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We study strong core and Pareto-optimal solutions for multiple partners matching problem under 
lexicographic preference domains from a computational point of view. The restriction to the 
two-sided case is called stable many-to-many matching problem and the general one-sided case 
is called stable fixtures problem. We provide an example to show that the strong core can be 
empty even for many-to-many problems, and that deciding the non-emptiness of the strong core 
is NP-hard. On the positive side, we give efficient algorithms for finding a near feasible strong 
core solution and for finding a fractional matching in the strong core of fractional matchings. 
In contrast with the NP-hardness result for the stable fixtures problem, we show that finding 
a maximum size matching that is Pareto-optimal can be done efficiently for many-to-many 
problems. Finally, we show that for reverse-lexicographic preferences the strong core is always 
non-empty in the many-to-many case.

1. Introduction

Roth (1984) proposed the study of many-to-many matching markets in the context of job markets, where each worker can have 
multiple jobs, and each firm can employ multiple workers, but at most one contract can be signed between any worker and firm. The 
agents of such a market have choice functions over the possible contracts involving them, that specifies a subset for any given set of 
contracts. The most well studied solution concept is stability. A solution is setwise stable if there are no alternative contracts outside 
of the solution set that would be selected by all parties in a blocking coalition (possibly rejecting some existing contracts). Pairwise 
stability means the lack of a single blocking contract. Roth showed that setwise and pairwise stable solutions coincide and exist 
for specific substitutable choice functions, and a number of extensions and structural results have been obtained in the follow-up 
literature (Roth, 1985; Blair, 1988; Fleiner, 2003; Klaus and Walzl, 2009; Klijn and Yazıcı, 2014).

In this paper we are focusing on the concept of strong core and Pareto-optimality under lexicographic and reverse-lexicographic 
preferences. The strong core is a classical solution concept in cooperative game theory, meaning that there is no weakly blocking 
coalition with an alternative matching for this coalition (without using outside contracts) that is a weak improvement for all of 
them, and strict improvement for at least one member. A solution is Pareto-optimal if the coalition containing all agents (called 
grand coalition) is not weakly blocking. It was already observed by Blair (1988) that the (strong) core and the set of pairwise stable 
solutions can be independent for many-to-many matching problems under substitutable preferences. Further examples of this kind 
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were provided in Sotomayor (1999) and Konishi and Ünver (2006) for more restricted responsive preferences. In this paper we 
provide new examples for even more restricted lexicographic preferences.

What is the relevance of strong core solutions in practice? The bilateral contracts between agents can create strong bounds, even 
if two agents are not transacting directly, but if they have a connection through third parties then they may care about the well-being 
of each other. In particular, one would not seek a new transaction with another agent, if this new transaction would result in a worse 
or terminated deal for an agent in their connected network.

Let us consider a simple example to make this point clear. Suppose that we have four agents, 𝑎, 𝑏, 𝑐, and 𝑑 and currently they are 
transacting with each other through bilateral contracts 𝑎𝑏, 𝑏𝑐 and 𝑐𝑑. Now, 𝑎 and 𝑑 have a new potential collaboration, that would 
be beneficial for both 𝑎 and 𝑑, however if this happens then 𝑎 would cancel her partnership with 𝑏, as 𝑎 may have capacity for one 
contract only, making 𝑏 worse off. Note that 𝑏 and 𝑑 are connected through 𝑐 by two bilateral contracts, and suppose that these 
contracts are important for each corresponding pair, so neither of these agents want to break them in any case. Therefore 𝑑 cannot 
engage in the blocking deal with 𝑎, since as a result 𝑎 would drop her contract with 𝑏, and 𝑏 would be worse off. The fact that 𝑏 is 
connected to 𝑑 through 𝑐 with important contracts means that they can only form a blocking coalition together with outsiders. So, 
in this situation there is no blocking coalition where some agent would strictly improve and the others weakly improve.

Are such situations realistic in real world markets? Let us just substitute 𝑎 with Russia, 𝑏 with Ukraine, 𝑐 with USA, and 𝑑 with 
Germany. Russia is trading gas with Ukraine, but they would prefer trading with Germany instead directly through a new channel 
(Nord Stream 2) and then terminate their deals with Ukraine. USA has a strong partnership with both Germany and Ukraine that 
neither want to break. Germany and Ukraine do not trade directly, but they are both strongly linked to USA, that make them all 
belong to an informal coalition. Since the new trade between Germany and Russia would be harmful for Ukraine, it won’t be approved 
by this informal coalition if the links through the USA are strong enough.1

Why do we study lexicographic preferences? From a theoretical point of view this is the simplest case of preferences over bundles. 
When the agents are providing their strict rankings over their potential partners then lexicographic preferences over the bundles 
are generated in a unique, straightforward way. The responsive and the even more general substitutable preferences have a large 
spectrum, and a central coordinator of such a market cannot expect the agents to express their preferences over the bundles, since 
these can be very complex and also exponential in size. Studying the concept of (pairwise) stability can be still tractable based on 
the preferences over the individual partners, but for regarding the strong core or Pareto-optimality one would need to make certain 
assumptions to deal with the ambiguity of possible preference extensions for bundles.2 We shall also note that our counterexamples 
and hardness results for lexicographic preferences are naturally valid for all the above mentioned domains, namely for additive and 
responsive preferences as well.

1.1. Related literature

Many-to-many matching markets have been studied first by Roth in (1984) and (1985). He considered a model with multiple 
possible contract terms between any worker-firm pair, from which they may select at most one. The agents at both sides select the 
best contracts from a possible set according to their choice functions. Roth showed that if these choice functions are substitutable then 
a (pairwise) stable matching always exists, and can be obtained by a generalised deferred-acceptance algorithm. The lattice property 
of (pairwise) stable solutions was proved in Blair (1988), and even more general results for the existence and lattice structure were 
obtained by Fleiner for substitutable choice functions by using Tarski’s fixpoint theorem (Fleiner, 2003). Klaus and Walzl studied 
special versions of setwise stability under different domain restrictions on substitutable preferences (Klaus and Walzl, 2009). Klijn 
and Yazici proved that the rural hospitals theorem holds for substitutable and weakly separable preferences in many-to-many markets 
(Klijn and Yazıcı, 2014).

The efficient computation of pairwise stable solutions for the stable many-to-many matching problem was demonstrated in Baıou 
and Balinski (2000), and the problem of computing an optimal solution with respect to the overall rank of the matching was given 
in Bansal et al. (2003). For the nonbipartite stable fixtures problem, Irving and Scott (2007) provided a linear time algorithm for 
finding a pairwise stable solution, if one exists. Finally, Cechlárová and Fleiner (2005) extended these tractability results for the case 
of multiple contracts for the stable fixtures problem.

Regarding the concept of strong core, for many-to-one stable matching problems under responsive preferences the strong core 
coincides with the set of pairwise stable solutions, as shown e.g. in Roth and Sotomayor (1990). However, for the stable many-to-
many matching problem Sotomayor provided examples to show that the strong core and the set of pairwise stable solutions can be 
disjoint (Sotomayor, 1999). Konishi and Ünver (2006) gave an example for a many-to-many matching problem under responsible 
preferences where the strong core is empty. (However, we shall remark that their example allowed preferences, where one agent 
finds another agent unacceptable alone, but acceptable when bundled with another agent.) In this paper we strengthen these results 
by giving an example for the emptiness of the strong core under the restricted domain of lexicographic preferences (where, by 
definition, an unacceptable agent can never be part of an acceptable bundle).

1 We provided this example in an earlier version of the paper, well before Russia invaded Ukraine. We decided to keep it, although we know that the current 
situation is much more serious and complex. We note that a game theoretical analysis about the case of Nord Stream 2 can be found in Balázs et al. (2020).

