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Abstract. We revise Krein’s extension theory of semi-bounded Hermitian opera-
tors by reducing the problem to finding all positive and contractive extensions of
the “resolvent operator” (I + T )−1 of T . Our treatment is somewhat simpler and
more natural than Krein’s original method which was based on the Krein transform
(I−T )(I+T )−1. Apart from being positive and symmetric, we do not impose any further
constraints on the operator T : neither its closedness nor the density of its domain is
assumed. Moreover, our arguments remain valid in both real or complex Hilbert spaces.
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1. INTRODUCTION

The theory of self-adjoint extensions of semi-bounded operators dates back at least to
the seminal work of J. von Neumann [16] in 1929. He stated the conjecture that every
semi-bounded symmetric operator admits a self-adjoint extension whose bound is the
same as that of the original operator. Neumann himself gave a so called ε-solution to
the problem, that is, he showed the existence of an extension whose bound only differs
by an (arbitrarily given) ε > 0 from the given one. Today, the extension originating
from Friedrichs [10] is mainly known, although Stone [29] and Freudenthal [9] also
provided a solution to the raised problem. The proof of the latter can even be found
in any textbooks and monographs (see e.g. [19–21]).

M.G. Krein in [15] developed a whole theory in which he showed that the
bound-preserving extension is not unique in general. In fact, there are two “extremes”
among those extensions which have several remarkable extremal properties. It is also
important to mention here the paper [3] of Ando and Nishio who where the first to
discuss the self-adjoint positive extendibility of non-densely defined closed operators.
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The most general case of non-densely defined operators appeared in the paper [24] of
J. Stochel and the first named author (see also [17,18,25]).

The starting point of Krein’s treatment is the observation that every positive
symmetric operator T satisfies the inequality

∥(I − T )f∥2 ≤ ∥(I + T )f∥2, f ∈ dom T.

This in turn means that
A := (I − T )(I + T )−1

is a well defined symmetric contraction, defined on its natural domain dom A =
ran(I + T ). (In the literature, A is called the Krein transform of T ). Then the formula

T̃ := (I − Ã)(I + Ã)−1

gives a positive self-adjoint extension of T , where Ã is any contractive self-adjoint
extension of A such −1 does not belong to the point spectrum of Ã. (If T is densely
defined, then Ã automatically fulfills the latter requirement.) Thus Krein reduced the
original question to the less involved problem of finding all contractive extensions of
a bounded symmetric operator (this procedure and also an explicit parametrization
of positive self-adjoint extensions of a given positive operator is found in [6], and also
in the monograph [11]).

The main goal of our present article is to propose another approach to Neumann’s
extension problem. Namely, we reduce the question of positive self-adjoint extendibility
to the problem of finding a contractive positive extension B of a given positive and
contractive operator A. In fact, the inequality

∥h∥2 ≤ ((I + T )h, h), h ∈ dom T,

gives rise to define the positive and contractive operator

A := (I + T )−1,

defined on the (not necessarily closed or dense) subspace D := ran(I +T ). If B ∈ B(H),
∥B∥ ≤ 1, is any positive extension of A such that ker B = {0}, then

S = B−1 − I

is apparently a positive and self-adjoint extension of T . Accordingly, the positive ex-
tendibility of T depends on whether A has any injective contractive positive extension.

The question of extendibility of a bounded positive operator appears in classical
papers, for example, of Y. Shmulian [28], and P. R. Halmos [12]. The approach of the
present article follows the factorization procedure of the first author [23] and serves as
the cornerstone of our reasoning. This result enables us to give a simple description of
the set of all positive self-adjoint extensions of a densely defined positive operator T .
On the other hand, that construction makes it also possible to give a fairly short proof
of Krein’s theorem about contractive self-adjoint extensions of a contractive symmetric
transformation.
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2. POSITIVE EXTENSIONS OF CONTRACTIONS

We begin this section with a result on contractive positive extensions of bounded
positive operators with a non-dense domain. The next lemma and its consequence
Theorem 2.2 will serve as the basis of our further study of positive self-adjoint extensions
of symmetric operators.
Lemma 2.1. Let A be a positive symmetric contraction in the real or complex Hilbert
space H, defined on the (closed) linear subspace D. Then the following statements are
equivalent:

(i) there exists a positive symmetric contraction B that extends A,
(ii) A fulfills the inequality

∥Ah∥2 ≤ (Ah, h), h ∈ D.

