 𝑇0. We define𝑋0 ∶= {𝑓2𝑛 ∶ 𝑛 < 𝜔} and𝑋1 ∶=
{𝑓2𝑛+1 ∶ 𝑛 < 𝜔}. Suppose for contradiction that 𝑆0 and 𝑆1 are edge-disjoint spanning trees with
𝑇0 ∩ 𝑆𝑖 = 𝑋𝑖 for 𝑖 ∈ {0, 1}. We must have ℎ0 ∈ 𝑆1 since otherwise 𝑣0 would be an isolated vertex
in 𝑆1. But then all the edges in 𝛿({𝑣0, 𝑣1}) but 𝑒0 are in 𝑆1, thus we must have 𝑒0 ∈ 𝑆0. Suppose
that we already know for some 𝑛 < 𝜔 that {ℎ𝑖 ∶ 𝑖 ⩽ 𝑛} ⊆ 𝑆1 and {𝑒𝑖 ∶ 𝑖 ⩽ 𝑛} ⊆ 𝑆0. Consider

𝑉𝑛 ∶=
{
𝑣2𝑛+2−4𝑘 ∶ 𝑘 ⩽

𝑛 + 1

2

}
∪
{
𝑣2𝑛+1−4𝑘 ∶ 𝑘 ⩽

𝑛

2

}
.
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1544 JANKÓ and JOÓ

(So, 𝑉0 = {𝑣1, 𝑣2}, 𝑉1 = {𝑣0, 𝑣3, 𝑣4}, 𝑉2 = {𝑣1, 𝑣2, 𝑣5, 𝑣6}, 𝑉3 = {𝑣0, 𝑣3, 𝑣4, 𝑣7, 𝑣8}, etc.) All the edges
in 𝛿(𝑉𝑛) but ℎ𝑛+1 are in 𝑆0, thus necessarily ℎ𝑛+1 ∈ 𝑆1. But then all the edges in 𝛿({𝑣𝑚 ∶ 𝑚 ⩽
2𝑛 + 3}) but 𝑒𝑛+1 are in 𝑆1 therefore 𝑒𝑛+1 ∈ 𝑆0. It follows by induction that

𝑆0 = 𝑋0 ∪ {𝑒𝑖 ∶ 𝑖 < 𝜔} and 𝑆1 = 𝑋1 ∪ {ℎ𝑖 ∶ 𝑖 < 𝜔}.

But then 𝑆1 consists of two vertex-disjoint rays contradicting the assumption that 𝑆1 is a
spanning tree. □

4 GENERALISATIONS OF THE AHARONI–POUZET BASE
EXCHANGE THEOREM

In contrast to matroids of finite rank, in matroids of infinite rank, we cannot perform arbitrary
arithmetic operations on the rank function. This makes the literal adaptation of some proofs
to infinite matroids impossible. Indeed, the standard proof of the Greene–Magnanti theorem
involves subtractions of certain values of the rank function but these subtractions are no longer
well defined if the values in question are infinite. Furthermore, the contraction of a single edge
in a base does not reduce the rank if it is infinite; thus, the direct adaptation of proofs based on
induction on the rank after such a contraction is also impossible.
In contrast to the approach by Aharoni and Pouzet, our proofs do not rely on infinite matching

theory but uses the elementary and powerful method by Kotlar, Roda and Ziv introduced in [14].
This method applies symmetric subset base exchange as a subroutine. We are going to show that
symmetric subset base exchange works in any matroid as long as the set we intend to exchange
is finite.

4.1 Partition base exchange with finite sets

Recall that the definition of matroid we are using is what was given in Section 2. In contrast to
finitary matroids, it is unprovable for general matroids that all the bases of a fixed matroid must
have the same size (it is independent of the axiomatic set theory ZFC [4, 11]), but the following
weakening is easy to prove.

