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Abstract
We consider a group of receivers who share a common prior on a finite state space
and who observe private correlated messages that are contingent on the true state of
the world. Our focus lies on the beliefs of receivers induced via the signal chosen by
the sender and we provide a comprehensive analysis of the inducible distributions of
posterior beliefs. Classifying signals as minimal, individually minimal, and language-
independent, we show that any inducible distribution can be induced by a language-
independent signal. We investigate the role of the different classes of signals for the
amount of higher order information that is revealed to receivers. The least infor-
mative signals that induce a fixed distribution over posterior belief profiles lie in the
relative interior of the set of all language-independent signals inducing that
distribution.

Keywords Game theory · Information design · Inducible distributions ·
Informativeness

1 Introduction

In any economic model which involves a group of agents whose decisions depend on
their posterior beliefs, one of the essential questions is “what distributions over
posterior beliefs of agents can be induced?“ In their seminal paper, Kamenica and
Gentzkow (2011) consider communication between a sender and a receiver who
share a common prior and show that the only restriction on the set of inducible
distributions over posterior belief profiles is Bayes plausibility: the expected
posterior belief is equal to the prior.1 It follows from their insight that Bayes
plausibility and identical beliefs are necessary and sufficient in the case of multiple
receivers and public communication, that is, when messages are perfectly correlated.
Yet, in this case the set of inducible distributions over posteriors is very limited since
all receivers have the same ex post belief. In the present paper we are interested in
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1 This is also known as the martingale property.
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private communication, which, in contrast, enables the sender to achieve a richer
belief space. It is straightforward to verify that Bayes plausibility is not sufficient to
ensure inducibility in such setups; this raises the first question we tackle in the paper:
providing a characterization of the set of inducible posterior beliefs under private
communication.

Another aspect which is important for both the sender and receivers is the
informativeness of a signal. In the original information design setup introduced by
Aumann et al. (1995), the authors were interested in communication that reveals as
little private information as possible. In our paper, a signal realization does not only
reveal information about the true state of the world: as there are multiple receivers
who each obtain a private message, it also induces information partitions that
determine what any receiver knows about another receiver’s knowledge of the true
state and the signal realization. Thus, we compare the informativeness of signals in
terms of “knowledge” in the sense of Hintikka (1962). To be more precise, we
compare information sets induced by a signal, which are similar to elements of
information partitions in Aumann (1976). The second main question we answer is:
what types of signals are the least informative? We provide a characterization for
least informative signals that induce a given posterior distribution.

We consider a sender who commits to a signal that sends private correlated
messages to the receivers. Receivers know the joint distribution of message profiles,
but they only observe their own private message from the message profile realization.
We first show that there are posterior belief profiles, which the sender cannot achieve
with positive probability. More precisely, for a given posterior belief profile, there
exists a signal that induces a distribution which puts positive weight on it if and only
if there exists a state which is deemed possible by all receivers according to this
belief profile. As an example, consider an operative who follows Machiavelli’s
advice divide et impera and, thus, wants to create political unrest in a foreign country
by implementing a very heterogeneous belief profile.2 Suppose that there are only
two states, say X and Y. Then it is impossible for the operative to implement a
distribution that puts positive weight on a posterior belief profile in which one
receiver believes the state is X with probability 1 and another receiver believes that
the state is Y with probability 1. At the same time, a posterior belief profile in which
the first receiver’s belief that the state is X is equal to 1, and the second receiver’s
belief is arbitrarily close to 0 can be achieved with positive probability.

We next define particular classes of signals. We first consider minimal signals
under which distinct message profiles lead to distinct posterior belief profiles. While
this ensures that no two message profiles implement the same posterior belief profile,
there might still be individual receivers for whom different messages lead to the same
posterior. If for each receiver every posterior is induced by a unique message, the
signal is called individually minimal. If, additionally, the sent messages are
themselves posteriors such that each message induces itself, we call the signals
language-independent (LIS). Here, a sender simply tells the receivers what belief
they should have, and the messages are sent with probabilities such that receivers will

2 This is a well-known example, e.g. Arieli et al. (2021) consider a sender who wishes to maximize the
distance between two receivers’ beliefs.
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believe the message. We show that restricting attention to language-independent
signals is without loss of generality, that is, if a posterior distribution can be induced,
it can be induced by an LIS.

As mentioned before, in the presence of multiple receivers Bayes plausibility is
necessary but not sufficient for a distribution to be inducible. We characterize the set
of inducible distributions of posteriors by showing that a Bayes-plausible distribution
is inducible if and only if there exists a non-negative matrix p with dimensions equal
to the number of states and the number of posterior belief profiles, respectively,
which satisfies a particular system of linear equations. In particular, the set of
matrices that satisfy these equations is a convex polytope, which implies that the set
of language-independent signals that induce a given distribution over posterior belief
profiles is a convex polytope as well.

Once we determine whether a distribution of posterior beliefs is inducible, we
explore the informativeness of different signals which induce it. Since messages can
be correlated, the message a receiver obtains reveals not only information about the
true state of the world, but also about the information that other receivers have. Let us
return to our operative who wants to create chaos in a foreign country. If one receiver
knew that another receiver knew whether the true state is X or Y, he might decide not
to engage in an argument at all. Thus, our operative might want to reveal as little
information as possible to any receiver about what other receivers know. As an
example suppose that before the operative engages, two receivers believe that either
state might be true with probability 1/2. Suppose the operative engages in private
communication with both and sends message profiles as follows.

p (v, x) (v, y) (w, w)

X 1
2

0 1
2

Y 0 1
2

1
2

The first and second rows of the table reflect the probabilities by which the
message profiles are sent conditional on the state being X and Y, respectively. In this
case, receiver 2 knows that the true state is X if he observes x, he knows the true state
is Y if he observes y, and he learns nothing if he observes w. Receiver 1 never learns
anything about the true state. If she observes v, however, she knows that receiver 2
knows the true state. If the sender would replace v by w, she would not learn anything
at all.

This example illustrates that a receiver’s knowledge about the true state and the
message profile realization can vary across signals, even if the latter induce identical
distributions over posterior belief profiles. In particular, a receiver may have different
knowledge about another receiver’s knowledge about the true state and the message
profile realization. It is then natural to ask what types of signals that induce the same
distribution over posteriors restrict this knowledge the most. In the example above,
different messages might lead to the same posterior belief but to different higher
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order knowledge. By employing individually minimal or even language-independent
signals we could avoid this issue. But even then: not all language-independent
signals reveal the same higher order knowledge. To make this more precise, we
define information correspondences that describe what receivers know about the state
and the posterior belief profile (instead of the message profile realization), where we
call a tuple of a state and a posterior belief profile a posterior history. A signal is
more informative than another if for every receiver, every state, and every message
profile that can occur in this state, the set of posterior histories that the receiver deems
possible is smaller under the former than under the latter. We prove that for any
inducible distribution over posterior belief profiles the least informative signals that
induce it lie in the relative interior of the set of all language-independent signals that
induce it.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
literature. In Sect. 3, we provide preliminary definitions and results. We then
characterize sets of belief profiles that can be a subset of the support of an inducible
distribution over posterior belief profiles in Sect. 4. In Sect. 5, we introduce minimal
and individually minimal signals, and in Sect. 6, we turn to language-independent
signals. In Sect. 7, we characterize inducible distributions of posteriors and provide
several implications. Section 8 introduces information and posterior correspon-
dences, and in Sect. 9, we explore the informativeness of signals.

2 Related literature

Closely related to our analysis of inducible distributions of posteriors is Arieli et al.
(2021). They consider multiple receivers who share a common prior belief on a
binary state space and study joint posterior belief distributions. They first show that
for the case of two receivers a quantitative version of the Agreement Theorem of
Aumann (1976) holds; beliefs of receivers are approximately equal when they are
approximately common knowledge. For more than two receivers, they relate the
feasibility condition to the No Trade Theorem of Milgrom and Stokey (1982) and
provide a characterization of feasible joint posteriors. These characterizations are
then applied to study independent joint posterior belief distributions. While we pose
the same question as Arieli et al. (2021), we obtain a completely different
characterization while allowing for an arbitrary finite state space. Morris (2020)
studies a similar problem as Arieli et al. (2021) and provides an alternative proof for
one of their main results while delivering a many-state generalization. Another
related paper is Ziegler (2020), who also provides a characterization of feasible joint
posteriors. Arieli et al. (2021) show that the necessary and sufficient condition
provided by Ziegler (2020) becomes insufficient if the support of a player’s posterior
beliefs contains more than two points. In another related paper, He et al. (2022)
consider the feasibility of distributions under private information structures and
further analyze optimal communication under the constraint of not revealing any
information about a variable correlated to the true state of the world.

Levy et al. (2021) also study the feasibility of joint distributions of posterior belief
profiles and provide a necessary condition for which a distribution is feasible. They
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also show that the convex combination of a symmetric joint distribution and a fully
correlated distribution with the same marginal distribution is inducible when the
weight on the fully correlated distribution is sufficiently high. Finally, they
demonstrate that a joint distribution satisfying their necessary condition becomes
feasible when each belief profile in the support is moved sufficiently far in the
direction of the prior.

There is literature in mathematics which studies the extent of difference in
opinions of agents. Burdzy and Pal (2019) consider two experts who have access to
different information and show that they can give radically different estimates of the
probability of an event. In a related study, Burdzy and Pitman (2020) show that the
opinion of two agents who share the same initial view can substantially differ if they
have different sources of information, whereas Cichomski and Osekowski (2021)
provide a bound for this difference in opinions. Related to these studies, we consider
a sender who aims to drive a wedge between the beliefs of receivers by sending
correlated messages. So, while they have the same source of information, their
realizations are different from each other.

Like Ziegler (2020), Arieli et al. (2021), and Levy et al. (2021) we provide a
characterization of inducible distributions over posterior belief profiles.3Mathevet
et al. (2020) focus instead on inducible distributions over belief hierarchies. Their
characterization requires Bayes plausibility at the level of the sender and formulates
two equations to obtain the correct belief hierarchies of the receivers. A central
concept in their characterization is sender’s belief about the state given the entire
profile of belief hierarchies. Our central tool is in terms of a matrix with dimensions
given by the number of states and the number of posterior belief profiles.

While we focus on inducible distributions of posterior belief profiles, Bergemann
and Morris (2016) consider a game-theoretic setup, study the distributions of
receivers’ actions that the sender can induce, and characterize the set of Bayes
correlated equilibria of the game. An advantage of their approach is that there is no
need to make explicit use of information structures. They also develop an extension
of the classic sufficiency condition of Blackwell (1953) for the multi-player setup and
show that more information according to that criterion results in a smaller set of
Bayes correlated equilibria. A similar setup is studied by Taneva (2019), who derives
sender’s optimal information structure.

In the single-receiver case, introducing heterogeneity may render Bayes plausi-
bility insufficient for a distribution to be inducible. Alonso and Camara (2016)
consider a single receiver who does not share a common prior with the sender and
show that an additional condition is required on top of Bayes plausibility. Beauchêne
et al. (2019) also consider a single receiver, who is ambiguity averse, and a sender
who may use an ambiguous communication device. In that case they are able to show
that a modified version of Bayes plausibility holds. When there are multiple
receivers, if information is perfectly correlated, then Bayes plausibility is still the
only condition for inducibility since in this case all receivers have the same ex post

3 All these papers were developed independently from ours and vice versa and written roughly around the
same time.
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belief. The first part of Wang (2013) and Alonso and Câmara (2016) both consider
public communication and are examples of such a situation.

There is a wide literature that focuses on informativeness in the sense of Blackwell
(1953).4Rick (2013) considers an informed sender and an uninformed receiver and
shows that miscommunication expands the set of distributions of beliefs the sender
expects to induce. Gentzkow and Kamenica (2016) consider multiple senders and a
single receiver and show that the amount of revealed information increases with the
number of senders. Ichihashi (2019) considers a model of a single sender and
receiver in which a designer can restrict the most informative message profile that the
sender can generate, and he characterizes the information restriction that maximizes
the receiver’s payoff. More recently, Brooks et al. (2022) and Mathevet and Taneva
(2022) consider information hierarchies. While Brooks et al. (2022) show that one
can always construct a collection of signals that induce Blackwell-ordered
distributions such that the signals are refinement-ordered, Mathevet and Taneva
(2022) also consider incentive compatibility of information transmission. While these
papers compare the informativeness of different information structures by investi-
gating the induced distributions of posteriors (or belief hierarchies), our analysis of
informativeness follows the refinement tradition of Aumann (1976), where a source
of information is represented as a partition of some extended state space. As is
carefully explained in Green and Stokey (2022), both representations of information
structures are equivalent, though the refinement tradition is more convenient when
comparing information structures.