2 As an example, we can mention the concept of possible and necessary Pareto-optimality for responsive preferences, that was studied for allocation problems in 
Aziz et al. (2019). For given linear orders by the agents over individual partners, a solution is possibly Pareto-optimal if it is Pareto-optimal for at least one possible 
responsive extension of the individual preferences, and it is necessarily Pareto-optimal if it is Pareto-optimal for all possible responsive extension of the individual 
218
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Table 1

A summary of our results for the lexicographic preference domain.? denotes 
that the corresponding problem is left open in this paper.

Lexicographic preferences Many-to-many/Fixtures

Verification Search Complexity

Strong core coNP-c/coNP-c [T 3.4] NP-h/NP-h [T 3.2]
Weak core coNP-c/coNP-c [T 5.3] ?/NP-h [T 5.1]
Pareto optimal solution coNP-c/coNP-c [T 3.3] P/P

Table 2

A summary of our results for the Reverse-lexicographic preference domain.

RL-preferences Many-to-many/Fixtures

Verification Search Complexity

Strong core coNP-c/coNP-c [T 6.4] P [T 6.2] /NP-h [T 6.3]
Pareto optimal solution coNP-c/coNP-c [T 6.5] P/P

Table 3

A summary of our main positive results about relaxations of the strong core and 
maximum size Pareto-Optimal solutions.

Relaxed/max size solutions Many-to-many/Fixtures

Lexicographic RL

Fractional Strong core P/P [T 4.2] P/P [T 6.8]
Near-feasible strong core P/P [T 4.1] P/P [T 6.10]
Maximum size Pareto-optimal P [T 3.5]/ NP-h [T 3.6] P/P [T 6.6]

Lexicographic preferences for many-to-many matching problems with one-sided preferences have been studied in Aziz et al. 
(2019); Cechlárová et al. (2014), and Hosseini and Larson (2019). However, we are not aware of any paper on lexicographic 
preferences for multiple partners matching problems.

Furthermore, we consider reverse-lexicographic preferences, where the agents care mostly about their number of (acceptable) 
partners they receive in the matching, and this being equal they prefer the matching where their worst matched partner is as good 
as possible, and so on. Such preferences were studied in Kwanashie et al. (2014) under the name of generous maximum matching in 
the context of Student / Project allocation, where only one side (students’) has preferences. Finally, we also study the weak core of 
stable fixtures problem under lexicographic preferences.

1.2. Our contribution

First we provide an example showing that the strong core of stable many-to-many matching problems can be empty even for 
lexicographic preferences in Section 3. Later in that section we prove several hardness results. We show that deciding whether a 
stable many-to-many matching problem has non-empty strong core is NP-hard. We also prove that it is co-NP-complete to decide 
whether a given matching for a stable many-to-many matching problem is Pareto-optimal or whether it is in the strong core. We 
conclude Section 3 by showing that finding a maximum size Pareto-optimal matching for the stable fixtures problem is NP-hard, but 
on the positive side it can be done efficiently in the many-to-many variant. More on the positive side, in Section 4 we give efficient 
algorithms for finding a strong core solution for slightly adjusted capacities (which we call near feasible strong core solution), and 
also for finding a fractional matching that is in the strong core of fractional matchings, even for the stable fixtures problem. In 
Section 5 we consider the weak core and show that for the stable fixtures problem, both the verification and existence problems are 
computationally hard in general, while we leave open the existence problem and its complexity in the many-to-many case. Finally, 
in Section 6 we consider the corresponding questions for a similar preference domain, which we call reverse-lexicographic (RL) 
preferences, and we show that every stable matching belongs to the strong core for such preferences, and thus we can always find 
a strong core solution efficiently for many-to-many markets. However, we show that deciding whether a given matching belongs to 
the strong core is coNP-complete and that deciding the existence of a strong core solution is NP-complete for the fixtures variant. 
Then, we show that similarly to the lexicographic case, we can find fractional and near feasible strong core solutions efficiently.

Our results are summarized in Table 1, 2 and 3.

2. Preliminaries

For a positive integer 𝑛, we denote {1, 2, … , 𝑛} by [𝑛]. When defining the multiple partners matching problem, we distinguish 
between the two-sided stable many-to-many matching problem, and the one-sided stable fixtures problem, that we define as follows. Let 
219

𝐺 = (𝑁, 𝐸) denote the underlying graph, where the node set 𝑁 represents the agents and we have an undirected edge 𝑎𝑏 ∈𝐸(𝐺) if 
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the two corresponding agents find each other mutually acceptable. For each agent 𝑎, we denote by 𝐴(𝑎) the edges between 𝑎 and the 
acceptable partners of 𝑎. Let 𝑘(𝑎) denote the (integer) capacity of agent 𝑎. We assume that every agent 𝑎 has a strict preference order 
>𝑎 over the agents acceptable for her (or alternatively, over the adjacent edges to 𝑎), where 𝑏 >𝑎 𝑐 means that 𝑎 prefers 𝑏 to 𝑐. We 
also assume, that each >𝑎 preference list has ∅ as its last element, meaning that 𝑎 prefers each acceptable partner to being alone. Let 
𝑀 ⊂𝐸. If 𝑀(𝑎) denotes the set of edges incident to node 𝑎 in 𝑀 (that is the set of pairs in which agent 𝑎 is involved in the solution), 
then the feasibility of the matching can be described with condition |𝑀(𝑎)| ≤ 𝑘(𝑎) for every agent 𝑎 ∈𝑁 . If, for a matching 𝑀 the 
above condition is satisfied with equality then we say that the agent is saturated, otherwise she is unsaturated. The solution of our 
problem is a 𝑘-matching, that is a set of edges 𝑀 ⊂𝐸 that is feasible, so no capacity is violated. By abuse of notation, we call 𝑘-matchings 
simply matchings in this paper. We call a matching 𝑀 complete, if it saturates every agent. When 𝐺 is non-bipartite then we get the 
stable fixtures problem (Irving and Scott, 2007), and when 𝐺 is bipartite then we get the stable many-to-many matching problem, see 
e.g. Baıou and Balinski (2000). To follow the usual conventions, we call the two sides in this case the men and women respectively.

The classical solution concept for these problems is (pairwise) stability. A matching 𝑀 is stable if there is no blocking pair. A pair 
𝑎𝑏 ∉𝑀 is blocking, if 𝑎 is either unsaturated, or there is 𝑎𝑐 ∈𝑀 such that 𝑏 >𝑎 𝑐, and likewise, 𝑏 is either unsaturated or there is 
𝑏𝑑 ∈𝑀 such that 𝑎 >𝑏 𝑑.

When all the capacities are unit then for two-sided problems we get the stable marriage problem, and the one-sided case is called 
stable roommates problem, as defined by Gale and Shapley (1962). Gale and Shapley gave an efficient algorithm for finding a stable 
matching for the marriage case, and demonstrated with an example that stable matching may not exist for the roommates case. Irving 
(1985) gave a linear time algorithm that can find a stable solution for the roommates problem, if one exists. The results are similar 
for the capacitated case, a stable solution always exists for two-sided problems and can be computed in linear time by a generalised 
Gale-Shapley type algorithm, see e.g. Baıou and Balinski (2000). For the stable fixtures Irving and Scott (2007) provided a linear 
time algorithm to find a stable solution, if one exists.