Proof. Implication (i)⇒(ii) is straightforward from inequality

∥Bh∥2 ≤ ∥B1/2∥2∥B1/2h∥2 = ∥B∥(Bh, h), h ∈ H.

The proof of the converse implication can be found e.g. in [23]. Nevertheless, for the
sake of completeness we include a short proof here.

Consider the range space ran A of A as a pre-Hilbert space endowed with the inner
product

⟨Ah, Ak⟩
A

:= (Ah, k), h, k ∈ D.

Indeed, inequality (ii) guarantees that ⟨·, ·⟩
A

is well-defined inner product. Let HA

denote the completion of that pre-Hilbert space. Note that ran A is then a dense
linear subspace of HA. The inequality in (ii) enables us then to introduce the follow-
ing linear contraction JA from ran A ⊆ HA to H by setting

JA(Ah) := Ah, h ∈ D.

Indeed, we have

∥JA(Ah)∥2 = ∥Ah∥2 ≤ (Ah, h) ≤ ⟨Ah, Ah⟩
A

,

thanks to (ii). JA extends now to contraction acting between HA and H. For simplicity,
we continue to denote this operator by JA. We claim that the adjoint J∗

A of JA has
the following characteristic property:

J∗
Ah = Ah, h ∈ D. (2.1)

This follows from

(JA(Ak), h) = (Ak, h) = ⟨Ak, Ah⟩
A

, h, k ∈ D.

As a consequence, we conclude that the positive contraction JAJ∗
A ∈ B(H) extends A:

JAJ∗
Ah = JA(Ah) = Ah, h ∈ D.

This proves implication (ii)⇒(i).
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If the positive symmetric operator A : H ⊇ D → H fulfills any of the equivalent
statements of Lemma 2.1 then we shall use the notation

Am := JAJ∗
A. (2.2)

In the following, we are going to prove some extremal properties of the operator Am.
More precisely, we will prove that the positive contractions extending A form an
operator interval whose smallest element is Am, while the largest one is I − (I − A)m.

Theorem 2.2. Let A : H ⊇ D → H be a positive and symmetric operator in the real
or complex Hilbert space H such that

∥Ah∥2 ≤ (Ah, h), h ∈ D. (2.3)

The set of positive symmetric contractions extending A form an operator interval
[Am, AM ], where AM = I − (I − A)m.

Proof. First we are going to check that Am = JAJ∗
A is the smallest positive symmetric

extension of A. To do so, by using the denseness of ran A in the energy space HA

we conclude that, for every g ∈ H,

0 = inf{⟨J∗
Ag + Ah, J∗

Ag + Ah⟩
A

: h ∈ D}
= (JAJ∗

Ag, g) + inf{(g, Ah) + (Ah, g) + (Ah, h) : h ∈ D}

Now if B is any positive contractive symmetric extension of A then

0 = (JAJ∗
Ag, g) + inf{(g, Bh) + (Bh, g) + (Bh, h) : h ∈ D}

≥ (JAJ∗
Ag, g) + inf{(g, Bh) + (Bh, g) + (Bh, h) : h ∈ H}

= (JAJ∗
Ag, g) + inf{⟨J∗

Bg, h⟩
B

+ ⟨h, J∗
Bg⟩

B
+ ⟨Bh, Bh⟩

B
: h ∈ H}

= (JAJ∗
Ag, g) − (JBJ∗

Bg, g) + inf{⟨J∗
Bg + Bh, J∗

Bg + Bh⟩
B

: h ∈ H}
= (JAJ∗

Ag, g) − (Bg, g),

thanks to the argument of the proof of Lemma 2.1, by applying it to B instead of A.
As a consequence, JAJ∗

A ≤ B.
To construct the maximal contractive extension we start by observing that

∥(I − A)h∥2 ≤ ((I − A)h, h), h ∈ D.

Thus the positive symmetric operator I − A fulfills the conditions of Lemma 2.1. Let
now B be any positive contractive extension of A, then our reasoning above yields

(I − A)m ≤ I − B.