3 Preliminaries and notation

Let N ¼ 1; . . .; nf g be the set of receivers and let X be a finite set of states of the
world. For any set X, we denote by DðX Þ the set of probability distributions over X
with finite support.5 We assume that sender and receivers share a common prior

belief k0 2 DðXÞ.
Let Si be a non-empty set of messages sender can send to receiver i 2 N, and let

S ¼ Q
i2N Si. The elements of S are called message profiles.6 A signal is a function

p : X ! D Sð Þ that maps each x 2 X to a finite probability distribution over S. The
set of possible message profile realizations is denoted by Sp ¼
s 2 Sj 9x 2 X : pðsjxÞ[ 0f g; where pðsjxÞ denotes the probability of message

profile s conditional on the state being x. Note that Sp is finite as p �jxð Þ has finite
support for all x 2 X. Moreover, receiver i 2 N knows the joint distributions p �jxð Þ
for all x 2 X; but only observes his private message si when message profile s

4 Li (2017) considers a different criterion and measures informativeness in the sense of Ganuza and
Penalva (2010), where more informative message profiles lead to greater variability of conditional
expectations.
5 Countably infinite support might be important in some information design applications. We would like to
suggest the extension of our results to distributions with countably infinite support as an interesting
direction for future research.
6 In this paper, we are explicit about the set of messages that are available to sender. Thus, in our results
we will provide appropriate conditions on the sets Si whenever needed.
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realizes. The set of all signals with message profiles in S is denoted by PðSÞ: For
each p 2 PðSÞ, si 2 Si, and x 2 X, let

piðsijxÞ ¼
X

t2S:ti¼si

pðtjxÞ;

which is the probability that receiver i 2 N observes si given that the true state is x.
(As pð�jxÞ has finite support, this is well defined.) For each i 2 N ; define
Spi ¼ si 2 Sij 9x 2 X : piðsijxÞ[ 0f g, which is the (finite) set of messages receiver i
observes with positive probability under p.

Given a signal p 2 PðSÞ, a message profile s 2 Sp generates the posterior belief
profile kp;s 2 DðXÞn defined by

kp;si ðxÞ ¼ piðsijxÞk0ðxÞP
x02X piðsijx0Þk0ðx0Þ ; 8i 2 N ; 8x 2 X: ð1Þ

So, kp;si ðxÞ is i’s posterior belief that the true state is x upon receiving message si.
Recall that since X is finite and the sender employs finitely many messages

conditional on the realization of x 2 X, the support of a signal is finite. A signal
p 2 PðSÞ induces the distribution rp over posterior belief profiles if for all k 2
DðXÞn it holds that

rp kð Þ ¼
X

s2Sp:kp;s¼k

X
x2X

pðsjxÞk0ðxÞ: ð2Þ

In words, rpðkÞ is the ex ante probability of posterior belief profile k given
p 2 PðSÞ.7 By our assumptions made so far, the support of any inducible r is a finite
set, i.e., r 2 DðDðXÞnÞ. Given a set of message profiles S, we define the set of
inducible distributions over posterior belief profiles by

RðSÞ ¼ r 2 DðDðXÞnÞj 9p 2 PðSÞ such that rp ¼ rf g:
Observe that RðSÞ depends on the set S of message profiles that the sender can use: a
distribution r might only be inducible if S is sufficiently rich.8 This becomes relevant
in situations where the sender’s message profile space is a priori limited, for example
in case of schools who are bound to reveal information about students’ qualities
within a grading framework (Boleslavsky & Cotton, 2015), or in case of a regulator
who can reveal information about a bank’s financial situation only by a simple
pass/fail stress test (Inostroza and Pavan, 2023). Thus, we will provide necessary and
sufficient conditions on the size of S whenever appropriate.

We denote the support of r 2 D D Xð Þnð Þ by suppðrÞ: For each i 2 N and ki 2
DðXÞ; define

7 Recall that DðX Þ is defined as the set of distributions over X with finite support and note that if k is such
that there is no s with k ¼ kp;s, then the right-hand side of (2) is 0.
8 Koessler et al. (2022) adopt a similar definition for inducible distributions called splittings and employ it
to characterize Bayes–Nash equilibria of an information design game with multiple senders.
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ri kið Þ ¼
X

k02suppðrÞ:k0i¼ki

rðk0Þ: ð3Þ

That is, ri kið Þ is the ex ante probability that receiver i will have posterior belief ki.
Let r; r0 2 DðDðXÞnÞ be two distributions over posterior belief profiles and let

a 2 ½0; 1�: The convex combination r̂ ¼ arþ ð1� aÞr0 is defined by

r̂ðkÞ ¼ arðkÞ þ ð1� aÞr0ðkÞ; 8k 2 D Xð Þn:
Even in the case with a single receiver, RðSÞ need not be convex. For instance, if S
consists of two messages, then it is possible to induce r; r0 2 RðSÞ with disjoint
supports of cardinality 2. If r̂ is a strict convex combination of r and r0, then
supp r̂ð Þj j ¼ 4, so that r̂ cannot be induced with two messages only. The next result
shows that RðSÞ is convex when the message profile space is sufficiently rich.

Proposition 3.1 Fix a set of message profiles S and let r; r0 2 RðSÞ and a 2 0; 1ð Þ.
Then arþ ð1� aÞr0 2 RðSÞ if and only if Sij j � suppðriÞ [ suppðr0iÞ

�� �� for all i 2 N.

Proof Let r̂ ¼ arþ ð1� aÞr0.
If there is i 2 N such that Sij j\ suppðriÞ [ suppðr0iÞ

�� ��, then there are not sufficient
messages to implement all of i’s possible beliefs in supp r̂ið Þ.

For the other direction, let Sij j � suppðriÞ [ suppðr0iÞ
�� �� for all i 2 N . Let p; p0 2

PðSÞ be such that rp ¼ r and rp
0 ¼ r0. Since Sij j � suppðriÞ [ suppðr0iÞ

�� ��, we can

assume without loss of generality that there is s 2 S with si 2 Spi \ Sp
0

i if and only if

there are kp;s 2 suppðrÞ and kp
0;s 2 supp r0ð Þ such that kp;si ¼ kp

0;s
i .

Let p̂ ¼ apþ ð1� aÞp0. Let s 2 Sp̂ and i 2 N . Without loss of generality let
si 2 Spi . Assume first that si 62 Sp

0
i . It holds that, for every x 2 X,

kp̂;si ðxÞ ¼ p̂iðsijxÞk0ðxÞP
x02X p̂iðsijx0Þk0ðx0Þ ¼

apiðsijxÞk0ðxÞ
a
P

x02X piðsijx0Þk0ðx0Þ ¼ kp;si ðxÞ:

Assume next that si 2 Sp
0

i and observe that in this case

piðsijxÞk0ðxÞP
x02X piðsijx0Þk0ðx0Þ ¼ kp;si xð Þ ¼ kp

0;s
i xð Þ ¼ p0iðsijxÞk0ðxÞP

x02X p0iðsijx0Þk0ðx0Þ
for all x 2 X. Thus,

kp̂;si ðxÞ ¼ apiðsijxÞk0ðxÞ þ 1� að Þp0iðsijxÞk0ðxÞ
a
P

x02X piðsijx0Þk0ðx0Þ þ 1� að ÞPx02X p0iðsijx0Þk0ðx0Þ ¼ kp;si ðxÞ:

We have shown that supp r̂ð Þ ¼ suppðrÞ [ supp r0ð Þ. We now have, for every
k 2 D Xð Þn;
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r̂ðkÞ ¼ arðkÞ þ ð1� aÞr0ðkÞ
¼ a

X
s2Sp:kp;s¼k

X
x2X

pðsjxÞk0ðxÞ þ ð1� aÞ
X

s2Sp0 :k0s¼k

X
x2X

p0ðsjxÞk0ðxÞ

¼
X

s2Sp̂:k̂s¼k

X
x2X

p̂ðsjxÞk0ðxÞ:

Hence, p̂ induces r̂. h

Most of the literature considers Si an arbitrary set that contains all messages that
are necessary. The previous proposition implies that in this case the set of inducible
posteriors is convex.

A distribution over posterior belief profiles r 2 D D Xð Þnð Þ is Bayes-plausible ifX
ki2suppðriÞ

kiðxÞri kið Þ ¼ k0ðxÞ; 8i 2 N ; 8x 2 X: ð4Þ

That is, for each receiver the expected posterior belief equals his prior belief. It is a
well-known fact since Aumann et al. (1995) that Bayes plausibility (i.e., the
martingale condition) is necessary and sufficient for inducibility when there is a
single receiver, given that S is sufficiently rich. It now follows for the multiple
receiver case that every r 2 RðSÞ satisfies Bayes plausibility. We therefore obtain the
following result, which is stated for later reference and without proof.

Proposition 3.2 Let S be a set of message profiles. Every r 2 RðSÞ is Bayes-
plausible.

4 Implementing belief profiles

When a sender is interacting with a single receiver who has no private information,
Bayes plausibility of a distribution r 2 DðDðXÞÞ is necessary and sufficient for r to
belong to RðSÞ when S is sufficiently rich. In particular, for any k 2 DðXÞ there is
r 2 RðSÞ such that rðkÞ[ 0. In contrast, in the multiple receiver case it is not true
that any single posterior belief profile k 2 DðXÞn can occur with positive probability
for a suitably chosen signal. Our first proposition shows that k 2 DðXÞn can belong
to the support of some r 2 RðSÞ if and only if there is at least one state which,
according to k, is deemed possible by all receivers.

Proposition 4.1 For every i 2 N ; let Si contain at least two messages. Let
k 2 DðXÞn. There exists r 2 RðSÞ with rðkÞ[ 0 if and only if there is x 2 X such
that

Q
i2N kiðxÞ[ 0.

Proof Assume p 2 PðSÞ is such that rp ¼ r with rðkÞ[ 0: Suppose thatQ
i2N kiðxÞ ¼ 0 for all x 2 X, that is, for all x 2 X there exists ix 2 N such that

kixðxÞ ¼ 0: Let s 2 Sp be such that kp;s ¼ k: Then it holds that, for all x 2 X,
pðsjxÞ� pixðsix jxÞ ¼ 0: We find by (2) that rðkÞ ¼ 0; leading to a contradiction.
Consequently, there exists x 2 X such that

Q
i2N kiðxÞ[ 0.

For the converse, assume there exists x 2 X such that
Q

i2N kiðxÞ[ 0: For every
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i 2 N let bi ¼ maxx2XðkiðxÞ=k0ðxÞÞ be the highest ratio across states of posterior
belief to prior belief for receiver i. Let xi; yi 2 Si be two distinct messages. We define,
for every x 2 X;

qiðxijxÞ ¼
1

bi

kiðxÞ
k0ðxÞ ;

qiðyijxÞ ¼ 1� qiðxijxÞ;
qiðsijxÞ ¼ 0; 8si 2 Si n fxi; yig:

Notice that qiðxijxÞ� 1: We define p : X ! D Sð Þ by
pðsjxÞ ¼

Y
i2N

qiðsijxÞ; 8s 2 S; 8x 2 X:

It holds that p is a signal with piðsijxÞ ¼ qiðsijxÞ for every receiver i 2 N :
Let i 2 N : For every s 2 Sp with si ¼ xi; for every x 2 X; it holds that

kp;si ðxÞ ¼ piðxijxÞk0ðxÞP
x02X piðxijx0Þk0ðx0Þ ¼

1
bi

kiðxÞ
k0ðxÞ k

0ðxÞ
1
bi

P
x02X

kiðx0Þ
k0ðx0Þ k

0ðx0Þ
¼ kiðxÞP

x02X kiðx0Þ ¼ kiðxÞ:

Thus, kp;x ¼ k; where x ¼ ðx1; . . .; xnÞ.
Let x 2 X be such that kiðxÞ[ 0 for all i 2 N . Then

r kð Þ� p xjxð Þk0 xð Þ ¼ k0 xð Þ
Y
i2N

qiðxijxÞ[ 0;

which implies that k 2 suppðrpÞ. h

Note that we require Si to have at least two elements only for the “if” part of the
proof. In the case Si consists of only one message, no information is provided and the
posterior belief has to conform to the prior.