In this paper we focus on the strong core and Pareto-optimality of the solutions, so we need to extend the preferences of the agents 
to the sets of partners. Let ≻𝑎 denote the preferences of agent 𝑎 over the possible sets of partners (or alternatively over the possible 
sets of adjacent edges). We will assume that the preferences of the agents are lexicographic in the sense that they mostly care about 
their best partner, and then about their second best partner, and so on. Formally, we define the preference relation ≻𝑎 for agent 𝑎
over each acceptable partner sets 𝑆, 𝑇 ⊂ 𝐴(𝑎) in the following way. Consider the symmetric difference 𝑆△ 𝑇 = (𝑆 ⧵ 𝑇 ) ∪ (𝑇 ⧵ 𝑆). 
We say that 𝑎 lexicographically prefers 𝑆 to 𝑇 , denoted by 𝑆 ≻𝑎 𝑇 , if the best element of 𝑆△ 𝑇 according to >𝑎 is in 𝑆 . Note that 
lexicographic preferences are strict over 𝐴(𝑎) by definition. Furthermore, we say that a matching 𝑀 is lexicographically better than 
𝑀 ′ for 𝑎, if (𝑀 ∩𝐴(𝑎)) ≻𝑎 (𝑀 ′ ∩𝐴(𝑎)).

We also extend these definitions to fractional matchings. We define fractional matchings as 𝑓𝑀 ∶ 𝐸 → [0, 1] functions, such that ∑
𝑢𝑣∈𝐴(𝑎) 𝑓

𝑀 (𝑢𝑣) ≤ 𝑘(𝑎) for every 𝑎 ∈ 𝑁 . A fractional matching is half-integral, if 𝑓𝑀 (𝑒) ∈ {0, 12 , 1} for each edge 𝑒 ∈ 𝐸. For a 
fractional matching, the fractional partner set 𝑓𝑀 (𝑎) in 𝑓𝑀 of an agent 𝑎 is just 𝑓𝑀 restricted to {𝑎𝑏 ∈ 𝐴(𝑎)}. We define a strict 
preference order over each such fractional partner set. Let 𝑓𝑆, 𝑓𝑇 ∶ {𝑎𝑏 ∈ 𝐴(𝑎)} → [0, 1] be two fractional partner set. We define 
𝑓𝑆 △ 𝑓𝑇 to be those edges 𝑒, for which 𝑓𝑆 (𝑒) ≠ 𝑓𝑇 (𝑒) holds. We say that 𝑎 lexicographically prefers 𝑓𝑆 to 𝑓𝑇 , if for the best element 
𝑎𝑏 in 𝑓𝑆 △ 𝑓𝑇 according to >𝑎 it holds that 𝑓𝑆 (𝑎𝑏) > 𝑓𝑇 (𝑎𝑏). Note that this induces a strict ranking over all fractional acceptable 
partner sets. Also, if restricted to (integral) matchings, it just gives back the original definition.

In Section 6 we also consider reverse-lexicographic preferences, which are defined as follows. Take two sets 𝑆, 𝑇 ⊂ 𝐴(𝑎), for some 
agent 𝑎. Then, 𝑆 is reverse-lexicographically preferred to 𝑇 by 𝑎, if and only if either |𝑆| > |𝑇 | holds, or |𝑆| = |𝑇 | and the worst 
element in 𝑆 △ 𝑇 in the order >𝑎 is in 𝑇 . Informally, we can describe reverse-lexicographic ordering as follows. Take two sets 
𝑆, 𝑇 ⊂ 𝐴(𝑎). Take the 𝑘(𝑎) places indexed by 𝑖 = 1, … 𝑘(𝑎) that 𝑎 has, then fill these up by assigning the best partner of 𝑎 in 𝑆 (resp. 
𝑇 ) to place 1, the second best to place 2, etc. Of course, some of the last places may remain empty, if 𝑎 is unsaturated in 𝑆 (resp. 𝑇 ). 
Now, let 𝑙 be the index of the last place, where these two vectors are different. Then, 𝑎 reverse-lexicographically prefers 𝑆 to 𝑇 , if 
this 𝑙-th coordinate is better for 𝑆 than for 𝑇 , according to the order >𝑎 (recall that for each acceptable partner 𝑏 for 𝑎, it holds that 
𝑏 >𝑎 ∅). We also call reverse-lexicographic preferences RL-preferences for short.

We can also extend the notion of RL-preferences for the fractional case, as follows. Let 𝑓𝑆, 𝑓𝑇 be two fractional partner sets 
and let 𝑎 be an agent. Then, 𝑎 RL-prefers 𝑓𝑆 to 𝑓𝑇 , if and only if either |𝑓𝑆 (𝑎)| > |𝑓𝑇 (𝑎)| (where |𝑓𝑆 (𝑎)| = ∑

𝑒∈𝐴(𝑎) 𝑓
𝑆 (𝑒)) or 

|𝑓𝑆 (𝑎)| = |𝑓𝑇 (𝑎)| and 𝑓𝑆 (𝑎𝑏) < 𝑓𝑇 (𝑎𝑏) for the worst element 𝑎𝑏 in 𝑓𝑆 △ 𝑓𝑇 according to >𝑎.
A matching 𝑀 is in the weak core, if there is no blocking coalition 𝑆 ⊂ 𝑁 with an alternative matching 𝑀 ′ on 𝑆 that is strictly 

preferred by all the members of 𝑆 , that is 𝑀 ′(𝑎) ≻𝑎 𝑀(𝑎) for every 𝑎 ∈ 𝑆 . A matching 𝑀 is in the strong core, if there is no weakly 
blocking coalition 𝑆 with alternative matching 𝑀 ′ on 𝑆 that is weakly preferred by all the members and strictly preferred by at least 
one member in 𝑆 . To further distinguish the cases of weakly blocking and blocking coalitions, we sometimes call the latter strictly 
blocking coalitions. A matching is Pareto-optimal if it is not weakly blocked by 𝑁 , which we call the grand coalition. A matching 
is weakly Pareto-optimal, if it is not (strictly) blocked by 𝑁 . We say that a matching 𝑀 ′ (Pareto)-dominates a matching 𝑀 , if it 
holds that 𝑀 ′(𝑎) ≻𝑎 𝑀(𝑎) or 𝑀 ′(𝑎) =𝑀(𝑎) for each agent 𝑎 and 𝑀 ′(𝑎) ≻𝑎 𝑀(𝑎) for at least one of them. A matching 𝑀 ′ strictly 
(Pareto)-dominates a matching 𝑀 , if 𝑀 ′(𝑎) ≻𝑎 𝑀(𝑎) for each agent 𝑎 ∈𝑁 .

Examples for stability versus core property

Here we provide two examples to demonstrate the differences between stable matchings, strong core and Pareto-optimal match-
220
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Fig. 1. Example 3. The numbers on the edges indicate the preferences, i.e. 1 means best, 2 means second best, etc. The only complete matching 𝑀 is shown by the 
bold edges.

Example 1
We have four agents on both sides, 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐵 = {𝑥, 𝑦, 𝑧, 𝑤} having capacity two each, and with the following linear 

preferences on their potential partners:

𝑎 ∶ 𝑥 > 𝑧 >𝑤 > 𝑦 𝑥 ∶ 𝑏 > 𝑐 > 𝑑 > 𝑎

𝑏 ∶ 𝑦 > 𝑧 >𝑤 > 𝑥 𝑦 ∶ 𝑎 > 𝑐 > 𝑑 > 𝑏

𝑐 ∶ 𝑥 > 𝑦 𝑧 ∶ 𝑎 > 𝑏

𝑑 ∶ 𝑥 > 𝑦 𝑤 ∶ 𝑎 > 𝑏

Here, the unique pairwise stable solution is 𝑀 = {𝑎𝑧, 𝑎𝑤, 𝑏𝑧, 𝑏𝑤, 𝑐𝑥, 𝑐𝑦, 𝑑𝑥, 𝑑𝑦}, and the unique strong core solution is 𝑀 ′ =
{𝑎𝑥, 𝑎𝑦, 𝑏𝑥, 𝑏𝑦} when we assume that agents have lexicographic preferences. Note that both of these solutions are Pareto-optimal.