Hence B = I − (I − B) ≤ I − (I − A)m which means just that AM := I − (I − A)m is
the maximum of all contractive positive extensions of A.
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Let now B be any operator such that Am ≤ B ≤ AM . Applying the
Cauchy–Schwarz inequality to the positive operator AM − B and to the vectors
h ∈ D and g ∈ H we get just

|((AM − B)h, g)|2 ≤ ((AM − B)h, h)((AM − B)g, g)
≤ ((AM − Am)h, h)((AM − B)g, g) = 0,

whence Bh = AM h = Ah, indeed.

3. REDUCTION OF THE KREIN-VON NEUMANN EXTENSION

In this section we deal with positive self-adjoint extendibility of possibly unbounded
operators. The essence of the argument we are going to use here is that the positive
self-adjoint extendibility of T will be reduced to the analysis of the positive symmetric
contraction A := (I + T )−1.

The main idea of our procedure is based on the observation that if S is an arbitrary
positive self-adjoint extension of T , then B := (I+S)−1 ∈ B(H) is a positive contractive
extension of A = (I + T )−1, such that

S = B−1 − I.

Conversely, if B is any contractive positive extension of A then S = B−1 − I is
a positive self-adjoint extension of T , provided it exists, i.e., ker B = {0}. Taking this
into account, the positive extendibility of T depends on whether A has any injective
contractive positive extension.
Lemma 3.1. Let A : D → H be a positive symmetric operator satisfying (2.3) and
denote by AM the maximal contractive positive extension of A. For a vector g ∈ H
the following statements are equivalent:

(i) g ∈ ker AM ,
(ii) there exists a sequence (gn)n∈N in D such that

(I − A)gn → g and ((I − A)gn, Agn) → 0.

Proof. First of all observe that AM g = 0 if and only if (AM g, g) = 0, that is,

∥g∥2 = ((I − A)mg, g).

Here the right hand side can be calculated as follows:

((I − A)mg, g) = − inf
h∈D

{(g, (I − A)h) + (g, (I − A)h) + ((I − A)h, h)}

= − inf
h∈D

{∥(I − A)h + g∥2 − ∥g∥2 − ∥(I − A)h∥2 + ((I − A)h, h)}

= ∥g∥2 − inf
h∈D

{∥(I − A)h + g∥2 + ((I − A)h, Ah)}.

From the above calculations, the equivalence between (i) and (ii) can be easily deduced.
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Let now T be a (not necessarily bounded) positive symmetric operator acting in
the Hilbert space H with domain dom T . It is straightforward that I + T is injective,
and that its inverse

A := (I + T )−1 (3.1)

acts as a contractive positive symmetric operator on D := ran(I + T ). Furthermore,
an immediate calculation shows that

∥Ah∥2 ≤ (Ah, h), h ∈ D.

This in turn means that A satisfies condition (ii) of Theorem 2.2, hence both the
minimal and maximal positive contractive extensions Am and AM of A do exist.
In what follows, we are going to analyze the relation between the positive self-adjoint
extensions of T and the operators Am and AM .

Proposition 3.2. Let T be a positive operator in the real or complex Hilbert space H
and let A := (I + T )−1. Then

ker AM = {g ∈ H : ∃(gn)n∈N ⊂ dom T, Tgn → g, (Tgn, gn) → 0}

Proof. Let g ∈ ker AM be any vector. According to Lemma 3.1, there exists (hn)n∈N
in D := ran(I + T )−1 such that

(I − A)hn → g and ((I − A)hn), Ahn) → 0.

Since we have I −A = T (I +T )−1 it follows that gn = (I +T )−1hn ∈ dom T , Tgn → g
and (Tgn, gn) → 0, which completes the proof.

The next theorem gives a characterization of positive self-adjoint extendibility of
(not necessarily densely defined) positive operators (cf. also [3, 24,25]).

Theorem 3.3. Let T be a positive symmetric operator in the Hilbert space H. Then
the following statements are equivalent:

(i) there is a positive self-adjoint extension S of T ,
(ii) ker AM = {0},
(iii) for every sequence (gn)n∈N of dom T such that Tgn → g and (Tgn, gn) → 0

it follows that g = 0.