Let there be two receivers and a binary state space, say X ¼ X ; Yf g; as in our
example in the introduction. It follows from Proposition 4.1 that a posterior belief
profile k with kðX Þ ¼ ð0; 1Þ cannot result with positive probability under any signal
since k1ðX Þk2ðX Þ ¼ 0 and k1ðY Þk2ðY Þ ¼ 0. At the same time, for each e[ 0; the
posterior belief profile k with k Xð Þ ¼ e; 1ð Þ can be obtained with positive
probability.

Proposition 4.1 leads to some interesting comparisons with the Bayesian learning
literature. Allon et al. (2021) consider a model in which agents obtain information
about the true state of the world in a dynamic setting and study the evolution of
beliefs. The authors show that even when the society’s prior belief distribution is not
polarized, the prolonged learning process leads to a wedge between the agents’
beliefs; we show that the sender can create almost arbitrarily large disagreement
between receivers by one-shot communication with positive probability, even when
they have a common prior. In a related model, Mostagir and Siderius (2022) show
that a planner who wishes to manipulate the beliefs of Bayesian agents in a particular
way should target the agents who are the most polarized, i.e., whose beliefs are
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farthest away from the truth. Thus, if agents are initially in agreement, such a planner
might benefit from first creating disagreement amongst the agents as described by
Proposition 4.1 and then attempt to implement her preferred belief distribution.

We now generalize Proposition 4.1 from a single posterior belief profile to finite
sets of posterior belief profiles.

Proposition 4.2 Let R � D Xð Þn be finite. For every i 2 N ; let Si contain at least
Rij j þ 1 messages, where Ri ¼ projiðRÞ: There exists r 2 RðSÞ with R � suppðrÞ if
and only if for each k 2 R there exists x 2 X such that

Q
i2N kiðxÞ[ 0.

Proof Proposition 4.1 implies necessity. For the other direction, let

Ri ¼ k1i ; . . .; k
mi
i

� �
, let x1i ; . . .; x

mi
i ; yi

� � � Si be such that xki 6¼ x‘i ; yi for all k 6¼ ‘

and all i 2 N . Let R ¼ k1; . . .; km
� �

and define p1; . . .; pm as in the proof of

Proposition 4.1, where, for all i 2 N and all k ¼ 1; . . .;m one has kk 2 suppðrpk Þ and
Sp

k

i � xki ; yi
� �

. Let a1; . . .; am [ 0 with
Pm

k¼1 a
k ¼ 1, and let r ¼ Pm

k¼1 a
krp

k
. Since

Sij j �mi þ 1 ¼ jSm
k¼1 suppðrp

k

i Þj, iterative application of Proposition 3.1 implies

that r 2 RðSÞ. Moreover, by construction, rp kk
� � ¼ akrp

k
kk
� �

[ 0. h

Observe that Proposition 4.2 sharpens an earlier result in Sobel (2014). There the
author showed that collections of strictly positive posterior belief profiles can be
implemented. Our proposition characterizes the set of posterior belief profiles that
can be implemented: in particular, we allow belief profiles that assign zero
probability to some states as long as there is no such disagreement as in Proposition
4.1, i.e., as long as for each posterior belief profile there exists at least one state that is
deemed possible by all receivers.

At this point we have identified sets that can be subsets of the support of an
inducible distribution over posterior belief profiles. In Sect. 7 we characterize all
inducible distributions over posterior belief profiles and the sets that can be the
support of such distributions.

5 Minimal and individually minimal signals

A large part of the literature is interested in “straightforward” signals (Kamenica &
Gentzkow, 2011) that send recommendations to receivers about what action to take.
In the present paper, we do not specify sets of feasible actions for receivers, so that
sending recommendations has no meaning. Nevertheless, some signals are easier to
handle than others and this and the next section will introduce some important
classes.

Given a signal p 2 PðSÞ and s; s0 2 Sp with s 6¼ s0, it is possible that kp;s ¼ kp;s
0
.

That is, two distinct message profiles can generate the same posterior belief profile.
This motivates the following definition.

Definition 5.1 Let S be a set of message profiles. A signal p 2 PðSÞ is minimal if
jSpj ¼ jsuppðrpÞj. The set of minimal signals is denoted by PmðSÞ.
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Under a minimal signal, different message profiles lead to different posterior belief
profiles. We give an illustration of a minimal signal in the following example.

Example 5.2 Let N ¼ 1; 2f g, X ¼ X ; Yf g, S1 ¼ v;wf g, and S2 ¼ w; x; yf g.
Assume that agents have a common prior k0ðX Þ ¼ 1=2. Recall the p in our
illustrative example:

p (v, x) (v, y) (w, w)

X 1
2

0 1
2

Y 0 1
2

1
2

We have Sp ¼ ðv; xÞ; ðv; yÞ; ðw;wÞf g. Irrespective of the message received,
receiver 1 gathers no information about the state: he has posterior beliefs

kp;ðv;xÞ1 ðX Þ ¼ kp;ðv;yÞ1 ðX Þ ¼ kp;ðw;wÞ1 ðX Þ ¼ 1=2: For receiver 2, we have

kp;ðv;xÞ2 ðX Þ ¼ 1, kp;ðv;yÞ2 ðX Þ ¼ 0, and kp;ðw;wÞ2 ðX Þ ¼ 1=2. It follows that

suppðrpÞ ¼ ð1=2; 1=2Þ; ð1; 0Þð Þ; ð1=2; 1=2Þ; ð0; 1Þð Þ; ð1=2; 1=2Þ; ð1=2; 1=2Þð Þf g:
Since jSpj ¼ jsuppðrpÞj, p is minimal. M

In case of a single receiver, it is sufficient to have a bijection between Sp and
suppðrpÞ to ensure that each message leads to a different posterior, that is, to ensure
that the signal employs a minimal number of messages. If there are multiple
receivers, however, the existence of such a bijection does not guarantee that the
number of messages for each receiver is indeed minimal. For instance, the two
messages v, w in Example 5.2 both lead to the posterior belief k1ðX Þ ¼ 1=2 for
receiver 1.

Definition 5.3 Let S be a set of message profiles. A signal p 2 PðSÞ is i-minimal if
it holds that jSpi j ¼ jsuppðrpi Þj. If p is i-minimal for all i 2 N , then we call p
individually minimal. The set of all individually minimal signals is denoted byPiðSÞ.

Under an individually minimal signal for each receiver any two different messages
must lead to two different posterior beliefs. Hence, the number of different posterior
beliefs a receiver can have equals the cardinality of Spi .

Example 5.4 Recall the minimal signal p in Example 5.2. Receiver 1 has the same

posterior belief after observing v and observing w, i.e., kp;ðv;xÞ1 ðX Þ ¼ kp;ðw;wÞ1 ðX Þ.
Thus, p is not individually minimal. Consider the signal p0 defined by:
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p0 (w, x) (w, y) (w, w)

X 1
2

0 1
2

Y 0 1
2

1
2

We have Sp
0 ¼ ðw; xÞ; ðw; yÞ; ðw;wÞf g and accordingly we can write the support

of rp
0
as

suppðrp0 Þ ¼ ð1=2; 1=2Þ; ð1; 0Þð Þ; ð1=2; 1=2Þ; ð0; 1Þð Þ; ð1=2; 1=2Þ; ð1=2; 1=2Þð Þf g:
Note that suppðrpÞ ¼ suppðrp0 Þ. Since for all s; t 2 Sp

0
and each i 2 N we have

kp
0;s

i ¼ kp
0;t

i if and only if si ¼ ti, p0 is individually minimal. M
For any signal p 2 PðSÞ, jSpi j ¼ jsuppðrpi Þj for all i 2 N guarantees that a

minimal number of messages is employed and implies that the number of employed
message profiles is minimal as well. Thus, the following lemma does not come as a
surprise.

Lemma 5.5 Let S be a set of message profiles. It holds that PiðSÞ � PmðSÞ.
Proof Let p 2 PiðSÞ. For each i 2 N there exists a bijection /i : S

p
i ! supp rpi

� �
since p is individually minimal. In particular, for every s 2 Sp; we have kp;s ¼
/i sið Þð Þi2N so that there is a bijection between Sp and supp rpð Þ. Hence,
jSpj ¼ jsuppðrpÞj, that is, p is minimal. h

We close this section by claiming that any distribution in RðSÞ can be induced by
an individually minimal signal. We do not provide a proof of Theorem 5.6 here, as it
will follow easily from later results. The proof can be found after Corollary 7.3.

Theorem 5.6 Let S be a set of message profiles. If r 2 RðSÞ; then there exists
p 2 PiðSÞ such that rp ¼ r:

6 Language-independent signals

The same distribution over posterior belief profiles can be induced by various signals
with potentially disjoint message profile spaces. We now proceed to show that there
is a canonical way to describe signals. The principal idea is that the sender sends to
each receiver the belief that he should have after observing the message.

Definition 6.1 Let S be a set of message profiles. A signal p 2 PðSÞ is a language-
independent signal (LIS) if Sp � DðXÞn and, for all s 2 Sp; kp;s ¼ s: The set of
language-independent signals is denoted by P‘ðSÞ.
Example 6.2 Let N ¼ 1; 2f g, X ¼ X ; Yf g, and k0ðX Þ ¼ 1=3. The signal p 2 PðSÞ
is defined as follows:
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p (x, x) (x, y) (y, x) (y, y)

X 1
4

1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

For any i 2 N, we have kp;ðx;xÞi ðX Þ ¼ 1=2 and kp;ðy;yÞi ðX Þ ¼ 1=4. Hence, p is in fact
individually minimal. The support of rp is equal to

suppðrpÞ ¼ kp;ðx;xÞ; kp;ðx;yÞ; kp;ðy;xÞ; kp;ðy;yÞ
n o

¼ 1

2
;
1

2

� �
;

1

2
;
1

2

� �� �
;

1

2
;
1

2

� �
;

1

4
;
3

4

� �� �
;

1

4
;
3

4

� �
;

1

2
;
1

2

� �� �
;

1

4
;
3

4

� �
;

1

4
;
3

4

� �� �	 

:

It holds that rp kp;ðx;xÞ
� �

¼ rp kp;ðx;yÞ
� �

¼ rp kp;ðy;xÞ
� �

¼ 1=6 and

rp kp;ðy;yÞ
� �

¼ 1=2.

The signal p0 2 PðSÞ is obtained by switching messages x and y, so

p0 (x, x) (x, y) (y, x) (y, y)

X 1
4

1
4

1
4

1
4

Y 5
8

1
8

1
8

1
8

It is immediate that rp ¼ rp
0
:

Next, consider the signal p̂ that corresponds to the convex combination of p and p0

with equal weights: p̂ ¼ 1=2pþ 1=2p0: We have that

p̂ (x, x) (x, y) (y, x) (y, y)

X 1
4

1
4

1
4

1
4

Y 3
8

1
8

1
8

3
8

Perhaps surprisingly, it holds that rp̂ 6¼ rp ¼ rp
0
.9 In fact, as can be verified easily,

rp̂ is the distribution that assigns probability 1 to the posterior belief profile k0; k0
� �

.
It follows that the set of signals which induce a particular distribution is not convex.

9 Observe that this is no contradiction to the proof of Proposition 3.1: there we used that any fixed message
induces under every signal where it is sent with positive probability the same posterior. Here, message x
induces posterior 1=2; 1=2ð Þ under p but 1=4; 3=4ð Þ under p0.
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Observe that p̂ is not individually minimal, which implies that PiðSÞ is also not
convex.