Lemma 4.1 [5, Lemma 3.7]. If 𝐵0 and 𝐵1 are bases of a matroid with |𝐵0 ⧵ 𝐵1| < ℵ0, then |𝐵0 ⧵
𝐵1| = |𝐵1 ⧵ 𝐵0|.
Proposition 4.2. Suppose that𝑀 = (𝐸,) is amatroid,𝐵0 and𝐵1 are bases of𝑀 and𝑋 is a finite or
cofinite subset of 𝐵0. Then there is a𝑌 ⊆ 𝐵1 such that (𝐵0 ⧵ 𝑋) ∪ 𝑌 and (𝐵1 ⧵ 𝑌) ∪ 𝑋 are both bases.

Proof. By the symmetry between𝑋 and𝐵0 ⧵ 𝑋, wemay assume that𝑋 is finite.We can also assume
without loss of generality that 𝐵0 ∩ 𝐵1 = ∅ since otherwise we consider the matroid𝑀∕(𝐵0 ∩ 𝐵1),
bases 𝐵0 ⧵ 𝐵1 and 𝐵1 ⧵ 𝐵0 and set 𝑋′ ∶= 𝑋 ⧵ 𝐵1. If 𝑌′ is as desired for the new problem, then
𝑌 ∶= 𝑌′ ∪ (𝐵0 ∩ 𝐵1 ∩ 𝑋) is suitable for the original one.
We take disjoint sets 𝑌, 𝑍 ⊆ 𝐵1 (see Figure 2) such that (𝐵0 ⧵ 𝑋) ∪ 𝑌 and 𝑋 ∪ 𝑍 are both inde-

pendent and for the set 𝑈 ∶= 𝐵1 ⧵ (𝑌 ∪ 𝑍) of uncovered edges, |𝑈| is as small as possible. The
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ON GENERALISATIONS OF THE AHARONI–POUZET BASE EXCHANGE THEOREM 1545

F IGURE 2 The symmetric exchange of X.

set 𝑍 misses at least |𝑋| edges from 𝐵1 and it misses exactly |𝑋| edges if and only if 𝑋 ∪ 𝑍 is a
base (see Lemma 4.1). In particular,𝑈must be finite. Similarly,𝑌 can cover at most |𝑋| edges and
(𝐵0 ⧵ 𝑋) ∪ 𝑌 is a base if and on if |𝑋| = |𝑌|. Therefore, it is enough to prove that𝑈 = ∅†. Suppose
for contradiction that this is not the case. By removing edges from 𝑍 and adding them to 𝑌, we
can assume that |𝑋| = |𝑌|.
Claim 4.3. There is a set 𝑆 with𝑈 ⊆ 𝑆 ⊆ 𝐵1 such that 𝑆 is spanned by both (𝑌 ∩ 𝑆) ∪ (𝐵0 ⧵ 𝑋) and
(𝑍 ∩ 𝑆) ∪ 𝑋.

Proof. We need the following classical ‘augmenting path lemma’ developed by Edmonds and
Fulkerson in [7]. A discussion of their method in the context of infinite matroids can be found,
for example, in [8, Subsection 3.1].

Lemma 4.4 (Edmonds and Fulkerson). Let {𝑀𝑖 ∶ 𝑖 < 𝜅} be a family of matroids defined on the
common edge set 𝐸, let {𝐼𝑖 ∶ 𝑖 < 𝜅} be a family of pairwise disjoint sets such that 𝐼𝑖 is independent
in𝑀𝑖 and𝑈 ∶= 𝐸 ⧵

⋃
𝑖<𝜅 𝐼𝑖 ≠ ∅. Then there is either another family {𝐽𝑖 ∶ 𝑖 < 𝜅} of pairwise disjoint

sets where 𝐽𝑖 is independent in𝑀𝑖 and an 𝑒 ∈ 𝑈 for which⋃
𝑖<𝜅

𝐽𝑖 = {𝑒} ∪
⋃
𝑖<𝜅

𝐼𝑖

or there is a set 𝑆 with𝑈 ⊆ 𝑆 ⊆ 𝐸 such that 𝐼𝑖 ∩ 𝑆 spans 𝑆 in𝑀𝑖 for every 𝑖 < 𝜅.