In any case,
Tm := A−1

M − I (3.2)

is the smallest positive self-adjoint extension of T (i.e., (I + S)−1 ≤ (I + Tm)−1 holds
for every positive self-adjoint extension S of T ).

Proof. Let S be a positive self-adjoint extension of T and consider a sequence (gn)n∈N
of dom T such that Tgn → g and (Tgn, gn) → 0. Letting fn := S1/2gn we gain
a sequence (fn)n∈N of dom S1/2 such that fn → 0 and S1/2fn → g, hence g = 0 due
to closability of S1/2. This proves implication (i)⇒(iii).

The equivalence between (ii) and (iii) is established in Proposition 3.2.



Reduction of positive self-adjoint extensions 431

Assume now that ker AM = {0} so that A−1
M is a (densely defined) positive and

self-adjoint operator. In fact, AM ≤ I implies (AM )−1 ≥ I, hence Tm := (AM )−1 − I
is a positive and self-adjoint operator in H. A straightforward calculation shows that
Tm extends T . Hence (iii) implies (i).

Finally we prove that Tm is the smallest among the set of all positive self-adjoint
extensions of T . For let S be any positive self-adjoint extension of T . Then
(I + S)−1 ∈ B(H) is a positive contraction which extends A, hence (I + S)−1 ≤ AM .
Consequently, I + S ≥ (AM )−1, thus Tm ≤ S.

In the last corollary of this section we present an application which essentially
uses the fact that Theorem 3.3 is valid for non-densely defined operators too (see
also [26,27]):

Corollary 3.4. Let L be a densely defined linear operator between the real or complex
Hilbert space H and K. Then L∗L has (at least one) positive and self-adjoint extension.

Proof. We show that L∗L fulfills (iii) of Theorem 3.3. For take a sequence (gn)n∈N
from dom L∗L such that (L∗Lgn, gn) → 0 and L∗Lgn → g for some vector g. The
first condition entails Lgn → 0, hence g = 0 because of closedness of L∗. Theorem 3.3
completes then the proof.

4. REDUCTION OF THE FRIEDRICHS EXTENSION

In the preceding section we characterized those positive symmetric operators which
can be extended to a positive self-adjoint operator. In particular, we proved that if
the set of the positive self-adjoint extensions has a smallest element (provided it is not
empty). It is not hard to see that the largest positive self-adjoint extensions may exist
only when the domain of T is a total subspace. According to Krein’s famous result [15],
in the densely defined case, in addition to the smallest positive self-adjoint extension
there exists the largest one too. While the smallest extension of T was constructed from
the largest contractive extension of the bounded positive operator A = (I + T )−1, we
will use the smallest extension Am of A to gain the largest (Friedrichs) extension of T .

Lemma 4.1. Let A : H ⊇ D → H be a positive operator satisfying (2.3). Then

ker Am = ran A⊥.

Proof. Based on the construction presented in the proof of Lemma 2.1 we have

ker A⊥
m = ran Am = ran JA = ran A

which entails the desired identity.
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Theorem 4.2. Let T be a densely defined positive symmetric operator in the Hilbert
space H. Then ker Am = {0} and

TM := (Am)−1 − I

is a positive and self-adjoint extension of T . In fact, TM is the largest among the set
of all positive self-adjoint extensions of T .
Proof. Taking into account of identity

ran A = dom T,

the injectivity of Am follows from the preceding Lemma. Since Am ≤ I, it follows
that TM = (Am)−1 − I is a positive and self-adjoint operator which apparently
extends T . Finally, if S is any positive self-adjoint extension of T then (I + S)−1 is
a contractive positive extension of A. Hence Am ≤ (I + S)−1 from which we infer that
(Am)−1 − I ≥ S. This proves the theorem.

Corollary 4.3. Let T be a densely defined positive symmetric operator in the Hilbert
space H. A positive self-adjoint operator S is an extension of T if and only if
Tm ≤ S ≤ TM .
Proof. If S is a positive self-adjoint extension of T , then Tm ≤ S ≤ TM , according to
Theorems 3.3 and 4.2. On the contrary, if Tm ≤ S ≤ TM then (TM +I)−1 ≤ (S+I)−1 ≤
(Tm + I)−1 from which we infer that the positive contraction B := (S + I)−1 − I
extends A due to Theorem 2.2. This in turn means that T ⊂ S, as claimed.