The signals p‘; p0‘; and p̂‘ are obtained by relabeling the message profiles sent by
p; p0; and p̂; respectively, with the posterior belief profiles they lead to. We have that
p‘ ¼ p0‘: Both are equal to

p‘;p0‘ ð12 ; 12Þ; ð12 ; 12Þ
� � ð12 ; 12Þ; ð14 ; 34Þ

� � ð14 ; 34Þ; ð12 ; 12Þ
� � ð14 ; 34Þ; ð14 ; 34Þ

� �

X 1
4

1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

Each receiver has posterior belief (1/2, 1/2) upon observing message (1/2, 1/2) and
has posterior belief (1/4, 3/4) upon observing message (1/4, 3/4). Thus, p‘ and p0‘ are
language-independent.

Finally, p̂‘ sends k0 to both players with probability 1. In particular, p̂‘ is not a
convex combination of p‘ and p0‘. M

The next result states that an LIS is individually minimal.

Lemma 6.3 Let S be a set of message profiles. It holds that P‘ðSÞ � PiðSÞ:
Proof Let p 2 P‘ðSÞ; s 2 Sp; and i 2 N : It holds that kp;si ¼ si by definition of an
LIS. This defines an identity between Spi and suppðrpi Þ: It follows that
jSpi j ¼ jsuppðrpi Þj: h

By Lemma 6.3 we know that an LIS is individually minimal and by Lemma 5.5
individual minimality implies minimality. Thus, there is a chain of inclusions
between P‘ðSÞ, PiðSÞ, and PmðSÞ.
Corollary 6.4 Let S be a set of message profiles. Then
P‘ðSÞ � PiðSÞ � PmðSÞ � PðSÞ.

Since we can transform any given individually minimal signal into an LIS by
relabeling each message with the posterior belief that message leads to, an immediate
consequence of Theorem 5.6 is that any element of RðSÞ can be induced by an LIS if
DðXÞn � S; a result also obtained by Arieli et al. (2021) for a binary state space. We
denote the set of all language-independent signals that induce a distribution r 2 RðSÞ
by P‘ðrÞ: One advantage of language-independent signals is that for each r 2 RðSÞ
it holds that P‘ðrÞ is convex. The proof of this statement, however, is postponed as it
follows easily from later results, and can be found after Corollary 7.3.
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Proposition 6.5 Let S be a set of message profiles, DðXÞn � S, and r 2 RðSÞ: Then
P‘ðrÞ is non-empty and convex.

Proposition 6.5 contrasts Example 6.2 where we showed that both the set of all
signals and the set of all individually minimal signals that induce a given r are
typically not convex.10 This makes language-independent signals particularly
attractive. Note that P‘ðrÞ is not necessarily a singleton, as there might be different
language-independent signals that induce a particular distribution of beliefs, which
we illustrate later in Example 7.6. The multiplicity of elements of P‘ðrÞ stems from
the fact that language-independent signals might differ on the higher order beliefs
even when they are inducing the same first-order beliefs.

Equivalency of signals

Recall that given an individually minimal signal, we can obtain an LIS by simply
replacing messages with the posterior beliefs they lead to. More generally, given a
signal p 2 PðSÞ, one can define p0 2 PðSÞ by a one-to-one change in the names of
messages in Spi for each i 2 N . In this case, we typically have Sp

0 6¼ Sp, though we
intuitively think of both signals as equivalent. More formally, we have the following
definition.

Definition 6.6 Let S and Ŝ be two sets of message profiles. Two signals p : X !
DðSÞ and p̂ : X ! DðŜÞ are equivalent ðp� p̂Þ if for every i 2 N there is a bijection

wi : S
p
i ! Ŝp̂i such that, for every x 2 X; for every s 2 Sp; p̂ wðsÞjxð Þ ¼ pðsjxÞ.11

We can interpret equivalent signals as providing the same information in different

languages. Indeed, let si 2 Spi and ŝi 2 Ŝp̂i be such that wiðsiÞ ¼ ŝi: It holds that

piðsijxÞ ¼
X

t2Sp:ti¼si

pðtjxÞ ¼
X

t2Sp:ti¼si

p̂ wðtÞjxð Þ ¼
X

t̂2Ŝp̂:t̂i¼ŝi

p̂ðt̂jxÞ ¼ p̂iðŝijxÞ; 8x 2 X:

Now consider s 2 Sp and ŝ 2 Ŝp̂ such that ŝ ¼ wðsÞ: For every i 2 N ; we have that

kp;si ðxÞ ¼ piðsijxÞk0ðxÞP
x02X piðsijx0Þk0ðx0Þ ¼

p̂iðŝijxÞk0ðxÞP
x02X p̂iðŝijx0Þk0ðx0Þ ¼ kp̂;si ðxÞ; 8x 2 X:

ð5Þ
It follows from (5) that sending message profile s under signal p and sending
message profile ŝ under signal p̂ results in the same posterior belief profile. It is also

immediate from Definition 6.6 that Ŝp̂ ¼ wðSpÞ:
The next proposition, stating that equivalent signals induce the same distribution

over posterior belief profiles, now follows easily.

10 Observe that Proposition 6.5 can be reformulated to allow for a finite set S. In particular, given a finite S,
for p 2 PðSÞ with rp 2 RðSÞ and supp rpð Þ � S it holds that P‘ rpð Þ is non-empty and convex.
11 The relation � is reflexive, symmetric, and transitive, so is an equivalence relation.
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Proposition 6.7 Fix two sets of message profiles S and Ŝ, and let p : X ! DðSÞ and
p̂ : X ! DðŜÞ be such that p� p̂: It holds that rp ¼ rp̂:

Proof For every i 2 N there is a bijection wi : S
p
i ! Ŝp̂i such that, for every x 2 X;

for every s 2 Sp; p̂ wðsÞjxð Þ ¼ pðsjxÞ. Let s 2 Sp and ŝ 2 Ŝp̂ be such that wðsÞ ¼ ŝ:

It follows from (5) that kp;s ¼ kp̂;ŝ: Since Ŝp̂ ¼ wðSpÞ; we have that suppðrp̂Þ ¼
suppðrpÞ: Moreover, it holds that, for every k 2 suppðrpÞ;

rp kð Þ ¼
X

s2Sp:kp;s¼k

X
x2X

pðsjxÞk0ðxÞ ¼
X

s2Sp:kp;s¼k

X
x2X

p̂ wðsÞjxð Þk0ðxÞ

¼
X

ŝ2Ŝp̂:kp̂;ŝ¼k

X
x2X

p̂ðŝjxÞk0ðxÞ ¼ rp̂ kð Þ:

h

Note that the converse of Proposition 6.7 is not true: as we will see in Example 7.6
there are signals that induce the same distribution over posterior belief profiles but
that are not equivalent.

The next proposition shows that each set of equivalent signals contains at most
one LIS.

Proposition 6.8 Fix a set of message profiles S and let p; p0 2 P‘ðSÞ with p� p0. It
holds that p ¼ p0.

Proof By Proposition 6.7 it holds that rp ¼ rp
0
; so Sp ¼ supp rpð Þ ¼ supp rp

0� � ¼
Sp

0
: As p� p0; for every i 2 N there is a bijection wi : S

p
i ! Sp

0
i such that, for every

x 2 X; for every s 2 Sp; p0 wðsÞjxð Þ ¼ pðsjxÞ. In particular, since p; p0 2 P‘ðSÞ; we
have, for every i 2 N ; for every k 2 Sp;

wi kið Þ xð Þ ¼ p0i wi kið Þjxð Þk0 xð ÞP
x02X p0i wi kið Þjx0ð Þk0 x0ð Þ ¼

pi kijxð Þk0 xð ÞP
x02X pi kijx0ð Þk0 x0ð Þ ¼ ki xð Þ; 8x 2 X;

ð6Þ
where the first and third equality follow since p; p0 2 P‘ðSÞ, and the second equality
uses (5). It follows that p ¼ p0. h

Observe that a signal that is not individually minimal cannot be equivalent to an
LIS as the required bijection between message spaces cannot exist. Nevertheless for
every signal there is a canonical way to find an LIS that induces the same posterior.
The construction heavily relies on the following lemma, which is straightforward
and, therefore, stated without proof.12

Lemma 6.9 Fix a set of message profiles S and let p 2 PðSÞ be a signal. It holds
that

12 It is implied by the proof of Lemma A.2 in Kerman et al. (2023).
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P
si2Spi :kp;si ¼ki

pi sijxð Þk0 xð ÞP
x02X

P
si2Spi :kp;si ¼ki

pi sijx0ð Þk0 x0ð Þ ¼ ki xð Þ; 8x 2 X; 8i 2 N ; 8ki 2 supp rpi
� �

:

Lemma 6.9 extends the formula for Bayesian updating and applies it to all
messages simultaneously that lead to a particular posterior belief. According to the
lemma, distinct messages that lead to the same posterior can be replaced by the same
message. Thus, the following result is immediate and we present it without proof.

Corollary 6.10 Fix a set of message profiles S and let DðXÞn � S. For p 2 PðSÞ
define p‘ : X ! DðSÞ as

p‘ kjxð Þ ¼
X

s2Sp:kp;s¼k

p sjxð Þ; 8x 2 X; 8k 2 supp rpð Þ: ð7Þ

Then rp
‘ ¼ rp. Moreover, if p 2 PiðSÞ then p‘ � p.

7 Inducible distributions

Unlike in the single-receiver case, when dealing with multiple receivers, Bayes
plausibility alone is not sufficient to ensure that a distribution over posterior belief
profiles belongs to RðSÞ:13

Example 7.1 Let N ¼ 1; 2; 3f g, X ¼ X ; Yf g, and S ¼ DðXÞ3: Assume the agents

have common prior k0ðX Þ ¼ 1=6. Let k1ðX Þ ¼ ð1=2; 1=2; 0Þ, k2ðX Þ ¼ ð1=2; 0; 1=2Þ,
k3ðX Þ ¼ ð0; 1=2; 1=2Þ; and k4ðX Þ ¼ ð0; 0; 0Þ and let r 2 D D Xð Þ3

� �
be given by

r k1
� � ¼ r k2

� � ¼ r k3
� � ¼ 1=6 and r k4

� � ¼ 1=2. Then, for each i 2 N ; we have
ri 1=2; 1=2ð Þ ¼ 1=3 and rið0; 1Þ ¼ 2=3:

First note that r is Bayes-plausible:

X
ki2suppðriÞ

kiðX Þri kið Þ ¼ 1

2
� rið1=2; 1=2Þ þ 0 � rið0; 1Þ ¼ 1

2
� 1
3
¼ 1

6
¼ k0ðX Þ; 8i 2 N :

Suppose that signal p 2 PðSÞ induces r: By Corollary 6.10 it is without loss of
generality to assume that p 2 P‘ðSÞ: In this case, for any receiver, observing
(1/2,1/2) leads to posterior belief (1/2,1/2), and observing (0,1) leads to posterior
belief (0,1). This implies that no receivers can observe (0,1) in state X, i.e.,

piðð0; 1ÞjX Þ ¼ 0 for all i 2 N . It follows that p k1jX� � ¼ p k2jX� � ¼
p k3jX� � ¼ p k4jX� � ¼ 0, which obviously leads to a contradiction. M

13 Other papers have also pointed this out and provided examples, see, e.g. Arieli et al. (2021).
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To guarantee that a distribution over posterior belief profiles belongs to RðSÞ;
additional conditions need to be imposed on top of Bayes plausibility. In
Theorem 7.2, we provide necessary and sufficient conditions for a distribution over
posterior belief profiles to belong to RðSÞ.
Theorem 7.2 Let S be a set of message profiles and r 2 DðDðXÞnÞ be such that, for
every i 2 N ; jSij � jsuppðriÞj: Then r 2 RðSÞ if and only if r is Bayes-plausible and

there exists p 2 R
X	suppðrÞ
þ such that

ðiÞ P
x2X pðx; kÞ ¼ r kð Þ; 8k 2 suppðrÞ;

ðiiÞ P
k02suppðrÞ:k0i¼ki

pðx; k0Þ ¼ kiðxÞri kið Þ; 8x 2 X; 8i 2 N ; 8ki 2 suppðriÞ:

If r 2 RðSÞ; then the signal p : X ! DðDðXÞnÞ defined by

p kjxð Þ ¼ pðx; kÞ
k0ðxÞ ; 8x 2 X; 8k 2 suppðrÞ; ð8Þ

is an LIS such that rp ¼ r:

Condition (i) can be interpreted as “posterior marginality“ as it states that the
probability of a posterior belief profile k is the marginal of pðx; kÞ. The right-hand
side of condition (ii) is the probability that x is the true state according to i’s belief ki
multiplied with the probability that i has belief ki. Thus, the sum on the left-hand side
is the probability that i has belief ki and x is the true state. Intuitively, pðx; kÞ can be
interpreted as the probability of the state being x and the induced posterior being k.