We apply Lemma 4.4 with the matroids𝑀∕𝑋 ↾ 𝐵1 and𝑀∕(𝐵0 ⧵ 𝑋) ↾ 𝐵1 and sets 𝑍 and 𝑌. By
the choice of 𝑌 and 𝑍, it is impossible to cover more edges; thus, the second case of Lemma 4.4
occurs which provides the desired 𝑆. □

† For finitary matroids, one can simplify the proof by applying the main result of [15] in order to choose 𝑌 and 𝑍 in such
a way that 𝑈 = ∅.
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1546 JANKÓ and JOÓ

By the properties of 𝑆, the set 𝑋 ∪ (𝑍 ∩ 𝑆) is a base of 𝑀 ↾ (𝑋 ∪ 𝑆). Since 𝑆 is independent in
𝑀, there is some 𝑋′ ⊆ 𝑋 such that 𝑋′ ∪ 𝑆 is also a base of 𝑀 ↾ (𝑋 ∪ 𝑆). Lemma 4.1 applied to
𝑀 ↾ (𝑋 ∪ 𝑆) with these two bases and |𝑋| = |𝑌| ensure that

||𝑋′|| = |𝑋| − |𝑌 ∩ 𝑆| − |𝑈| = |𝑌 ⧵ 𝑆| − |𝑈| < |𝑌 ⧵ 𝑆|.
Since (𝑌 ∩ 𝑆) ∪ (𝐵0 ⧵ 𝑋) spans 𝑆 and 𝑋′ ∪ 𝑆 spans 𝑋 ∪ 𝑆, the set (𝑌 ∩ 𝑆) ∪ (𝐵0 ⧵ 𝑋) ∪ 𝑋′ spans

𝑋 and therefore spans 𝐵0 as well, and thus contains a base. But it is ‘too small’ to contain a base
according to Lemma 4.1 because 𝐵0 ⧵ 𝑋 needs at least |𝑋| new edges to become a base and

|𝑌 ∩ 𝑆| + ||𝑋′|| < |𝑌 ∩ 𝑆| + |𝑌 ⧵ 𝑆| = |𝑌| = |𝑋|. □

We prove a slightly stronger statement than Theorem 1.4 because we will need it in the proof
of Theorem 1.5.

Theorem4.5. Suppose that𝑀 = (𝐸,) is a finitarymatroid,𝐵0 and𝐵1 are bases and𝐵0 =
⋃
𝑖<𝜅 𝑋𝑖

is a partition where all the sets 𝑋𝑖 are finite. Then there is a partition 𝐵1 =
⋃
𝑖<𝜅 𝑌𝑖 and a bijection

𝜎 ∶ 𝜅 → 𝜅 such that (𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 and (𝐵0 ⧵
⋃
𝑖⩽𝑗<𝜅 𝑋𝜎(𝑗)) ∪

⋃
𝑖⩽𝑗<𝜅 𝑌𝑗 are bases for every 𝑖 < 𝜅.

For 𝜅 ⩽ 𝜔, the 𝜎 can be chosen to be the identity.

Proof. For 𝜅 < 𝜔, the conditions imply that 𝐸 is finite, and hence, the statement is (equivalent
to) [14, Theorem 1.1.]. Suppose first that 𝜅 = 𝜔. Assume that the sets 𝑌𝑖 are already defined for
𝑖 < 𝑛 for some 𝑛 < 𝜔 such that for every 𝑖 < 𝑛, the sets (𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 and (𝐵0 ⧵

⋃
𝑖⩽𝑗<𝜔 𝑋𝑗) ∪ (𝐵1 ⧵⋃

𝑗<𝑖 𝑌𝑗) are bases. We apply Proposition 4.2 with the matroid 𝑀∕
⋃
𝑖<𝑛 𝑋𝑖 , bases 𝐵0 ⧵