Remark 4.4. From the proof of Corollary 4.3 it turns out that the map

S ∋ S 7→ (S + I)−1 ∈ A (4.1)

is a bijective correspondence between the set S of all positive self-adjoint extensions
of T and the set A of all contractive positive extensions of A = (I + T )−1. If we
consider the Krein transform K(T ) := (I −T )(I +T )−1 instead, then a similar bijective
correspondence can be given between the set of contractive symmetric extensions of
K(T ) and the set S, see e.g. [15]. With the help of an accurate description of all
contractive extensions of a given sub-operator [6, Theorem 1.3], T. Constantinescu
and A. Gheondea provided an explicit and versatile parametrization of the set S,
see [7, Theorem 3.3] and also [11, Theorem 2.3.10].

5. COMPLETION OF INCOMPLETE MATRICES

Let A0 be an incomplete block operator of the form

A0 :=
[
A11 A12
A21 ∗

]
(5.1)

on the orthogonal decomposition H = H1 ⊕ H2 of the Hilbert space H where
Aij ∈ B(Hj , Hi), i, j = 1, 2, except i = j = 2. Our completion problem is to find
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A22 ∈ B(H2, H2) (necessarily positive) operator such that the completed block operator
is a positive contraction. of course we may assume that A11 is a positive contraction
and A12 = A∗

21 because of the symmetry of A.
Taking

A1 :=
[
A11
A21

]
∈ B(H1, H)

we reduce the issue to our starting problem if A1 admits a positive contractive extension.
Moreover, the smallest extension (A1)m will be identified as the smallest positive con-
tractive completion of A0. Accordingly, A22 := P2(A1)mP2 is the smallest possible
completion of (5.1). (Here P2 denotes the orthogonal projection onto H2.)

Theorem 5.1. The block operator (5.1) has a positive contractive completion if and
only if

((A2
11 + A∗

21A21)h, h) ≤ (A11h, h) (h ∈ H1). (5.2)

Proof. Equality (5.2) simply expresses that the positive symmetric operator A1 satisfies
inequality (ii) of Lemma 2.1 and accordingly, A1 extends to a positive contraction
B ∈ B(H). It is clear that the block matrix representation of B along the decomposition
H = H1 ⊕ H2 is of the form

B =
[
A11 A∗

21
A21 A22

]

with some positive symmetric A22 ∈ B(H2).

Under the assumptions of Theorem 4.2, the smallest extension (A1)m of A1 can
be identified as the smallest positive contractive completion of A0. Accordingly,
A22 := P2(A1)mP2 is the smallest possible completion of (5.1). (Here, P2 denotes the
orthogonal projection onto H2.) On the other hand, (A1)M is obviously the largest con-
tractive positive extension of A1 and thus P2(A1)M P2 is identical with the largest block
completing A0 to a positive contraction. Reordering of inequality (5.2) expresses that

A∗
21A21 ≤ (I − A11)A11.

Using Douglas’ factorization theorem [8], this holds if and only if there exists a con-
traction D : H1 → H2 such that

A21 = D(IH1 − A11)1/2A
1/2
11 .

Taking into account the above considerations, as well as Theorem 2.2, we obtain the
following result:

Corollary 5.2. Let A0 : H1 → H1 ⊕ H2 be an incomplete block operator matrix of the
form (5.1) and introduce the notation H := (IH1 − A11)1/2A

1/2
11 . Then the following

assertions are equivalent:

(i) there exists a (necesserily positive) A22 : H2 → H2 such that the completed block
operator is a positive contraction,

(ii) A11 ≥ 0 and there exists a contraction D : H1 → H2 such that A21 = DH.
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In any case, the set of positive contractive completions of A0 is identical with
{[

A11 HD∗

DH A22

]
: P2(A1)m|H2 ≤ A22 ≤ P2(A1)M |H2

}
.

For contractive complementation of (symmetric) contractions, we refer the reader
to [6, 7, 11].

Remark 5.3. Closing the section we note that the usual completion problem asks for
a bounded (but not necessarily contractive) positive symmetric completion Of course,
this means that A1 must satisfy the following identity:

∥A1h∥2 ≤ α(A1h, h), h ∈ H1.