The next, extended example shows that the unique stable solution may not even be Pareto-optimal.

Example 2
We have five agents on both sides, 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑝} and 𝐵 = {𝑥, 𝑦, 𝑧, 𝑤, 𝑞} having capacity two each, and with the following linear 

preferences on their potential partners:

𝑎 ∶ 𝑥 > 𝑦 > 𝑧 > 𝑞 >𝑤 𝑥: 𝑑 > 𝑐 > 𝑏 > 𝑝 > 𝑎

𝑏 ∶ 𝑦 > 𝑥 >𝑤 > 𝑞 > 𝑧 𝑦 ∶ 𝑐 > 𝑑 > 𝑎 > 𝑝 > 𝑏

𝑐 ∶ 𝑧 > 𝑤 > 𝑥 > 𝑞 > 𝑦 𝑧 ∶ 𝑏 > 𝑎 > 𝑑 > 𝑝 > 𝑐

𝑑 ∶ 𝑤> 𝑧 > 𝑦 > 𝑞 > 𝑥 𝑤 ∶ 𝑎 > 𝑏 > 𝑐 > 𝑝 > 𝑑

𝑝 ∶ 𝑥 > 𝑦 > 𝑧 >𝑤 > 𝑞 𝑞 ∶ 𝑎 > 𝑏 > 𝑐 > 𝑑 > 𝑝

Here, the unique pairwise stable solution is 𝑀 = {𝑎𝑦, 𝑎𝑧, 𝑏𝑥, 𝑏𝑤, 𝑐𝑤, 𝑐𝑥, 𝑑𝑧, 𝑑𝑦, 𝑝𝑞}, and the unique strong core solution is 𝑀 ′ =
{𝑎𝑥, 𝑎𝑤, 𝑏𝑦, 𝑏𝑧, 𝑐𝑧, 𝑐𝑦, 𝑑𝑤, 𝑑𝑥, 𝑝𝑞}. Note that 𝑀 ′ also Pareto-dominates 𝑀 , so no stable matching is Pareto-optimal for this example.

Example 3
We have a stable fixtures problem with ten agents and the following preferences:

𝑥1 ∶ 𝑥2 > 𝑥4 > 𝑥3
𝑥2 ∶ 𝑥1 > 𝑥5 > 𝑥6
𝑥3 ∶ 𝑥7 > 𝑥1
𝑥4 ∶ 𝑥8 > 𝑥1
𝑥5 ∶ 𝑥9 > 𝑥2
𝑥6 ∶ 𝑥10 > 𝑥2
𝑥7 ∶ 𝑥3 > 𝑥8
𝑥8 ∶ 𝑥4 > 𝑥7
𝑥9 ∶ 𝑥5 > 𝑥10
𝑥10 ∶ 𝑥6 > 𝑥9

The capacities of agents 𝑥1 and 𝑥2 are 2, the capacities of the others are 1. Here the only complete matching is 𝑀 =
{𝑥1𝑥3, 𝑥1𝑥4, 𝑥2𝑥5, 𝑥2𝑥6, 𝑥7𝑥8, 𝑥9𝑥10}, but the matching 𝑀 ′ = {𝑥1𝑥2, 𝑥3𝑥7, 𝑥4𝑥8, 𝑥5𝑥9, 𝑥6𝑥10} strictly Pareto-dominates it, so there 
is no complete Pareto-optimal matching in this instance. The example is illustrated in Fig. 1. We will see in Section 3 that for the 
stable many-to-many matching problem a maximum size Pareto-optimal matching always exists and one can be found in polynomial 
time, but the same problem is NP-hard for the stable fixtures problem.

3. Strong core and Pareto-optimal solutions

In this section we study the basic questions related to finding or verifying strong core or Pareto-optimal solutions. For the many-
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to-one case, it is known that a stable matching is always in the strong core, hence the strong core is always non-empty, even if the 
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Fig. 2. An illustrative image of the counterexample used in Theorem 3.1. The numbers on the edges indicate the preferences (1 is best).

preferences are only responsive (Roth and Sotomayor, 1990). Hence, it would be tempting to think that strong core solutions should 
always exist in the many-to-many case, if the preferences are well-structured, i.e. lexicographic. However, we present an instance 
which does not admit a strong core solution, and then we also show that deciding if a stable many-to-many matching problem admits 
a strong core solution is NP-hard. We remark that in this section and the next section all preferences are lexicographic.

Theorem 3.1. The strong core of a stable many-to-many matching problem may be empty under lexicographic preferences.

Proof. We construct an instance where the strong core is empty, illustrated in Fig. 2. The construction is the following: There are 
12 agents, on one side we have agents 𝑎 and 𝑏 with capacity 2, 𝑐, 𝑑, 𝑥′, 𝑦′ with capacity one, and on the other side we have agents 
𝑥, 𝑦 with capacity 2 and 𝑢, 𝑣, 𝑎′, 𝑏′ with capacity one. The preferences of the agents are shown as follows:

𝑎 ∶ 𝑢 > 𝑦 > 𝑣 > 𝑎′ > 𝑥 𝑥 ∶ 𝑑 > 𝑎 > 𝑐 > 𝑥′ > 𝑏
𝑏 ∶ 𝑣 > 𝑥 > 𝑢 > 𝑏′ > 𝑦 𝑦 ∶ 𝑐 > 𝑏 > 𝑑 > 𝑦′ > 𝑎
𝑐 ∶ 𝑥 > 𝑦 𝑢 ∶ 𝑏 > 𝑎

𝑑 ∶ 𝑦 > 𝑥 𝑣 ∶ 𝑎 > 𝑏

𝑥′ ∶ 𝑥 𝑎′ ∶ 𝑎

𝑦′ ∶ 𝑦 𝑏′ ∶ 𝑏

Let us suppose that there is a matching 𝑀 in the strong core. Clearly, if any one of {𝑐, 𝑑, 𝑢, 𝑣} is unmatched, then they form 
a blocking coalition with their second choice, since they are their second choice’s best option. This also means that the middle 
four cycle 𝐶 = {𝑎𝑥, 𝑥𝑏, 𝑏𝑦, 𝑦𝑎} cannot be included either, since they are the only possible partners of {𝑐, 𝑑, 𝑢, 𝑣}. Hence any possible 
matching 𝑀 in the strong core has to form an acyclic subgraph in the acceptability graph.

Observe that 𝑎, 𝑏, 𝑥, 𝑦 must be saturated, as otherwise they would block either with their dummy partner 𝑎′, 𝑏′, 𝑥′ or 𝑦′ and the 
rest of the component in 𝑀 containing them (if it includes some other agents) or with their third best partner (who considers them 
best), in the case when they only obtain their dummy partner in 𝑀 .

Suppose that there is an edge of the four cycle 𝐶 that is included in 𝑀 , suppose by symmetry it is 𝑎𝑥. If 𝑎𝑎′ ∉𝑀 , then 𝑎𝑎′ would 
block 𝑀 with the rest of 𝑎’s component in 𝑀 ⧵ {𝑎𝑥}, because 𝑥 cannot be a part of that component, as 𝑀 did not contain cycles. If 
𝑎𝑎′ ∈𝑀 , then the coalition {𝑎, 𝑎′, 𝑣} with the matching 𝑀 ′ = {𝑎𝑎′, 𝑎𝑣} block. So no edges of 𝐶 can be in 𝑀 .