⋃
𝑖<𝑛 𝑋𝑖

and 𝐵1 ⧵
⋃
𝑖<𝑛 𝑌𝑖 , and set 𝑋𝑛 to obtain 𝑌𝑛. The recursion is done. Since 𝑌𝑛 ⊆ 𝐵1 ⧵

⋃
𝑖<𝑛 𝑌𝑖 for

every 𝑛 < 𝜔, the sets𝑌𝑖 are pairwise disjoint. It follows by induction via Proposition 4.2 that (𝐵0 ⧵
𝑋𝑖) ∪ 𝑌𝑖 and (𝐵0 ⧵

⋃
𝑖⩽𝑗<𝜔 𝑋𝑗) ∪ (𝐵1 ⧵

⋃
𝑗<𝑖 𝑌𝑗) are bases for every 𝑖 < 𝜔. In order to show that

𝐵1 =
⋃
𝑖<𝜔 𝑌𝑖 , let 𝑒 ∈ 𝐵1 be arbitrary. Since 𝐶(𝑒, 𝐵0) is finite, there is an 𝑖 < 𝜔 that 𝐶(𝑒, 𝐵0) − 𝑒 ⊆⋃

𝑗<𝑖 𝑋𝑗 . But then we must have 𝑒 ∈
⋃
𝑗<𝑖 𝑌𝑗 because (𝐵0 ⧵

⋃
𝑖⩽𝑗<𝜔 𝑋𝑗) ∪ (𝐵1 ⧵

⋃
𝑗<𝑖 𝑌𝑗) is a base.

Therefore 𝐵1 ⧵
⋃
𝑗<𝑖 𝑌𝑗 =

⋃
𝑖⩽𝑗<𝜔 𝑌𝑗 which completes the proof of the case 𝜅 = 𝜔.

Suppose that 𝜅 > 𝜔. We reduce this to the countable case by the following technical lemma. Let
us state the lemma in a slightly more general form than it is actually needed (it does not change
the proof and having a reference in more general form could be helpful).

Lemma 4.6. Assume that 𝑀 = (𝐸,) is a matroid without uncountable circuits, 𝐵0 and 𝐵1 are
bases of𝑀 with ℵ0 < |𝐵0| =∶ 𝜅 and 𝐵0 = ⋃

𝑖<𝜅 𝑋𝑖 is a partition where each 𝑋𝑖 is countable. Then
there is a family {𝐵𝛼

𝑗
∶ 𝑗 ∈ {0, 1}, 𝛼 < 𝜅} such that

(1) 𝐵0
0
= 𝐵0

1
= ∅;

(2)
⋃
𝛼<𝜅 𝐵

𝛼
𝑗
= 𝐵𝑗 for 𝑗 ∈ {0, 1};

(3) 𝐵𝛼
𝑗
⊆ 𝐵𝛼+1

𝑗
with |𝐵𝛼+1

𝑗
⧵ 𝐵𝛼
𝑗
| = ℵ0 for every 𝛼 < 𝜅 and 𝑗 ∈ {0, 1};

(4) for a limit ordinal 𝛼 < 𝜅 and 𝑗 ∈ {0, 1} we have 𝐵𝛼
𝑗
=
⋃
𝛽<𝛼 𝐵

𝛽

𝑗
;

(5) 𝐵𝛼
0
and 𝐵𝛼

1
span each other in𝑀 for every 𝛼;

(6) whenever 𝐵𝛼
0
∩ 𝑋𝑖 ≠ ∅ for some 𝛼, 𝑖 < 𝜅, then 𝑋𝑖 ⊆ 𝐵𝛼0 .