Proof Assume that r is Bayes-plausible and there exists p 2 R
X	suppðrÞ
þ such that (i)

and (ii) are satisfied. Let p be defined as in (8). We first show that p is a signal.
Let x 2 X: Obviously, it holds that, for every k 2 DðXÞn; pðkjxÞ� 0: In formula

(9) that follows next, i 2 N is an arbitrarily chosen receiver. It holds that

X
k2Sp

p x; kð Þ ¼
X

ki2supp rið Þ

X
k02suppðrÞ:k0i¼ki

pðx; k0Þ¼ðiiÞ
X

ki2supp rið Þ
kiðxÞri kið Þ ¼ k0ðxÞ; ð9Þ

where the last equality is true as r is Bayes-plausible. We find that

X
k2Sp

pðkjxÞ ¼
X
k2Sp

p x; kð Þ
k0ðxÞ ¼ð9Þ k

0ðxÞ
k0ðxÞ ¼ 1;

which proves that p is a signal.
Next, we show that p is an LIS. Let x 2 X; i 2 N ; and ki 2 suppðriÞ: It holds that
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piðkijxÞk0ðxÞP
x02X piðkijx0Þk0ðx0Þ ¼

P
k02suppðrÞ:k0i¼ki

pðk0jxÞk0ðxÞP
x02X

P
k02suppðrÞ:k0i¼ki

pðk0jx0Þk0ðx0Þ

¼ð8Þ
P

k02suppðrÞ:k0i¼ki
p x;k0ð Þ
k0ðxÞ k

0ðxÞ
P

x02X
P

k02suppðrÞ:k0i¼ki
p x0;k0ð Þ
k0ðx0Þ k

0ðx0Þ

¼
P

k02suppðrÞ:k0i¼ki
p x; k0ð ÞP

x02X
P

k02suppðrÞ:k0i¼ki
p x0; k0ð Þ

¼ðiiÞ kiðxÞri kið ÞP
k02suppðrÞ:k0i¼ki

P
x02X p x0; k0ð Þ

¼ðiÞ kiðxÞri kið ÞP
k02suppðrÞ:k0i¼ki

r k0ð Þ

¼ kiðxÞri kið Þ
ri kið Þ

¼ kiðxÞ:
As message ki leads to posterior ki, p is an LIS.

We show next that rp ¼ r: If r kð Þ ¼ 0, then rp kð Þ ¼ 0 by construction. So, let
k 2 suppðrÞ. It holds that

rpðkÞ ¼
X
x2X

pðkjxÞk0ðxÞ ¼
X
x2X

p x; kð Þ
k0ðxÞ k0ðxÞ ¼

X
x2X

p x; kð Þ¼ðiÞrðkÞ:

At this point we have shown that r is inducible if suppðriÞ � Si. Recall that
Sij j � suppðriÞ. For every i 2 N ; let Ti be a subset of Si with cardinality equal to
suppðriÞj j and take a bijection wi : suppðriÞ ! Ti: Define the signal p0 : X ! DðSÞ
by

p0ðwðkÞjxÞ ¼ pðkjxÞ; 8x 2 X; 8k 2 suppðrÞ:
Then p� p0, so by Proposition 6.7 we have that rp

0 ¼ rp ¼ r. It follows that r 2
RðSÞ:

Now assume that r 2 RðSÞ: It follows from Proposition 3.2 that r is Bayes-
plausible. Let p 2 PðSÞ be such that rp ¼ r: For every x 2 X; for every
k 2 suppðrÞ, define

p x; kð Þ ¼
X

s2Sp:kp;s¼k

pðsjxÞk0ðxÞ: ð10Þ

We first show that (i) holds. We have that

r kð Þ ¼
X

s2Sp:kp;s¼k

X
x2X

pðsjxÞk0ðxÞ ¼ð10Þ
X
x2X

p x; kð Þ; 8k 2 suppðrÞ:

Next, we show (ii) holds. Let x 2 X; i 2 N ; and ki 2 suppðriÞ: We have that
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kiðxÞri kið Þ ¼
P

si2Spi :kp;si ¼ki
piðsijxÞk0ðxÞP

x02X
P

si2Spi :kp;si ¼ki piðsijx0Þk0ðx0Þ
X

k02suppðrÞ:k0i¼ki

r k0ð Þ

¼
P

si2Spi :kp;si ¼ki piðsijxÞk0ðxÞP
x02X

P
si2Spi :kp;si ¼ki

piðsijx0Þk0ðx0Þ
X

k02suppðrÞ:k0i¼ki

X
s2Sp:kp;s¼k0

X
x02X

p sjx0ð Þk0 x0ð Þ

¼
P

si2Spi :kp;si ¼ki
piðsijxÞk0ðxÞP

x02X
P

si2Spi :kp;si ¼ki piðsijx0Þk0ðx0Þ
X
x02X

X
si2Spi :kp;si ¼ki

pi sijx0ð Þk0 x0ð Þ

¼
X

si2Spi :kp;si ¼ki

piðsijxÞk0ðxÞ

¼
X

k02suppðrÞ:k0i¼ki

X
s2Sp:kp;s¼k0

p sjxð Þk0 xð Þ

¼
X

k02suppðrÞ:k0i¼ki

p x; k0ð Þ;

where the first equality follows from Lemma 6.9. h

Theorem 7.2 explicitly shows what is needed in addition to Bayes plausibility to
ensure that a distribution over posterior belief profiles belongs to RðSÞ: Observe that
any p 2 R

X	suppðrÞ
þ which satisfies Condition (i) is a finite probability distribution,

that is, p 2 D X	 suppðrÞð Þ.14
Note that while we pose a similar question to Arieli et al. (2021) and Ziegler

(2020), we obtain a completely different characterization. To obtain a characteriza-
tion for more than two players and a binary state space, Arieli et al. (2021) utilize the
No Trade Theorem of Milgrom and Stokey (1982). After introducing a mediator who
trades with the agents they provide an interval for the mediator’s expected payoff for
a distribution to be inducible.15 Ziegler (2020) generalizes Kamenica and Gentzkow
(2011) to two players and makes use of “belief-dependence bounds” to provide a
characterization for inducible distributions, which are defined over the CDFs
associated with distributions of beliefs. In contrast, we allow for both a general finite
state space and a finite number of receivers, and provide a characterization of
inducible posteriors in terms of a system of equations, which represents the
properties of the agents’ marginal beliefs.

Observe that by Equations (8) and (9) p is a common prior over X	 suppðrÞ.
Thus, Theorem 7.2 bears some resemblance to Proposition 1 in Mathevet et al.
(2020). Yet, while they impose conditions on the common prior over belief
hierarchies from which the posterior distribution emerges, our condition is
formulated as a system of separate marginality conditions for all players.

While Theorem 7.2 is useful in determining whether a distribution of beliefs is
inducible, it also provides an LIS that induces the desired distribution. In Example
7.4, we use Theorem 7.2 to show that a given distribution of beliefs is not inducible.
In Example 7.6, we use two solutions to conditions (i) and (ii) to provide two distinct

14 Note that 0 2 Rþ.
15 Morris (2020) provides an alternative proof for the no trade result that also applies to a finite state space.
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LIS’s that induce the same distribution. Yet, beforehand, we provide the proofs that
have been left out in Sects. 5 and 6.

For any r 2 RðSÞ; define

PðrÞ ¼ p 2 R
X	suppðrÞ
þ j p satisfies (i) and (ii) of Theorem 7.2

n o
:

As PðrÞ is defined as the set of non-negative matrix solutions to a system of linear
equalities, where the system is such that the components of any solution matrix sum
up to one, we immediately have the following result.

Corollary 7.3 Let S be a set of message profiles. For every r 2 RðSÞ; PðrÞ is a non-
empty, compact, and convex polytope.

We are now ready to provide the remaining proofs of Sects. 5 and 6.

Proof of Theorem 5.6 Let r 2 RðSÞ. Then it holds that, for every i 2 N ;

jSij � suppðriÞ. Theorem 7.2 implies that there is an LIS p : X ! DðDðXÞnÞ which
induces r: For every i 2 N ; let Ti be a subset of Si with cardinality equal to jsuppðriÞj
and take a bijection wi : suppðriÞ ! Ti. Let the signal p0 : X ! DðSÞ be defined by

p0ðwðkÞjxÞ ¼ pðkjxÞ; 8x 2 X; k 2 suppðrÞ:
Then p� p0; so by Proposition 6.7 we have that rp

0 ¼ rp ¼ r. As the LIS p is
individually minimal, it follows that p0 2 PiðSÞ: h

Proof of Proposition 6.5 As PðrÞ is a non-empty, compact, and convex polytope by
Corollary 7.3 and P‘ rð Þ is a linear transformation of PðrÞ by (8), P‘ rð Þ is a non-
empty, compact, and convex polytope as well. h

In the next example, we use Theorem 7.2 to determine whether a given
distribution over posterior belief profiles belongs to RðSÞ:
Example 7.4 Recall the distribution over posterior belief profiles r in Example 7.1
with

suppðrÞ ¼ k1; k2; k3; k4
� �

¼ ð1
2
;
1

2
Þ; ð1

2
;
1

2
Þ; ð0; 1Þ

� �
; ð1

2
;
1

2
Þ; ð0; 1Þ; ð1

2
;
1

2
Þ

� �
; ð0; 1Þ; ð1

2
;
1

2
Þ; ð1

2
;
1

2
Þ

� �
; ð0; 1Þ; ð0; 1Þ; ð0; 1Þð Þ

	 

;

and, we have rðk1Þ ¼ rðk2Þ ¼ rðk3Þ ¼ 1=6 and rðk4Þ ¼ 1=2:
Suppose r 2 RðSÞ: Then, by Theorem 7.2 there exists p 2 PðrÞ such that

p X ; k1
� �þ p X ; k2

� � ¼ p X ; k1
� �þ p X ; k3

� � ¼ p X ; k2
� �þ p X ; k3

� � ¼ 1

6
;

p X ; k1
� �þ p X ; k4

� � ¼ p X ; k2
� �þ p X ; k4

� � ¼ p X ; k3
� �þ p X ; k4

� � ¼ 0;

where we make use of Condition (ii) for x ¼ X : From the first line we obtain

p X ; k1
� � ¼ p X ; k2

� � ¼ p X ; k3
� � ¼ 1=12. Combining this with the second, we find

p X ; k4
� � ¼ �1=12. Thus, p fails to be non-negative and r 62 RðSÞ: M
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Proposition 4.2 gives a necessary and sufficient condition for a finite set R �
D Xð Þn to be a subset of suppðrÞ for some r 2 RðSÞ. We will now provide a
necessary and sufficient condition for the opposite inclusion, i.e., we characterize
those sets R � D Xð Þn such that there is some inducible r 2 RðSÞ whose support is
restricted to R. We also characterize those sets R such that R ¼ suppðrÞ for some
r 2 RðSÞ.
Proposition 7.5 Fix a set of message profiles S and let the non-empty and finite
R � DðXÞn be such that, for every i 2 N ; jSij � jRij: There exists r 2 RðSÞ with
suppðrÞ � R if and only if there is p 2 RX	R

þ such that

ðiÞ P
k2R pðx; kÞ ¼ k0ðxÞ; 8x 2 X;

ðiiÞ P
k02R:k0i¼ki pðx; k0Þ ¼ kiðxÞ

P
x02X

P
k02R:k0i¼ki pðx0; k0Þ; 8x 2 X; 8i 2 N ; 8ki 2 Ri:

If such p exists, then the signal p : X ! DðRÞ defined by

p kjxð Þ ¼ pðx; kÞ
k0ðxÞ ; 8x 2 X; 8k 2 R; ð11Þ

is an LIS such that suppðrpÞ � R. Moreover, if p is such that, for all k 2 R,P
x2X p k;xð Þ[ 0, then supp rpð Þ ¼ R.