If any of {𝑎𝑢, 𝑏𝑣, 𝑥𝑑, 𝑦𝑐} is included in the matching, then 𝑢, 𝑣, 𝑐 or 𝑑 would block with 𝑏, 𝑎, 𝑥 or 𝑦 and their best partner in 
𝑀 respectively, as they must have a partner that they consider worse and can drop (they are saturated and no edge of 𝐶 is in 𝑀). 
This means that the only possible choice left for 𝑀 is {𝑎𝑣, 𝑎𝑎′, 𝑏𝑢, 𝑏𝑏′, 𝑦𝑑, 𝑦𝑦′, 𝑥𝑐, 𝑥𝑥′}, but then the coalition {𝑎, 𝑏, 𝑥, 𝑦} with the four 
cycle 𝐶 in the middle would block, a contradiction. So the strong core of the instance is indeed empty. □

3.1. Finding strong core solutions

In this section we show that it is computationally intractable to find strong core solutions for the stable many-to-many matching 
problem.

Theorem 3.2. Deciding whether the strong core of a stable many-to-many matching problem is non-empty is NP-hard under lexicographic 
preferences, even if each capacity is at most two.

Proof. We reduce from a special version of the NP-complete COM-SMTI problem, which was shown to be NP-hard by Manlove et al. 
(2002). Here, we are given an instance 𝐼 = (𝑈, 𝑊 , 𝐸, ≻) of the stable marriage problem with ties and incomplete lists, such that there 
are no ties in the preferences of the men 𝑈 = {𝑢1, .., 𝑢𝑛} and the set of woman can be partitioned into two parts 𝑊 =𝑊 𝑠 ∪𝑊 𝑡 =
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{𝑤1, .., 𝑤𝑘} ∪ {𝑤𝑘+1, ..., 𝑤𝑛} such that the preference lists of the women in 𝑊 𝑠 have no ties and the preference lists of the women in 
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Fig. 3. The gadget 𝐺𝑖 for Theorem 3.2 if the tie in 𝑤𝑖 ’s list was 𝑢𝑗 ∼𝑤𝑖 𝑢𝑙 .

𝑊 𝑡 consist of only a single tie of length exactly two. The task is to find a complete weakly stable matching, that is a matching 𝑀
that covers every man and woman and there is no pair (𝑚, 𝑤) ∉𝑀 such that they both strictly prefer each other to their partner in 
𝑀 .

Suppose that we have an instance 𝐼 of COM-SMTI. We construct an instance 𝐼 ′ of the stable many-to-many matching problem 
such that the strong core is nonempty if and only if there is a complete weakly stable matching in 𝐼 .

First of all, for every man 𝑢𝑖 ∈ 𝑈 we create a vertex 𝑢′
𝑖

with capacity one, and for every woman 𝑤𝑖 ∈𝑊 𝑠 we create a vertex 𝑤′
𝑖

with capacity one. Denote these two sets by 𝑈 ′ and 𝑊 𝑠′ . Then, for every woman 𝑤𝑖 ∈𝑊 𝑡 we create a gadget 𝐺𝑖 illustrated in Fig. 3. 
We create four vertices: 𝑤′

𝑖
, 𝑤′′

𝑖
and 𝑐𝑖 having capacity two and 𝑑𝑖 having capacity one. 𝑤′

𝑖
is connected to one man in 𝑤𝑖’s preference 

list (the one with the smaller index) and 𝑤′′
𝑖

is connected to the other. The preferences are the following:

𝑐𝑖 ∶ 𝑤′
𝑖
> 𝑤′′

𝑖

𝑑𝑖 ∶ 𝑤′′
𝑖
> 𝑤′

𝑖

𝑤′
𝑖
∶ 𝑐𝑖 > 𝑑𝑖 > 𝑢

′
𝑗

𝑤′′
𝑖
∶ 𝑐𝑖 > 𝑑𝑖 > 𝑢

′
𝑙

Finally, we add a gadget 𝐺, which is just a copy of the counterexample from Theorem 3.1 illustrated in Fig. 2 and a special agent 
𝑔 with capacity one.

The preferences of the agents in 𝑈 ′ are the same just over the agents 𝑤′
𝑖

instead of 𝑤𝑖, except if there was a woman 𝑤𝑖 ∈𝑊 𝑡 in 
their preference list, then we substitute 𝑤𝑖 with the appropriate copy from {𝑤′

𝑖
, 𝑤′′

𝑖
} (the one that he is connected to - so 𝑤′

𝑖
if he is 

the neighbour of 𝑤𝑖 with smaller index and 𝑤′′
𝑖

otherwise). Finally, we add the special agent 𝑔 to the end of all of their preference 
lists.

Similarly, for each 𝑤′
𝑖
∈𝑊 𝑠′ , the preference lists are the same with 𝑢′

𝑖
-s instead of 𝑢𝑖-s. The agents in the gadget 𝐺 have the same 

preferences, except that we add 𝑔 to the beginning of 𝑎 ∈𝐺’s list. Finally, the preference list of 𝑔 has the agents in 𝑈 ′ in an arbitrary 
order followed by 𝑎 ∈𝐺 in the end.

Now let us suppose that we have a complete weakly stable matching 𝑀 in 𝐼 . We create a matching 𝑀 ′ in 𝐼 ′ by adding an edge 
𝑢′
𝑖
𝑤′
𝑗

or 𝑢′
𝑖
𝑤′′
𝑗

(the one which exists) for each 𝑢𝑖𝑤𝑗 ∈𝑀 . Also for each gadget 𝐺𝑖 we add the edges 𝑤′
𝑖
𝑐𝑖 and 𝑤′′

𝑖
𝑐𝑖 to 𝑀 ′. If the partner 

of 𝑤𝑖 ∈𝑊 𝑠 was 𝑢𝑗 , then we add 𝑤′′
𝑖
𝑑𝑖, if it was 𝑢𝑙 , then we add 𝑤′

𝑖
𝑑𝑖. Finally, we add the edges 𝑎𝑔 and {𝑎𝑣, 𝑏𝑢, 𝑦𝑑, 𝑦𝑦′, 𝑥𝑐, 𝑥𝑥′, 𝑏𝑏′}

to 𝑀 ′.
We show that 𝑀 ′ is in the strong core. Let us suppose that there is a blocking coalition  for 𝑀 ′. If there is a vertex 𝑣𝑖 ∈

{𝑤′
𝑖
, 𝑤′′

𝑖
, 𝑐𝑖, 𝑑𝑖} from a gadget 𝐺𝑖 in  , then all of them are in  , since if 𝑣𝑖 = 𝑑𝑖, then 𝑤′

𝑖
or 𝑤′′

𝑖
∈  , so their favourite partner 𝑐𝑖 is 

also in  and so is the other copy of 𝑤𝑖. Similarly if 𝑤′
𝑖

or 𝑤′′
𝑖

or 𝑐𝑖 ∈  , then all of them are in  and the two copies of 𝑤𝑖 get the 
same partner, so none of them can achieve a strictly better situation. So no agents from 𝐺𝑖 can improve their situation.

If a man 𝑢′
𝑖

is strictly better off in  , then he has to have a better partner and also he has to be at least as good a partner for her 
if her capacity is one. But, he cannot be strictly better in that case, since 𝑀 was weakly stable. So the partner 𝑤𝑖 has to be from 𝑊 𝑡. 
But then, the corresponding copy of 𝑤𝑖 was matched to 𝑐𝑖 and 𝑑𝑖 in 𝑀 ′, both of which it prefers to 𝑢′

𝑖
, so they cannot be paired in a 

blocking coalition, a contradiction.
If an agent 𝑤′

𝑖
∈𝑊 𝑠′ gets a strictly better partner in  , then she and her partner would form a blocking pair for 𝑀 , a contradiction.

Special agent 𝑔 cannot get a better partner in  , because she is the worst choice for every other possible partner other than 𝑎, 
and every one of them is at full capacity, since 𝑀 was a complete matching.

Finally, it is straightforward to check, that there are no blocking coalitions in the gadget 𝐺 to 𝑀 ′ either, so 𝑀 ′ is in the strong 
core.