Assuming that α is the smallest possible constant, we have that (A1)M is equal to the
smallest positive symmetric extension of A1 with norm α. Accordingly,

(A1)M := α − (α − A1)m

is the largest such operator having norm α.

6. NORM PRESERVING SELF-ADJOINT EXTENSIONS

The key idea in Krein’s method of finding all positive and self-adjoint extensions
of a positive operator T was in reducing the original problem to construct all the
extensions of the transformation

A := (I − T )(I + T )−1

which are defined everywhere and which are self-adjoint and of norm at most 1.
Although we choosed another way to describe all positive and self-adjoint extensions
of T , Lemma 2.1 and Theorem 2.2 enable us to provide a quite short and simple
proof of Krein’s famous result [15, Theorem 2] on contractive self-adjoint extensions
(cf. also [7, Theorem 3.1] and [11, Lemma 2.3.7]).

Theorem 6.1. Let T be a norm one symmetric operator on a linear subspace D of
a real or complex Hilbert soace H. Then T always has a self-adjoint norm preserving
contractive extension to the whole space H. Moreover, the exist the smallest and the
largest norm preserving self-adjoint extensions Tµ and TM of T .

Proof. Introduce the linear operators A+, A− by setting

A+ := 1
2(I + T ), A− := 1

2(I − T ). (6.1)

An immediate calculations shows that

∥A±h∥2 ≤ (A±h, h), h ∈ D.
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By Theorem 2.2, the corresponding smallest contractive (hence norm preserving)
positive extensions (A±)m ∈ B(H) exist and one easily verifiest that

Tµ := 2(A+)m − I and TM := I − 2(A−)m

are self-adjoint extensions of T having norm one. Furthermore, if S ∈ B(H) is any
norm-one self-adjoint extension of T , then 1

2 (I +S) and 1
2 (I −S) are positive extensions

of A+ and A−, respectively, whence

(A+)m ≤ 1
2(I + S) and (A−)m ≤ 1

2(I − S),

which apparently imply Tµ ≤ S ≤ TM .

We conclude the paper with an interesting corollary of Theorem 6.1 on self-adjoint
unitary extensions:

Corollary 6.2. Assume that T is a symmetric isometry, then Tµ and TM are
self-adjoint unitary extensions of T .

Proof. Being a symmetric isometry, T satisfies

∥(I ± T )h∥2 = 2((I ± T )h, h), h ∈ H1. (6.2)

Let us apply now the proof of Lemma (2.1) to the positive operators A± in (6.1).
Then (6.2) turns into

∥J±(A±h)∥2 = (A±h, h) = ⟨A±h, A±h⟩± , h ∈ D,

which means that J± : H± → H are isometries. According to Lemma 2.1 and
Theorem 2.2 we have J±J∗

± = (A±)m, it follows that

∥Tµg∥2 = ∥2J−J∗
−g − g∥2

= 4∥J−J∗
−g∥2 − 4(J−J∗

−g, g) + ∥g∥2

= 4(J−(J∗
−J−)J∗

−g, g) − 4(J−J∗
−g, g) + ∥g∥2 = ∥g∥2,

and similarly,

∥TM g∥2 = ∥g − 2J+J∗
+g∥2

= ∥g∥2 + 4∥J+J∗
+g∥2 − 4(J+J∗

+g, g)
= ∥g∥2 + 4(J+(J∗

+J+)J∗
+g, g) − 4(J+J∗

+g, g) = ∥g∥2.

Hence the self-adjoint operators Tm, TM are uniteries.



436 Zsigmond Tarcsay and Zoltán Sebestyén

Acknowledgements
Zsigmond Tarcsay was supported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences, and by the ÚNKP–22-5-ELTE-1096 New National
Excellence Program of the Ministry for Innovation and Technology. Project no.
TKP2021-NVA-09 has been implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme. The authors are
extremely grateful to the anonymous referee whose suggestions and comments much
improved the exposition of the paper.

REFERENCES

[1] W.N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520–525.

[2] W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975),
60–71.

[3] T. Ando, K. Nishio, Positive, selfadjoint extensions of positive symmetric operators,
Tohoku Math. J. (2) 22 (1970), 65–75.
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