Proof. The proof is a straightforward transfinite recursion (or alternatively a basic application of a
chain of elementary submodels). Suppose that 𝐵𝛼

0
and 𝐵𝛼

1
are already defined. We set 𝐵𝛼,0

𝑗
∶= 𝐵𝛼

𝑗
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ON GENERALISATIONS OF THE AHARONI–POUZET BASE EXCHANGE THEOREM 1547

for 𝑗 ∈ {0, 1} and let 𝐵𝛼,1
0
∶= 𝐵𝛼

0
∪ 𝑋𝑖 for the smallest 𝑖 with 𝐵𝛼0 ∩ 𝑋𝑖 = ∅. If 𝐵

𝛼,𝑛+1
0

and 𝐵𝛼,𝑛
1

are
defined for some 𝑛 < 𝜔, then

𝐵𝛼,𝑛+1
1

∶= 𝐵𝛼,𝑛
1
∪
⋃
{𝐶(𝑒, 𝐵1) − 𝑒 ∶ 𝑒 ∈ 𝐵

𝛼,𝑛+1
0

⧵ 𝐵𝛼,𝑛
0
},

𝐵𝛼,𝑛+2
0

∶= 𝐵𝛼,𝑛+1
0

∪
⋃
{𝑋𝑖 ∶ (∃𝑒 ∈ 𝐵

𝛼,𝑛+1
1

⧵ 𝐵𝛼,𝑛
1
)(𝐶(𝑒, 𝐵0) ∩ 𝑋𝑖 ≠ ∅)}.

It is easy to check that 𝐵𝛼+1
𝑗
∶=

⋃
𝑛<𝜔 𝐵

𝛼,𝑛
𝑗

for 𝑗 ∈ {0, 1} are suitable. Since limit steps obviously
preserve all the conditions, we are done. □

Let 𝐵𝛼
𝑗
for 𝑗 ∈ {0, 1} and 𝛼 < 𝜅 as in Lemma 4.6. Properties (3) and (6) guarantee that for every

𝛼 < 𝜅, the set 𝐵𝛼+1
0
⧵ 𝐵𝛼
0
is the union of countably infinitely many𝑋𝑖 . Let 𝜎𝛼 be an𝜔-type enumer-

ation of the sets 𝑋𝑖 that are contained in 𝐵𝛼+10 ⧵ 𝐵𝛼
0
. We choose 𝜎 to be the concatenation of the

sequences 𝜎𝛼. Properties (3) and (5) guarantee that 𝐵0,𝛼 ∶= 𝐵𝛼+10 ⧵ 𝐵𝛼
0
and 𝐵1,𝛼 ∶= 𝐵𝛼+11 ⧵ 𝐵𝛼

1
are

bases of𝑀𝛼 ∶= 𝑀 ↾ (𝐵𝛼+10 ∪ 𝐵𝛼+1
1
)∕𝐵𝛼

0
. For every 𝛼 < 𝜅, we apply the already proved countable

case with matroid𝑀𝛼, bases 𝐵𝛼0 and 𝐵
𝛼
1
and partition 𝐵0,𝛼 =

⋃
𝑛<𝜔 𝑋𝜎𝛼(𝑛). Let 𝐵1,𝛼 =

⋃
𝑛<𝜔 𝑌𝛼,𝑛

be the resulting partition. We shall prove that letting 𝑌𝜔𝛼+𝑛 ∶= 𝑌𝛼,𝑛 results in a desired partition
of 𝐵1. The sets 𝐵1,𝛼 for 𝛼 < 𝜅 form a partition of 𝐵1 by the properties (1)–(4). The sets 𝑌𝛼,𝑛 for
𝑛 < 𝜔 partition 𝐵1,𝛼 by construction. Thus, the sets 𝑌𝑖 for 𝑖 < 𝜅 partition 𝐵1. Let 𝜔𝛼 + 𝑛 < 𝜅 be
arbitrary. By construction,

(𝐵0,𝛼 ⧵ 𝑋𝜎(𝜔𝛼+𝑛)) ∪ 𝑌𝜔𝛼+𝑛 and

[(
𝐵0,𝛼 ⧵

⋃
𝑛⩽𝑚<𝜔

𝑋𝜎(𝜔𝛼+𝑚)