For the other direction suppose that 𝑀 ′ is in the strong core of 𝐼 ′. This implies that 𝑔𝑎 ∈𝑀 ′, since there is no strong core solution 
among the agents in 𝐺. Therefore every agent in 𝑈 ′ must be matched to someone in 𝑊 ′, because otherwise they would block with 
𝑔.

Now, we create 𝑀 the following way: for each 𝑢′
𝑖
∈𝑈 ′ we assign 𝑢𝑖 the woman corresponding to the partner of 𝑢′

𝑖
in 𝑀 ′. To see 
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that no two men get the same partner, suppose that 𝑢𝑗 and 𝑢𝑙 do. Then, 𝑢′
𝑗
𝑤′
𝑖

and 𝑢′
𝑙
𝑤′′
𝑖

are both in 𝑀 ′ for a woman in 𝑊 𝑡′ . However 
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Fig. 4. The mutually acceptable pairs between the main sets of agents, where the solid edges denote the projection of 𝑀 .

this would imply that {𝑐𝑖, 𝑑𝑖, 𝑤′
𝑖
, 𝑤′′

𝑖
, 𝑢′
𝑗
} or {𝑐𝑖, 𝑑𝑖, 𝑤′

𝑖
, 𝑤′′

𝑖
, 𝑢′
𝑙
} would form a blocking coalition, as 𝑤′

𝑖
or 𝑤′′

𝑖
could switch to 𝑐𝑖 or 𝑑𝑖

and strictly improve without any other member of the coalition getting a worse partner set.
Since every man 𝑢𝑖 is saturated and matched to different partners, it follows that 𝑀 is a complete matching.
Now suppose that there is a strictly blocking pair (𝑢𝑖, 𝑤𝑖). Then 𝑤𝑖 ∈𝑊 𝑠 and {𝑢′

𝑖
, 𝑤′

𝑖
} would form a blocking coalition for 𝑀 ′, a 

contradiction.
So 𝑀 is a complete and weakly stable matching. □

3.2. Verification problems related to strong core and Pareto-optimality

In the previous section we concluded that finding strong core solutions for the stable many-to-many matching problem under 
lexicographic preferences is NP-hard. Now we deal with the other natural question, which is verification. In this section we show that 
verifying strong core and Pareto-optimal solutions are both coNP-complete. As the reduction for the strong core verification problem 
builds on the reduction for the Pareto-optimality verification, we start by the latter one.

Theorem 3.3. Deciding whether a given matching 𝑀 is Pareto-optimal for the stable many-to-many matching problem under lexicographic 
preferences is co-NP-complete, even for complete matchings. It is also co-NP-hard to decide whether 𝑀 is a maximum size Pareto-optimal 
matching.

Proof. The problem of verifying whether a matching is Pareto-optimal is in co-NP, since checking that an alternative matching 𝑀 ′

Pareto-dominates 𝑀 can be done efficiently. We reduce from a special version of EXACT-3-COVER, where we are given a set of 3𝑛
items 𝑋 = {𝑥1, 𝑥2, … , 𝑥3𝑛} and a set of 𝑚 = 3𝑛 3-sets,  = {𝑌1, 𝑌2, … , 𝑌𝑚}, where each 𝑌𝑗 contains 3 items from 𝑋. The decision 
question is whether there exists a subset  ′ ⊂  of size 𝑛 that contains all the elements of 𝑋 exactly once (Hickey et al., 2008). 
Given an instance 𝐼 of EXACT-3-COVER, as described above, we create an instance 𝐼 ′ of stable many-to-many matching problem as 
follows. We will have five gadgets, each with two sets of agents, 𝐴 ∪𝐵, 𝐶 ∪𝐷, 𝑃 ∪𝑄, 𝑆 ∪ 𝑇 and 𝑈 ∪ 𝑉 . More specifically, the sets 
of agents are as follows.

𝐴 = {𝑎1, 𝑎2,… , 𝑎3𝑛} 𝐵 = {𝑏1, 𝑏2,… , 𝑏3𝑛}
𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑛} 𝐷 = {𝑑1, 𝑑2,… , 𝑑𝑛}
𝑃 = {𝑝1, 𝑝2,… , 𝑝3𝑛} 𝑄 = {𝑞1, 𝑞2,… , 𝑞3𝑛}
𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑚} 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑚}
𝑈 = {𝑢1, 𝑢2,… , 𝑢4𝑚} 𝑉 = {𝑣1, 𝑣2,… , 𝑣4𝑚}

Let the capacity of every agent be 2 in 𝐴 ∪ 𝐵, 3 in 𝐶 ∪ 𝐷, 1 in 𝑃 ∪ 𝑄, 4 in 𝑆 ∪ 𝑇 and 1 in 𝑈 ∪ 𝑉 . Finally, we describe the 
linear orders of the agents on their acceptable partners. Here, for any set 𝐸, [𝐸] denotes the elements of 𝐸 in the order of the 
elements’ indices. Furthermore, we define 𝑄𝑗 = ∪{𝑞𝑖 ∶ 𝑥𝑖 ∈ 𝑌𝑗} and 𝑆𝑖 = ∪{𝑠𝑗 ∶ 𝑥𝑖 ∈ 𝑌𝑗}, and similarly 𝑃𝑗 = ∪{𝑝𝑖 ∶ 𝑥𝑖 ∈ 𝑌𝑗} and 
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𝑇𝑖 = ∪{𝑡𝑗 ∶ 𝑥𝑖 ∈ 𝑌𝑗}.
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𝑎1 ∶ 𝑏1 > 𝑞1 > 𝑑1 > 𝑏3𝑛 𝑏1 ∶ 𝑎2 > 𝑝1 > 𝑐1 > 𝑎1
… …

𝑎𝑖 ∶ 𝑏𝑖 > 𝑞𝑖 > 𝑑⌊(𝑖+2)∕3⌋ > 𝑏𝑖−1 𝑏𝑖 ∶ 𝑎𝑖+1 > 𝑝𝑖 > 𝑐⌊(𝑖+2)∕3⌋ > 𝑎𝑖
… …

𝑎3𝑛 ∶ 𝑏3𝑛 > 𝑞3𝑛 > 𝑑𝑛 > 𝑏3𝑛−1 𝑏3𝑛 ∶ 𝑎1 > 𝑝3𝑛 > 𝑐𝑛 > 𝑎3𝑛
𝑐1 ∶ 𝑑1 > 𝑏1 > 𝑏2 > 𝑏3 > 𝑑𝑛 > [𝑇 ] 𝑑1 ∶ 𝑐2 > 𝑎1 > 𝑎2 > 𝑎3 > 𝑐1 > [𝑆]

… …
𝑐𝑖 ∶ 𝑑𝑖 > 𝑏3𝑖−2 > 𝑏3𝑖−1 > 𝑏3𝑖 > 𝑑𝑖−1 > [𝑇 ] 𝑑𝑖 ∶ 𝑐𝑖+1 > 𝑎3𝑖−2 > 𝑎3𝑖−1 > 𝑎3𝑖 > 𝑐𝑖 > [𝑆]

… …
𝑐𝑛 ∶ 𝑑𝑛 > 𝑏3𝑛−2 > 𝑏3𝑛−1 > 𝑏3𝑛 > 𝑑𝑛−1 > [𝑇 ] 𝑑𝑛 ∶ 𝑐1 > 𝑎3𝑛−2 > 𝑎3(𝑛−1)+2 > 𝑎3𝑛 > 𝑐𝑛 > [𝑆]
𝑝1 ∶ [𝑇1] > 𝑏1 𝑞1 ∶ [𝑆1] > 𝑎1