Proof Assume that there is p 2 RX	R
þ such (i) and (ii) hold. Let p : X ! DðRÞ be as

defined in (11). We have that

X
k02R

pðk0jxÞ ¼ð11Þ
X
k02R

pðx; k0Þ
k0ðxÞ ¼ðiÞ k

0ðxÞ
k0ðxÞ ¼ 1; 8x 2 X:

Moreover, for every x 2 X; i 2 N ; and ki 2 Spi , it holds thatP
k02R:k0i¼ki

pðk0jxÞk0ðxÞP
x02X

P
k02R:k0i¼ki

pðk0jx0Þk0ðx0Þ ¼
ð11Þ

P
k02R:k0i¼ki

pðx; k0ÞP
x02X

P
k02R:k0i¼ki

pðx0; k0Þ

¼ðiiÞ
kiðxÞ

P
x02X

P
k02R:k0i¼ki

pðx0; k0ÞP
x02X

P
k02R:k0i¼ki

pðx0; k0Þ ¼ kiðxÞ:

Thus, p is an LIS and suppðrpÞ ¼ Sp � R.
To account for message sets Si that do not allow for language-independent mes-

sages, note that, for all i 2 N , jsupp rpi
� �j � jRij � jSij. For every i 2 N let Ti be a

subset of Si with jTij ¼ jsupp rpið Þj and take a bijection wi : supp rpi
� � ! Ti. Let the

signal p0 : X ! DðSÞ be defined by

p0ðwðkÞjxÞ ¼ pðkjxÞ; 8x 2 X; 8k 2 supp rpð Þ:
It holds that p� p0; so by Proposition 6.7 we have that rp

0 ¼ rp and suppðrp0 Þ ¼
suppðrpÞ � R:

Now assume that r 2 RðSÞ is such that suppðrÞ � R: Then, by Theorem 7.2, there
is an LIS p : X ! DðRÞ that induces r. Let
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p x; kð Þ ¼ p kjxð Þk0 xð Þ; 8x 2 X; 8k 2 R: ð12Þ
By construction, Sp ¼ suppðrÞ � R and p x; kð Þ ¼ 0 for all k 2 RnSp and all x 2 X.
So, (i) is satisfied since

X
k02R

pðx; k0Þ ¼ð12Þ
X
k02R

pðk0jxÞk0ðxÞ ¼ k0ðxÞ
X
k02Sp

pðk0jxÞ ¼ k0ðxÞ; 8x 2 X:

Further, for every x 2 X; i 2 N ; and ki 2 Ri; it holds that

X
k02R:k0i¼ki

pðx; k0Þ ¼ð12Þ
X

k02R:k0i¼ki

pðk0jxÞk0ðxÞ ¼ pi kijxð Þk0 xð Þ

¼ð1ÞkiðxÞ
X
x02X

piðkijx0Þk0ðx0Þ ¼ kiðxÞ
X
x02X

X
k02R:k0i¼ki

pðk0jx0Þk0ðx0Þ

¼ð12ÞkiðxÞ
X
x02X

X
k02R:k0i¼ki

pðx0; k0Þ:

Hence, (ii) is satisfied.
Lastly, let p be such that, for all k 2 R,

P
x2X p k;xð Þ[ 0. Then for each k 2 R,

there is x 2 X such that p kjxð Þ[ 0. Thus, supp rpð Þ ¼ Sp ¼ R. h

As p is defined by (11), (i) ensures that p �jxð Þ 2 DðXÞn for all x 2 X so that p is a
signal. Condition (ii) ensures correct belief updating: as before, the left-hand side is
the probability that i has belief ki and the true state is x; the right-hand side is the
product of the probability that the state is x conditional on i’s having belief ki and the
probability that i has belief ki.

In our discussion of Proposition 6.7, stating that equivalent signals induce the
same distribution, we announced that the converse need not be true. We can now
easily provide the required counterexample.

Example 7.6 Let N ¼ f1; 2g; X ¼ fX ; Yg; k0ðX Þ ¼ 1=3; and S ¼ DðXÞn: Consider
the distribution r defined by

suppðrpÞ ¼ k1; k2; k3; k4
� �

¼ ðð1
2
;
1

2
Þ; ð1

2
;
1

2
ÞÞ; ðð1

2
;
1

2
Þ; ð1

4
;
3

4
ÞÞ; ðð1

4
;
3

4
Þ; ð1

2
;
1

2
ÞÞ; ðð1

4
;
3

4
Þ; ð1

4
;
3

4
ÞÞ

	 

;

rðk1Þ ¼ rðk2Þ ¼ rðk3Þ ¼ 1=6 and rðk4Þ ¼ 1=2: One can easily verify that p; p0 2
R

X	suppðrÞ
þ defined by
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pðx; kÞ k1 k2 k3 k4

X 1
12

1
12

1
12

1
12

Y 1
12

1
12

1
12

5
12

p0ðx; kÞ k1 k2 k3 k4

X 1
6

0 0 1
6

Y 0 1
6

1
6

1
3

are both solutions to the system of equations in Theorem 7.2. We define p; p0 2
P‘ðSÞ by applying (8) to p and p0; respectively, that is,

pðkjxÞ k1 k2 k3 k4

X 1
4

1
4

1
4

1
4

Y 1
8

1
8

1
8

5
8

p0ðkjxÞ k1 k2 k3 k4

X 1
2

0 0 1
2

Y 0 1
4

1
4

1
2

Both p and p0 induce r: Yet, as p 6¼ p0; Proposition 6.8 implies that p and p0 are
not equivalent. M

8 The information and posterior correspondences

Our objective in this section is to provide a framework in which we can analyze what
receivers know about each other’s messages, so that we can later answer the question
of how a sender can make sure that receivers know “as little as possible”. We follow
the standard approach based on information correspondences, as in, for instance,
Osborne and Rubinstein (1994), Chapter 5.
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Given a signal p 2 PðSÞ; we refer to an element ðx; sÞ 2 X	 Sp such that
pðsjxÞ[ 0 as a history and to an element ðx; kÞ 2 X	 suppðrpÞ such that there
exists s 2 Sp with pðsjxÞ[ 0 and kp;s ¼ k as a posterior history. We denote the sets
of histories and posterior histories, respectively, by

Hp ¼ ðx; sÞ 2 X	 Spj pðsjxÞ[ 0f g;
Kp ¼ x; kð Þ 2 X	 DðXÞnj9s 2 Sp such that pðsjxÞ[ 0 and kp;s ¼ kf g

¼ x; kp;sð Þ 2 X	 DðXÞnjðx; sÞ 2 Hpf g:
Note that if p 2 P‘ðSÞ; then Hp ¼ Kp:

Example 8.1 Recall p and p0 from Example 7.6. The sets of possible histories are:

Hp ¼ X ; k1
� �

; X ; k2
� �

; X ; k3
� �

; X ; k4
� �

; Y ; k1
� �

; Y ; k2
� �

; Y ; k3
� �

; Y ; k4
� �� �

Hp0 ¼ X ; k1
� �

; X ; k4
� �

; Y ; k2
� �

; Y ; k3
� �

; Y ; k4
� �� �

:

As both signals are language-independent, we have Kp ¼ Hp and Kp0 ¼ Hp0 . M
We next introduce the standard notion of an information correspondence.

Definition 8.2 Fix a set of message profiles S and let p 2 PðSÞ: The information
correspondence Pp

i : Hp�Hp of i 2 N is defined as

Pp
i ðx; sÞ ¼ ðx0; s0Þ 2 Hpj s0i ¼ si

� �
; 8ðx; sÞ 2 Hp:

That is, Pp
i ðx; sÞ is the set of histories receiver i considers possible when the true

history is ðx; sÞ. As we call Pp
i an information correspondence, it seems appropriate

to briefly show that this name is deserved, i.e., consistent with the common definition
of an information correspondence.

Lemma 8.3 Fix a set of message profiles S and let p 2 PðSÞ and i 2 N : The
information correspondence Pp

i satisfies the following two conditions:

C1 For all ðx; sÞ 2 Hp, ðx; sÞ 2 Pp
i ðx; sÞ.

C2 If ðx0; s0Þ 2 Pp
i ðx; sÞ, then Pp

i ðx0; s0Þ ¼ Pp
i ðx; sÞ.

Proof Let ðx; sÞ 2 Hp: Suppose ðx; sÞ 62 Pp
i ðx; sÞ. Then, si 6¼ si, a contradiction.

Thus, C1 is satisfied.
Next, let ðx0; s0Þ 2 Pp

i ðx; sÞ and ðx00; s00Þ 2 Pp
i ðx0; s0Þ. Then, s00i ¼ s0i ¼ si, so

ðx00; s00Þ 2 Pp
i ðx; sÞ, and consequently, Pp

i ðx0; s0Þ � Pp
i ðx; sÞ. Since s0i ¼ si, it holds

that ðx; sÞ 2 Pp
i ðx0; s0Þ as well, and the same arguments imply Pp

i ðx; sÞ � Pp
i ðx0; s0Þ.

So, C2 is satisfied. h

It should be noted that an information correspondence satisfies conditions C1 and
C2 if and only if it partitions the set of histories into information sets (see Osborne
and Rubinstein, 1994, Lemma 68.3). In our case, we can use Pp

i to define a partition
of the set Hp as
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Pp
i ¼ Pp

i ðx; sÞj ðx; sÞ 2 Hp
� �

:

This partition reflects i’s knowledge about the true history: whenever the true history
is x; sð Þ, i knows that the true history lies in Pp

i ðx; sÞ.
Example 8.4 Recall p in Example 5.2. The information correspondence partitions
the set of histories as follows:

Pp
1ðX ; ðv; xÞÞ ¼ Pp

1ðY ; ðv; yÞÞ ¼ ðX ; ðv; xÞÞ; ðY ; ðv; yÞÞf g;
Pp
1ðX ; ðw;wÞÞ ¼ Pp

1ðY ; ðw;wÞÞ ¼ ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf g;

Pp
2ðX ; ðv; xÞÞ ¼ ðX ; ðv; xÞf g;

Pp
2ðY ; ðv; yÞÞ ¼ ðY ; ðv; yÞÞf g;

Pp
2ðX ; ðw;wÞÞ ¼ Pp

2ðY ; ðw;wÞÞ ¼ ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf g:
Now consider p0 in Example 5.4. The information correspondence partitions the set
of histories as follows:

Pp0
1 ðX ; ðw; xÞÞ ¼ Pp0

1 ðY ; ðw; yÞÞ ¼ Pp0
1 ðX ; ðw;wÞÞ ¼ Pp0

1 ðY ; ðw;wÞÞ
¼ ðX ; ðw; xÞÞ; ðY ; ðw; yÞÞ; ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf g;

Pp0
2 ðX ; ðw; xÞÞ ¼ ðX ; ðw; xÞf g;

Pp0
2 ðY ; ðw; yÞÞ ¼ ðY ; ðw; yÞÞf g;

Pp0
2 ðX ; ðw;wÞÞ ¼ Pp0

2 ðY ; ðw;wÞÞ ¼ ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf g:

It is easy to verify that both C1 and C2 are satisfied. In particular, the information

partitions of Pp
i and, respectively, Pp0

i are given by

Pp
1 ¼ ðX ; ðv; xÞÞ; ðY ; ðv; yÞÞf g; ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf gf g;

Pp
2 ¼ ðX ; ðv; xÞÞf g; ðY ; ðv; yÞÞf g; ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf gf g;

Pp0
1 ¼ ðX ; ðw; xÞÞ; ðY ; ðw; yÞÞ; ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf gf g;

Pp0
2 ¼ ðX ; ðw; xÞÞf g; ðY ; ðw; yÞÞf g; ðX ; ðw;wÞÞ; ðY ; ðw;wÞÞf gf g:

M
Even though p and p0 in Example 8.4 induce the same distribution, it is not

possible to compare their information partitions since they employ different messages
and thus have distinct sets of histories. Still, we can compare such signals via the sets
of possible posterior histories of receivers.