)]
∪

⋃
𝑛⩽𝑚<𝜔

𝑌𝜔𝛼+𝑚

are bases of𝑀𝛼. But then their respective union with 𝐵𝛼0 results in bases of𝑀 ↾ (𝐵
𝛼+1
0
∪ 𝐵𝛼+1

1
). By

property (5), such bases can be extended to bases of𝑀 by adding any of𝐵0 ⧵ 𝐵𝛼+10 and𝐵1 ⧵ 𝐵𝛼+11 =⋃
𝜔(𝛼+1)⩽𝛽<𝜅 𝑌𝛽 . Thus, the desired exchange properties hold. □

From the proof above, it is clear that Proposition 4.2 has the following extension.

Corollary 4.7. Suppose that𝑀 = (𝐸,) is amatroid,𝐵0 and𝐵1 are bases, 𝑛 < 𝜔 and𝐵0 =
⋃
𝑖⩽𝑛 𝑋𝑖

is a partition where all but at most one𝑋𝑖 are finite. Then there is a partition 𝐵1 =
⋃
𝑖⩽𝑛 𝑌𝑖 such that

(𝐵0 ⧵ 𝑋𝑖) ∪ 𝑌𝑖 and (𝐵0 ⧵
⋃
𝑖⩽𝑗⩽𝑛 𝑋𝑗) ∪

⋃
𝑖⩽𝑗⩽𝑛 𝑌𝑗 are bases of𝑀 for each 𝑖 ⩽ 𝑛.

4.2 Exchanging all finite subsets of a base

In this subsection, we prove another generalisation of [1, Theorem2.1], namely, the extension of a
theorem due to Donald and Tobey (see [6, Theorem 1]) to finitary matroids. We repeat it here for
convenience.

Theorem 1.5. Suppose that𝑀 = (𝐸,) is a finitary matroid and 𝐵0 and 𝐵1 are bases of𝑀. Then
there is a bijection 𝐹 ∶ [𝐵0]<ℵ0 → [𝐵1]<ℵ0 such that (𝐵0 ⧵ 𝐼) ∪ 𝐹(𝐼) is a base for every 𝐼 ∈ [𝐵0]<ℵ0 .

Proof. We will make use of the following special case of Theorem 4.5 where the partition consists
of singletons.
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1548 JANKÓ and JOÓ

Corollary 4.8. Assume that𝑀 = (𝐸,) is a finitary matroid and 𝐵0 and 𝐵1 are bases. Then there
are enumerations𝐵0 = {𝑒𝛼 ∶ 𝛼 < 𝜅} and𝐵1 = {𝑓𝛼 ∶ 𝛼 < 𝜅} such that𝐵0 − 𝑒𝛼 + 𝑓𝛼 and (𝐵0 ⧵ {𝑒𝛽 ∶
𝛼 ⩽ 𝛽 < 𝜅}) ∪ {𝑓𝛽 ∶ 𝛼 ⩽ 𝛽 < 𝜅} are bases for every 𝛼 < 𝜅.

It is enough to show that for every 𝑘 < 𝜔, there is a bijection 𝐹𝑘 ∶ [𝐵0]𝑘 → [𝐵1]𝑘 for which
(𝐵0 ⧵ 𝐼) ∪ 𝐹𝑘(𝐼) is a base for every 𝐼 ∈ [𝐵0]𝑘 because then 𝐹 ∶=

⋃
𝑘<𝜔 𝐹𝑘 is suitable. We define

𝐹0 ∶= ∅. Suppose that we already know for some 𝑘 and every𝑀,𝐵0 and 𝐵1 that such a bijection
𝐹𝑘 = 𝐹𝑘,𝑀,𝐵0,𝐵1 exists. Let 𝑀,𝐵0 and 𝐵1 be fixed. We also fix enumerations as in Corollary 4.8
and let us well-order 𝐵0 and 𝐵1 according to these enumerations. In order to define a desired
𝐹𝑘+1, it is enough to give for every 𝛼 < 𝜅 a bijection 𝐹𝑘+1,𝛼 between the 𝑘-subsets of 𝐵0 with the
smallest edge 𝑒𝛼 and the 𝑘-subsets of 𝐵1 with the smallest edge 𝑓𝛼. Indeed, if this is done, then
𝐹𝑘+1 ∶=