… …
𝑝𝑖 ∶ [𝑇𝑖] > 𝑏𝑖 𝑞𝑖 ∶ [𝑆𝑖] > 𝑎𝑖

… …
𝑝3𝑛 ∶ [𝑇𝑛] > 𝑏𝑛 𝑞3𝑛 ∶ [𝑆𝑛] > 𝑎𝑛
𝑠1 ∶ [𝐷] > 𝑣1 > 𝑣2 > 𝑣3 > 𝑣4 > [𝑄1] 𝑡1 ∶ [𝐶] > 𝑢1 > 𝑢2 > 𝑢3 > 𝑢4 > [𝑃1]

… …
𝑠𝑗 ∶ [𝐷] > 𝑣4𝑗−3 > 𝑣4𝑗−2 > 𝑣4𝑗−1 > 𝑣4𝑗 > [𝑄𝑗 ] 𝑡𝑗 ∶ [𝐶] > 𝑢4𝑗−3 > 𝑢4𝑗−2 > 𝑢4𝑗−1 > 𝑢4𝑗 > [𝑃𝑗 ]

… …
𝑠𝑚 ∶ [𝐷] > 𝑣4𝑚−3 > 𝑣4𝑚−2 > 𝑣4𝑚−1 > 𝑣4𝑚 > [𝑄𝑛] 𝑡𝑚 ∶ [𝐶] > 𝑢4𝑚−3 > 𝑢4𝑚−2 > 𝑢4𝑚−1 > 𝑢4𝑚 > [𝑃𝑚]
𝑢1 ∶ 𝑣1 > 𝑡1 𝑣1 ∶ 𝑢1 > 𝑠1

… …
𝑢𝑗 ∶ 𝑣𝑗 > 𝑡⌊(𝑗+3)∕4⌋ 𝑣𝑗 ∶ 𝑢𝑗 > 𝑠⌊(𝑗+3)∕4⌋

… …
𝑢4𝑚 ∶ 𝑣4𝑚 > 𝑡𝑚 𝑣4𝑚 ∶ 𝑢4𝑚 > 𝑠𝑚

We create a matching 𝑀 in 𝐼 ′ as follows. Let each agent in 𝐴 and 𝐵 be matched with their acceptable partners in 𝐷 ∪𝑄 and in 
𝐶 ∪ 𝑃 , respectively. Furthermore, each agent in 𝑆 is matched with all of her four acceptable agents in 𝑉 , similarly, each agent in 𝑇
is matched with all of her four acceptable agents in 𝑈 . We depict the accessibility graph of 𝐼 ′ in Fig. 4 with regard to the main sets 
of agents, where the solid edges mark that all of the mutually acceptable pairs between the two corresponding sets belong to 𝑀 and 
the dashed edges denote when no edge between the corresponding sets belongs to 𝑀 .

Now we shall prove that 𝐼 has an exact 3-cover if an only if matching 𝑀 is not Pareto-optimal in 𝐼 ′. As 𝑀 is a complete matching 
(i.e. each agent is saturated), deciding whether 𝑀 is Pareto optimal is equivalent to deciding whether 𝑀 is a maximum size Pareto 
optimal matching. Hence, by proving the above claim we show hardness for both problems stated in the theorem.

First, let us suppose that we have an exact 3-cover  ′ in 𝐼 . We create a matching 𝑀 ′ in 𝐼 ′ that Pareto dominates 𝑀 in the 
following way. In 𝑀 ′ we match each agent in 𝐴 to her two acceptable partners in 𝐵, which implies that we also match each agent 
in 𝐵 to her two acceptable partners in 𝐴. Likewise, we match each agent in 𝐶 to her two acceptable partners in 𝐷, which implies 
that we also match each agent in 𝐷 to her two acceptable partners in 𝐶 . For the rest of the agents we create 𝑀 ′ according to the 
3-cover  ′ as follows. If 𝑌𝑗 ∈ ′ then we match 𝑠𝑗 to the three acceptable agents in 𝑄𝑗 and also to an arbitrary agent in 𝐷 such that 
we match exactly one agent from 𝑆 to each agent in 𝐷, and similarly, we match 𝑡𝑗 to the three agents in 𝑃𝑗 and also to an arbitrary 
agent in 𝐶 such that each agent in 𝐶 is matched with exactly one agent from 𝑇 , and finally we also match 𝑢4(𝑗−1)+𝑘 to 𝑣4(𝑗−1)+𝑘 for 
every 𝑘 ∈ {1, 2, 3, 4}. For those agents in 𝑠𝑗 ∈ 𝑆 and 𝑡𝑗 ∈ 𝑇 , where 𝑌𝑗 ∉ 𝑌 ′, we keep the edges of 𝑀 . It is easy to see that all the 
agents that changed partners in 𝐼 ′ improved according to their lexicographic preferences, since all of them become matched to their 
best potential partner in 𝑀 ′.

In the other direction, let us suppose that 𝑀 is not-Pareto optimal, so there is an alternative matching 𝑀∗ that Pareto-dominates 
it. We shall prove that 𝐼 has an exact 3-cover. First we note that if any agent in 𝐴 ∪𝐵 ∪𝐶 ∪𝐷 has a different partner in 𝑀∗ than in 
𝑀 (thus necessarily improves) then the matching between sets 𝐴 and 𝐵 and also between 𝐶 and 𝐷 must be complete, as we had in 
𝑀 ′. To see this, observe that any of these agents can only improve by obtaining her best partner. Take 𝑎𝑖. For her, this implies that 
she gets 𝑏𝑖. But then, 𝑏𝑖 gets her worst partner, so she also has to improve and get her best partner 𝑎𝑖+1. Now, 𝑎𝑖+1 has to get 𝑏𝑖+1 and 
by iterating this, we get that any edge between 𝐴 and 𝐵 must be added. For an agent in 𝐶 ∪𝐷, say 𝑐𝑖, if she improves and obtains 
𝑑𝑖, then 𝑑𝑖 gets a worse partner than the ones she was filled with, so she also has to get her best partner 𝑐𝑖+1. Again, iterating this, 
we get that all edges between 𝐶 ∪𝐷 must be inside the new matching, if someone from 𝐶 ∪𝐷 improves. Finally, if someone from 
𝐴 ∪ 𝐵 improves, then by the previous argument, she has to drop a partner from 𝐶 ∪𝐷, so an agent in 𝐶 ∪𝐷 also has to improve. 
Similarly is someone from 𝐶 ∪𝐷 improves, then she has to drop a partner from 𝐴 ∪𝐵, so someone from 𝐴 ∪𝐵 also must improve. 
Hence, the improvement of any agent in 𝐴 ∪𝐵 ∪ 𝐶 ∪𝐷 implies that all such agents strictly improve and the matchings between 𝐴
and 𝐵 as well as 𝐶 and 𝐷 are complete. This also implies that all the agents in both 𝑃 and 𝑄 must get new partners in 𝑀∗ from the 
sets 𝑇 and 𝑆 , respectively. However, this is only possible if at least 𝑛 agents from both 𝑆 and 𝑇 get also new partners from the sets 
𝐷 and 𝐶 , respectively. But the agents in 𝐶 and 𝐷 have remaining capacity one each, so they should become matched with exactly 𝑛
agents from each of 𝑇 and 𝑆 , respectively, so these are the only 2𝑛 agents from these sets that can change partners and help improve 
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to those in 𝑃 and 𝑄. To summarise, if these agents all improve then we must be able to choose an exact 3-cover by adding 𝑌𝑗 to  ′



Games and Economic Behavior 145 (2024) 217–238P. Biró and G. Csáji

if 𝑠𝑗 has improved in 𝑀∗. What remained is to show that the improvement of any other agent outside the set 𝐴 ∪𝐵 ∪𝐶 ∪𝐷 would 
also lead to the same effect. Indeed, if any agent in 𝑈 ∪ 𝑉 improves in 𝑀∗ then her/his partner in 𝑀 from 𝑆 ∪ 𝑇 must also improve 
and this is only possible if the latter agent gets matched with someone from 𝐴 ∪ 𝐵 ∪𝐶 ∪𝐷. The same applies if any agent in 𝑃 ∪𝑄
would improve. Thus we can conclude that the improvement of any agent in 𝐼 ′ implies that all agents in 𝐴 ∪𝐵∪𝐶 ∪𝐷 must improve 
and thus we are able to find an exact 3-cover in 𝐼 . □

Building on the hardness of the verification of Pareto-optimality, we also show hardness for strong core verification.