Definition 8.5 Fix a set of message profiles S and let p 2 PðSÞ: The posterior
correspondence Qp

i : H
p�Kp of i 2 N is defined as
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Qp
i ðx; sÞ ¼ fðx0; ks

0 Þ 2 Kpj ðx0; s0Þ 2 Pp
i ðx; sÞg; 8ðx; sÞ 2 Hp:

The set Qp
i ðx; sÞ contains all posterior histories i deems possible if the true history

is ðx; sÞ.16

Example 8.6 Recall the information correspondences in Example 8.4. The posterior
correspondences related to p are as follows.

Qp
1ðX ; ðv; xÞÞ ¼ Qp

1ðY ; ðv; yÞÞ ¼ X ;
1

2
;1

� �� �
; Y ;

1

2
;0

� �� �	 

;

Qp
1ðX ; ðw;wÞÞ ¼ Qp

1ðY ; ðw;wÞÞ ¼ X ;
1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 

;

Qp
2ðX ; ðv; xÞÞ ¼ X ;

1

2
;1

� �� �	 

;

Qp
2ðY ; ðv; yÞÞ ¼ Y ;

1

2
;0

� �� �	 

;

Qp
2ðX ; ðw;wÞÞ ¼ Qp

2ðY ; ðw;wÞÞ ¼ X ;
1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 

:

The posterior correspondences related to p0 are as follows.

Qp0
1 ðX ; ðw; xÞÞ ¼ Qp0

1 ðY ; ðw; yÞÞ ¼ Qp0
1 ðX ; ðw;wÞÞ ¼ Qp0

1 ðY ; ðw;wÞÞ

¼ X ;
1

2
;1

� �� �
; Y ;

1

2
;0

� �� �
; X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 

;

Qp0
2 ðX ; ðw; xÞÞ ¼ X ;

1

2
;1

� �� �	 

;

Qp0
2 ðY ; ðw; yÞÞ ¼ Y ;

1

2
;0

� �� �	 

;

Qp0
2 ðX ; ðw;wÞÞ ¼ Qp0

2 ðY ; ðw;wÞÞ ¼ X ;
1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 

:

One can easily see that there is a bijection between the set of histories and the set of
posterior histories for both p and p0 that preserves the partition structure. M

For p 2 PðSÞ and i 2 N ; define Qp
i ¼ Qp

i ðx; sÞj ðx; sÞ 2 Hp
� �

. Note that in

Example 8.6 both Qp
i and Qp0

i are partitions for any i 2 N : However, this is not
always true.

16 Note that an alternative definition of Qp
i is to employ Kp also as the domain. However, since the (first-

order) posterior does not contain any information about higher order beliefs (which is encoded in
messages), two posterior correspondences that are different according our definition of Qp

i could be the

same under the alternative one, e.g. Qp
1 and Qp0

1 in Example 8.6 would be equal.
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Example 8.7 Let N ¼ 1; 2f g, X ¼ X ; Yf g, and k0ðX Þ ¼ 1=3. Let signal p 2 PðSÞ
be given as follows:

p (x, x) (x, y) (y, x) (y, y) (a, a) (a, b) (b, a) (b, b)

X 1
6

0 0 1
6

1
6

1
6

1
6

1
6

Y 0 1
12

1
12

1
6

1
12

1
12

1
12

5
12

For the posterior correspondence we find

Qp
1ðX ; ðx; xÞÞ ¼ X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

4

� �� �	 

;

Qp
1ðX ; ða; aÞÞ ¼ X ;

1

2
;
1

2

� �� �
; X ;

1

2
;
1

4

� �� �
; Y ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

4

� �� �	 

:

Since Qp
1ðX ; ðx; xÞÞ 6¼ Qp

1ðX ; ða; aÞÞ and X ; 1=2; 1=2ð Þð Þ 2 Qp
1ðX ; ðx; xÞÞ \ Qp

1

ðX ; ða; aÞÞ, Qp
1 is not a partition. M

The reason why Qp
1 in Example 8.7 is not a partition is that message profiles (x, x)

and (a, a) lead to the same posterior belief profile, yet x; xð Þ realizes only in state X
whereas a; að Þ realizes in both states. This situation, of course, can happen only as
long as the signal is not minimal. Thus, p 2 PmðSÞ is sufficient for Qp

i to be a
partition for all i 2 N . To prove this we define, for p 2 PðSÞ; the (surjective) map
/ : Hp ! Kp by

/ðx; sÞ ¼ ðx; kp;sÞ; 8ðx; sÞ 2 Hp: ð13Þ

Proposition 8.8 Fix a set of message profiles S and let p 2 PmðSÞ. Then / is a
bijection and, for every ðx; sÞ; ðx0; s0Þ 2 Hp and every i 2 N, it holds that ðx; sÞ 2
Pp
i ðx0; s0Þ if and only if /ðx; sÞ 2 Qp

i ðx0; s0Þ. In particular, Qp
i is a partition.

Proof First note that since p 2 PmðSÞ, for any ðx; sÞ; ðx0; s0Þ 2 Hp with s 6¼ s0, it

holds that x; kp;sð Þ 6¼ x0; kp;s
0� �
. That is, no two distinct histories are mapped to the

same posterior history. Thus, / is a bijection.
Let ðx; sÞ; ðx0; s0Þ 2 Hp and i 2 N : If ðx; sÞ 2 Pp

i ðx0; s0Þ, then / x; sð Þ ¼
x; kp;sð Þ 2 Qp

i x0; s0ð Þ by the definition of Qp
i x0; s0ð Þ. If

x; kp;sð Þ ¼ /ðx; sÞ 2 Qp
i ðx0; s0Þ, then ðx; sÞ 2 Pp

i ðx0; s0Þ. Therefore, ðx; sÞ 2
Pp
i ðx0; s0Þ if and only if /ðx; sÞ 2 Qp

i ðx0; s0Þ.
Suppose Qp

i x; sð Þ \ Qp
i x0; s0ð Þ 6¼ ;. It follows that Pp

i x; sð Þ \ Pp
i x0; s0ð Þ 6¼ ;, so

Pp
i x; sð Þ ¼ Pp

i x0; s0ð Þ. Therefore, Qp
i x; sð Þ ¼ / Pp

i x; sð Þ� � ¼ / Pp
i x0; s0ð Þ� � ¼

Qp
i x0; s0ð Þ; so Qp

i is a partition. h

The converse of Proposition 8.8 is not true. That is, even if the map / in (13) is a
bijection with the required properties, it is still possible that p is not minimal.
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Example 8.9 Let N ¼ 1; 2f g, X ¼ X ; Yf g, and k0ðX Þ ¼ 1=3. Let the signal p 2
PðSÞ be defined by

p (a, a) (b, b) (a, c) (c, a) (b, d) (d, b) (e, e)

X 1
6

0 0 0 1
4

1
6

5
12

Y 0 1
4

1
6

1
4

0 0 1
3

Then, for receiver 1 we have kp;ða;aÞ1 ðX Þ ¼ kp;ðb;bÞ1 ðX Þ ¼ 1=3, kp;ðc;aÞ1 ðX Þ ¼ 0,

kp;ðd;bÞ1 ðX Þ ¼ 1, and kp;ðe;eÞ1 ðX Þ ¼ 5=13. For receiver 2 we have kp;ða;aÞ2 ðX Þ ¼
kp;ðb;bÞ2 ðX Þ ¼ 1=4, kp;ða;cÞ2 ðX Þ ¼ 0, kp;ðb;dÞ2 ðX Þ ¼ 1, and kp;ðe;eÞ2 ðX Þ ¼ 5=13. Note that
message profiles (a, a) and (b, b) lead to the same posterior belief profile, (1/3, 1/4).
Thus, p is not minimal. For the support of the induced distribution r, we find

suppðrÞ ¼ 1

3
;
1

4

� �
;

1

3
; 0

� �
; 0;

1

4

� �
;

1

3
; 1

� �
; 1;

1

4

� �
;

5

13
;
5

13

� �	 

:

The sets Pp
1 and Qp

1 defined by the information and posterior correspondences of
receiver 1 are as follows:

Pp
1 ¼ ðX ; ða; aÞÞ; ðY ; ða; cÞÞf g; ðY ; ðc; aÞÞf g; ðX ; ðb; dÞÞ; ðY ; ðb; bÞÞf g; ðX ; ðd; bÞÞf g;f

ðX ; ðe; eÞÞ; ðY ; ðe; eÞÞf gg;

Qp
1 ¼ X ;

1

3
;
1

4

� �� �
; Y ;

1

3
; 0

� �� �	 

; Y ; 0;

1

4

� �� �	 

; X ;

1

3
; 1

� �� �
; Y ;

1

3
;
1

4

� �� �	 

;

	

X ; 1;
1

4

� �� �	 

; X ;

5

13
;
5

13

� �� �
; Y ;

5

13
;
5

13

� �� �	 


:

Similar calculations can be made for receiver 2. It is easily checked that not only are
Qp

1 and Qp
2 partitions, but / is a bijection as well. The reason Qp

1 and Qp
2 are

partitions, even though p 62 PmðSÞ; is that the message profiles which lead to the
same posterior, (a, a) and (b, b), never realize in the same state. M

Observe that if p 2 P‘ðSÞ; then / in (13) is the identity. Hence, Proposition 8.8
implies that the partitions Pp

i and Qp
i are identical. For all p 2 PiðSÞ, let p‘ 2 P‘ðSÞ

be defined as in (7), i.e., p‘ denotes the LIS obtained by replacing the messages of p
by the posteriors they lead to. Then the posterior history partition of p is equal to the
history partition of p‘. Thus, we have the following corollary.

Corollary 8.10 Fix a set of message profiles S and let p 2 PiðSÞ and p‘ 2 P‘ðSÞ be
defined as in (7). Then, for all i 2 N , Qp

i ¼ Qp‘
i ¼ Pp‘

i .
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9 Informativeness of signals

Example 8.6 derives the posterior correspondences of the receivers under p and p0

from Examples 5.2 and 5.4. Observe that receiver 1 has more precise information
about receiver 2’s knowledge of the true state under p: while he only observes w
under p0 and, thus, never learns what message receiver 2 has observed, under p upon
observing v he knows that receiver 2 knows the true state. In this sense p is “more
informative”: a notion that depends on the posterior correspondence and which we
will make more formal soon. Beforehand, we make the brief observation that the
posterior correspondence itself is invariant under equivalence. This stems from the
fact that equivalence does not only require identical posteriors, but also identical
information sets. In particular, under two equivalent signals a receiver will have
identical higher order knowledge about everybody’s beliefs of any order.

Lemma 9.1 Fix a set of message profiles S and let p; p0 2 PðSÞ with p� p0. Then,
for every i 2 N ; Qp

i ¼ Qp0
i :

Proof Since p� p0, for every i 2 N there is a bijection wi : S
p
i ! Sp

0
i such that, for

every x 2 X; for every s 2 Sp; p0ðwðsÞjxÞ ¼ pðsjxÞ:
Let ðx; sÞ 2 Hp and i 2 N :
We have that ðx0; s0Þ 2 Pp

i ðx; sÞ if and only if ðx0; s0Þ 2 Hp and s0i ¼ si, which is

equivalent to ðx0;wðs0ÞÞ 2 Hp0 and wiðs0iÞ ¼ wiðsiÞ, which in turn is equivalent to

ðx0;wðs0ÞÞ 2 Pp0
i ðx;wðsÞÞ:

Let x0; k0ð Þ 2 Qp0
i x;w sð Þð Þ. Then, by the definition of Qp0

i , there is x0;w s0ð Þð Þ 2
Pp0
i x;w sð Þð Þ with kp

0;w s0ð Þ ¼ k0: As shown in the previous paragraph, this implies

x0; s0ð Þ 2 Pp
i x; sð Þ. Since by construction kp;s

0 ¼ kp
0;w s0ð Þ ¼ k0, it follows that

x0; k0ð Þ 2 Qp x; sð Þ and therefore Qp0
i x;w sð Þð Þ � Qp

i x; sð Þ.
Since � is symmetric, we also have that Qp

i x; sð Þ � Qp0
i x;w sð Þð Þ: h

We argued in the beginning of this section that the signal p is “more informative”
for receiver 1 than signal p0; under p, receiver 1 knows (with positive probability)
that receiver 2 knows the true history. In particular, partition Qp

1 is finer than partition

Qp0
1 , so that receiver 1 can distinguish more between posterior histories. In other

words, for any element of Qp
1 we can find an element of Qp0

1 that includes the former.
We now formalize the definition of being more informative.