⋃
𝛼<𝜅 𝐹𝑘+1,𝛼 is appropriate. Corollary 4.8 guarantees that 𝐵0,𝛼 ∶= {𝑒𝛽 ∶ 𝛼 < 𝛽 < 𝜅} and

𝐵1,𝛼 ∶= {𝑓𝛽 ∶ 𝛼 < 𝛽 < 𝜅} are bases in 𝑀𝛼 ∶= 𝑀∕({𝑒𝛽 ∶ 𝛽 < 𝛼} ∪ {𝑓𝛼}). Let 𝐹′𝑘+1,𝛼 be what we
get by applying the induction hypothesis for 𝑘 with𝑀𝛼, 𝐵0,𝛼 and 𝐵1,𝛼. Then Corollary 4.8 and the
induction hypothesis ensure that defining

𝐹𝑘+1,𝛼(𝐼) ∶= 𝐹
′
𝑘+1,𝛼

(𝐼 − 𝑒𝛼) + 𝑓𝛼

is suitable. □

5 OPEN PROBLEMS

Our positive results (Theorems 1.4 and 1.5) are about finitarymatroids. Their extension to arbitrary
matroids cannot be provable because the equicardinality of bases is independent of ZFC and the
statements fail when |𝐵0| ≠ |𝐵1|. Even so, they might be true for other important matroid classes.
A matroid is called cofinitary if its dual is finitary and it is tame if the intersection of any circuit
with any cocircuit is finite.

Question 5.1. Do Theorems 1.4 and 1.5 remain true for matroids having only countable cir-
cuits? Do they hold for cofinitary or even for tame matroids? Are they consistently true for
every matroid?

One can obtain equivalent forms of [14, Theorem 1.1] (see in the Introduction) by reversing the
enumeration of the partition or phrasing it from the perspective of the dual matroid. Since the
reverse of an infinite well-order is no longer a well-order and the dual of a finitary matroid may
fail to be finitary, these lead to new problems in the infinite case.

Question 5.2. Suppose that 𝑀 = (𝐸,) is a finitary matroid, 𝐵0 and 𝐵1 are bases and 𝐵0 =⋃
𝑛<𝜔 𝑋𝑛 is a partition where all the sets 𝑋𝑛 are finite. Is there always a partition 𝐵1 =

⋃
𝑛<𝜔 𝑌𝑛

such that (𝐵0 ⧵ 𝑋𝑛) ∪ 𝑌𝑛 and (𝐵0 ⧵
⋃
𝑚⩽𝑛 𝑋𝑚) ∪

⋃
𝑚⩽𝑛 𝑌𝑚 are bases for every 𝑛 < 𝜔?

Question 5.3. Suppose that 𝑀 = (𝐸,) is a finitary matroid, 𝐵0 and 𝐵1 are bases and 𝐵1 =⋃
𝑛<𝜔 𝑌𝑛 is a partition where all the sets 𝑌𝑛 are finite. Is there always a partition 𝐵0 =

⋃
𝑛<𝜔 𝑋𝑛

such that (𝐵0 ⧵ 𝑋𝑛) ∪ 𝑌𝑛 and (𝐵0 ⧵
⋃
𝑚⩽𝑛 𝑋𝑚) ∪

⋃
𝑚⩽𝑛 𝑌𝑚 are bases for every 𝑛 < 𝜔?

Question 5.4. Is it true for every finitary matroid 𝑀 and bases 𝐵0 and 𝐵1 that there exists a
bijection 𝐹 ∶ (𝐵0) → (𝐵1) such that (𝐵0 ⧵ 𝐼) ∪ 𝐹(𝐼) is a base for every 𝐼 ⊆ 𝐵0?
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