Definition 9.2 Fix a set of message profiles S. Let r 2 RðSÞ and p; p0 2 PðrÞ: The
signal p0 is at least as informative as p if for all i 2 N it holds that

(i) for all Q0 2 Qp0
i there exists Q 2 Qp

i such that Q0 � Q,

(ii) for all Q 2 Qp
i ;Q

0 2 Qp0
i with Q \ Q0 6¼ ; it holds that Q0 � Q.

Moreover, p and p0 are equally informative if p is at least as informative as p0 and
vice versa; p0 is more informative than p if p0 is at least as informative as p and not
equally informative.
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Observe that to compare p and p0 in terms of their informativeness, Definition 9.2

does not require Qp
i and Q

p0
i to be partitions: condition (ii) ensures that we are able to

compare them even if they are not. When they are partitions, which is the case if
p; p0 2 PmðSÞ by Proposition 8.8, then condition (ii) in Definition 9.2 is redundant.

It is easily verified that the notion of being at least as informative is transitive. Our
next observation serves as a sanity check: two signals should be equally informative
if and only if they induce the same posterior history. And this is true.

Lemma 9.3 Fix a set of message profiles S. Let r 2 RðSÞ and p; p0 2 PðrÞ: Then p

and p0 are equally informative if and only if, for every i 2 N ; Qp
i ¼ Qp0

i .

Proof Clearly, if, for every i 2 N ; Qp
i ¼ Qp0

i ; then p and p0 are equally informative.
For the other direction, assume that p and p0 are equally informative. Let i 2 N : As p0

is as informative as p, for all Q0 2 Qp0
i there is Q 2 Qp

i such that Q0 � Q. As
Q0 \ Q 6¼ ; and as p is as informative as p0, it must hold that Q � Q0, i.e., Q0 ¼ Q.

Thus, Qp0
i � Qp

i . Using the same arguments one finds Qp
i � Qp0

i . h

An immediate consequence of Lemmas 9.1 and 9.3 is that equivalent signals are
equally informative. This is in line with our interpretation of equivalent signals as
using different languages: if the same messages were conveyed in different
languages, one would not expect them to become more or less informative.

In Example 8.6, we found the posterior correspondences under signals p and p0

but did not consider their informativeness. In the next example, we show that p is
more informative than p0.

Example 9.4 Recall the signals p and p0 from Examples 5.2 and 5.4. The posterior

history correspondences of p and p0 were derived in Example 8.6. Note that Kp ¼
Kp0 and that p; p0 2 PmðSÞ. Thus, Proposition 8.8 implies that, for every i 2 N, Qp

i

and Qp0
i are partitions of the same set. More precisely, they are given as

Qp
1 ¼ X ;

1

2
; 1

� �� �
; Y ;

1

2
; 0

� �� �	 

; X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 
	 

;

Qp
2 ¼ X ;

1

2
; 1

� �� �	 

; Y ;

1

2
; 0

� �� �	 

; X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 
	 

;

Qp0
1 ¼ X ;

1

2
; 1

� �� �
; Y ;

1

2
; 0

� �� �
; X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 
	 

;

Qp0
2 ¼ X ;

1

2
; 1

� �� �	 

; Y ;

1

2
; 0

� �� �	 

; X ;

1

2
;
1

2

� �� �
; Y ;

1

2
;
1

2

� �� �	 
	 

:

It holds that Qp
1 is a finer partition than Qp0

1 and that Qp
2 ¼ Qp0

2 . Thus, p is more
informative than p0. M

While we do not require Qp
i and Qp0

i to be partitions to compare p and p0, if they
are partitions, then p0 is more informative than p if for all i 2 N the restriction of Qp

i
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to Kp0 is at least as coarse asQp0
i and for some i 2 N the partitions Qp

i andQ
p0
i are not

the same.

Proposition 9.5 Fix a set of message profiles S. Let r 2 RðSÞ, p; p0 2 PðrÞ, and
p 2 PiðSÞ. Then p0 is at least as informative as p if and only if Kp0 � Kp.

Proof Suppose that Kp0 n Kp 6¼ ;. Then there exist i 2 N and Q0 2 Qp0
i such that

there is no Q 2 Qp
i with Q0 � Q. Hence, condition (ii) of Definition 9.2 is not

satisfied and p0 is not at least as informative as p.

Now let Kp0 � Kp. By Corollary 8.10 and Lemma 9.1 we can assume without loss
of generality that p 2 P‘ðSÞ, so that Qp

i ¼ Pp
i for all i 2 N .

We first show Condition (ii) of Definition 9.2. So, let i 2 N and assume Q 2 Qp
i

and Q0 2 Qp0
i are such that Q \ Q0 6¼ ;. We have to show that Q0 � Q. Let

x
; k
ð Þ 2 Q \ Q0. There is x; kð Þ 2 Hp such that Q ¼ Qp
i x; kð Þ ¼ Pp

i x; kð Þ. Thus,
by Lemma 8.3, we have that Q ¼ Pp

i x
; k
ð Þ: Consider �x; �k
� � 2 Q0: There is

x0; s0ð Þ 2 Hp0 such that Q0 ¼ Qp0
i x0; s0ð Þ and there is x00; s00ð Þ 2 Pp0

i x0; s0ð Þ with

kp
0;s00 ¼ �k. In particular, since s00i ¼ s0i, we have �ki ¼ kp

0;s00
i ¼ kp

0;s0
i ¼ k
i . Since

Kp0 � Kp, we have �x; �k
� � 2 Kp, and since �ki ¼ k
i , we have

�x; �k
� � 2 Pp

i x
; k
ð Þ ¼ Q. We have shown that Q0 � Q:
To prove Condition (i) of Definition 9.2 it is now sufficient to show that for each

Q0 2 Qp0
i there is Q 2 Qp

i with Q \ Q0 6¼ ;. Let x0; s0ð Þ 2 Hp0 be such that Q0 ¼
Qp0

i x0; s0ð Þ: It holds that ðx0; k0
s0 Þ 2 Q0 � Kp0 � Kp. Thus, there is Q 2 Qp

i with

ðx0; k0
s0 Þ 2 Q: h

Proposition 9.5 reveals that among those signals that induce the same distribution
over posterior belief profiles, those that are individually minimal and have the largest
number of posterior histories are the least informative. We can interpret the condition

Kp0 � Kp as p0 providing additional information about what posterior histories are
impossible. It is worth mentioning that this condition together with the individual

minimality of p implies that Qp0
i contains at least the same number of elements as Qp

i

and that these elements are smaller in the sense of set inclusion.
In Corollary 6.10 a signal is transformed into an LIS that induces the same

distribution over posterior vectors. Although they are not equivalent if p is not
individually minimal, they have the same set of posterior histories as the next lemma
shows.

Lemma 9.6 Fix a set of message profiles S. Let DðXÞn � S and p 2 PðSÞ: For p‘ as
defined in (7) it holds that Kp‘ ¼ Kp.

Proof Observe that x; kð Þ 2 Kp if and only if there is s 2 Sp such that k ¼ kp;s and
p sjxð Þ[ 0. This, however, is equivalent to p‘ kjxð Þ ¼ P

s2Sp:kp;s¼k p sjxð Þ[ 0;

which holds if and only if x; kð Þ 2 Hp‘ ¼ Kp‘ . h

Proposition 9.5 and Lemma 9.6 immediately imply the following result.
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Corollary 9.7 Fix a set of message profiles S. Let DðXÞn � S; p 2 PðSÞ; and p‘ 2
P‘ðSÞ as defined in (7). Then p is at least as informative as p‘.

Corollary 9.7 might suggest that language-independent signals reveal as little
information as possible. The following example demonstrates that this is, in general,
not true.

Example 9.8 Recall p and p0 from Example 7.6. Both signals are language-
independent and, hence, individually minimal. However, as shown in Example 8.1,

Kp0 ¼ Hp0(Hp ¼ Kp: Thus, by Proposition 9.5, p0 is more informative than p.
Observe that it is not relevant that p is an LIS: when translating each message sent
under p in two different languages and sending both with equal probability, we
obtain a signal that is not even minimal, but equally informative as p: M

Our final result identifies those signals that are least informative. Let r 2 RðSÞ and
recall that the set PðrÞ is convex. The relative interior of PðrÞ is defined as

relintPðrÞ ¼ p 2 PðrÞj 8p0 2 PðrÞ; 9a[ 1; apþ ð1� aÞp0 2 PðrÞf g:

Proposition 9.9 Fix a set of message profiles S. Let DðXÞn � S and r 2 RðSÞ. For
every p 2 PðrÞ; define the signal pp 2 P‘ðSÞ by

pp kjxð Þ ¼ pðx; kÞ
k0ðxÞ ; 8x 2 X; k 2 suppðrÞ:

If p 2 relintPðrÞ, then every p 2 PðrÞ is at least as informative as pp:

Proof First observe that for every p 2 relintPðrÞ it holds that p x; kð Þ[ 0 whenever
there is p0 2 P rð Þ with p0 x; kð Þ[ 0. Thus, for any such p; p0 it holds that

Kpp
0
¼ fðx; kÞ 2 X	 suppðrÞjp0ðx; kÞ[ 0g � fðx; kÞ 2 X	 suppðrÞjpðx; kÞ[ 0g ¼ Kpp :

So, by Proposition 9.5, it holds that pp
0
is at least as informative as pp:

Let p 2 PðrÞ and define p‘ 2 P‘ðSÞ as in (7). Define p0 2 PðrÞ by
p0ðx; kÞ ¼ k0ðxÞp‘ðkjxÞ; 8x 2 X; 8k 2 suppðrÞ:

Then p‘ ¼ pp
0
. Thus, as seen before, p‘ is at least as informative as pp. Moreover,

by Corollary 9.7, p is at least as informative as p‘. Hence, p is at least as informative
as pp. h

Given a distribution r 2 RðSÞ; if p is in the relative interior of PðrÞ; then pp is a
least informative signal that induces r. As P‘ðrÞ is but a positive linear
transformation of P rð Þ, Proposition 9.9 implies that any signal p 2 relintP‘ðrÞ is
a least informative signal.

Recall signals p and p0 from Example 7.6. We concluded in Example 9.8 that p0 is
more informative than p. The result also follows from Proposition 9.9 as p 2
relintPðrÞ and, hence, p is a least informative signal.
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10 Conclusion

We consider a group of receivers who share a common prior on a finite state space
and investigate (i) the inducible distributions of posterior belief profiles and (ii) the
informativeness of signals. The sender can restrict attention to particular classes of
signals without loss of generality. In particular, any distribution over posterior belief
profiles can be induced by a language-independent signal. Moreover, any individ-
ually minimal signal can be transformed into an equivalent LIS.

Extending Kamenica and Gentzkow (2011) by allowing for multiple receivers and
private communication imposes further constraints on inducible distributions over
posterior belief profiles, so that Bayes plausibility is no longer a sufficient condition.
We formulate the additional conditions in the form of a linear system of equations
that needs to have a non-negative solution. These conditions, together with Bayes
plausibility, are necessary and sufficient.

We define informativeness in terms of knowledge about the true posterior history.
For every signal there is a language-independent signal that is not more informative.
Any element in the relative interior of the set of all language-independent signals
which induce a particular distribution belongs to the set of least informative signals.

One potential extension of the model would be to allow for distributions with
countably infinite support. While some of our results would survive this extension, it
is not immediately clear, for example, how one would define minimal or individually
minimal signals, since their current definitions rely on distributions having finite
support. Therefore, this provides an interesting topic for future research.
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