Theorem 3.4. Deciding whether a given matching is in the strong core of a stable many-to-many matching problem under lexicographic 
preferences is co-NP-complete, even if each capacity is at most 5.

Proof. The problem is in co-NP, since checking that 𝑀 can be blocked by a coalition 𝑆 with an alternative matching 𝑀𝑆 can 
be done efficiently. We reduce from the problem of checking Pareto-optimality for stable many-to-many matching problem under 
lexicographic preferences, that we showed to be co-NP-complete in Theorem 3.3, even if capacities are at most 4 and the two sides 
have the same number of agents. Suppose that we have such an instance 𝐼 of the stable many-to-many matching problem (with strict 
preferences of the agents), and a matching 𝑀 that is to be checked to be Pareto-optimal. Let the agents in 𝐼 be denoted by 𝑢1, … , 𝑢𝑛
on side 𝑈 and 𝑣1, … , 𝑣𝑛 on side 𝑊 . We create instance 𝐼 ′ by adding 2𝑛 new agents 𝑎∗1, … , 𝑎∗

𝑛
to side 𝑊 and 𝑏∗1, … , 𝑏∗

𝑛
to side 𝑈 of 

the market, such that they have capacity 3. For each 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛], we make 𝑎∗
𝑖

the best partner of 𝑢𝑖 and 𝑏∗
𝑗

the best partner of 𝑣𝑗 . 
Furthermore, 𝑎∗

𝑖
only considers 𝑢𝑖, 𝑏∗𝑖 and 𝑏∗

𝑖+1 acceptable and ranks them by the order 𝑢𝑖 ≻ 𝑏∗𝑖 ≻ 𝑏
∗
𝑖+1, while 𝑏∗

𝑖
only considers 𝑣𝑖, 𝑎∗𝑖

and 𝑎∗
𝑖−1 acceptable and ranks them by 𝑣𝑖 ≻ 𝑎∗𝑖 ≻ 𝑎

∗
𝑖−1 (where we let 𝑎∗0 ∶= 𝑎

∗
𝑛
, 𝑎∗
𝑛+1 ∶= 𝑎

∗
1 , 𝑏∗0 ∶= 𝑏

∗
1 and 𝑏∗

𝑛+1 ∶= 𝑏
∗
1).

Let us also increase the capacity of all the agents in 𝑈 ∪𝑊 in 𝐼 ′ by one and then we create 𝑀 ′ as an extension of 𝑀 in the 
following way. We keep each edge 𝑢𝑖𝑣𝑗 of 𝑀 . Then, we add edges {𝑎∗1𝑏

∗
1, 𝑎

∗
1𝑏

∗
2, 𝑎

∗
2𝑏

∗
2, … , 𝑎∗

𝑛
𝑏∗1} and {𝑢𝑖𝑎∗𝑖 , 𝑣𝑖𝑏

∗
𝑖
∣ 𝑖 ∈ [𝑛]}. Now, we show 

that 𝑀 is Pareto-optimal in 𝐼 if and only if 𝑀 ′ is in the strong core in 𝐼 ′. On one hand a blocking coalition in 𝐼 ′ with matching 
𝑁 ′ must involve every agent in 𝐼 ′, because it must contain either a 𝑢𝑖 or a 𝑣𝑗 agent, hence also her best partner 𝑎∗

𝑖
or 𝑏∗

𝑗
. As each 

𝑎∗
𝑖
, 𝑏∗
𝑗

obtains all her partners in 𝑀 ′, all of 𝑎∗1, … , 𝑎∗
𝑛
, 𝑏∗1 , … , 𝑏∗

𝑛
and all of their partners must be in the blocking coalition, and that 

includes every agent. Hence, if there is a blocking coalition to 𝑀 ′, then the grand coalition blocks 𝑀 in 𝐼 with a matching 𝑁 (which 
is obtained by keeping the edges if 𝑁 ′ that are also edges in 𝐼). On the other hand if the grand coalition blocks 𝑀 in 𝐼 with a 
matching 𝑁 , then extending 𝑁 to 𝑁 ′ in 𝐼 ′ the same way as we extended 𝑀 , we get that the grand coalition is a blocking coalition 
for 𝑀 ′ with 𝑁 ′. □

3.3. Maximum size Pareto-optimal matchings

While we proved that strong core solutions may not exist, it is clear that Pareto-optimal solutions always do. Hence, a natural 
question is to ask whether we can find such matchings that are optimal in some sense. Here we consider probably the most important 
optimality criteria, that is the size of a matching. We show that there is an interesting dichotomy here: finding a maximum size 
Pareto optimal matching, that is, a matching that is one of the largest amongst all Pareto optimal matchings, is easy in the two sided 
many-to-many setting, but it becomes NP-hard in the one-sided fixtures case.

We start with our positive result and describe an algorithm that finds a maximum size Pareto-optimal solutions. In fact, the 
algorithm returns a Pareto-optimal matching that is also a maximum cardinality matching. The techniques we use here are very 
similar to the ones in Cechlárová et al. (2014), where they investigated Pareto-optimal matchings in the case when only one side of 
the agents have preferences.

Now we state our algorithm. Denote the set of men as 𝑈 = {𝑢1, ..., 𝑢𝑛} and the set of women 𝑊 = {𝑤1, ..., 𝑤𝑚}. Let 𝑑𝑒𝑔(𝑣) be the 
degree of a vertex 𝑣 ∈ 𝑈 ∪𝑊 .

Algorithm 1 Maximum size Pareto-optimal matching.
Let 𝑀 ∶= ∅
Compute the size of the maximum cardinality matching 𝜂
for 𝑖 = 1, .., 𝑛 do

𝑙 = 1
while |𝑀(𝑢𝑖)| < 𝑘(𝑢𝑖) and 𝑙 ≤ 𝑑𝑒𝑔(𝑢𝑖) do

Let 𝑤𝑗 be the 𝑙-th choice of 𝑢𝑖
if There is a feasible matching of size 𝜂 containing 𝑀 ∪ {𝑢𝑖𝑤𝑗} then

𝑀 ∶=𝑀 ∪ {𝑢𝑖𝑤𝑗}
end if

𝑙 = 𝑙 + 1
end while

end for

Output 𝑀
226

Theorem 3.5. For the stable many-to-many matching problem Algorithm 1 finds a maximum size matching that is Pareto-optimal.
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Fig. 5. An illustration for the edge gadgets in Theorem 3.6. The bold edges are the corresponding edges of the only possible Pareto-optimal complete matching.

Proof. During the algorithm, each edge is checked at most once. Also, deciding if there exists a maximum size matching containing 
a given set of edges can be done in polynomial time. Indeed, to decide if there is a maximum size matching containing a feasible 
edge set 𝑁 , we just have to delete these edges from the graph, decrease each vertex capacity by the number of adjacent edges it had 
in 𝑁 , and check whether the new graph has a matching of size 𝜂 − |𝑁|, where 𝜂 is the size of the maximum size matching in the 
original graph. So the running time of the algorithm is polynomial.

We show that there is not even a matching 𝑀 ′, that is weakly better for every man than the output matching 𝑀 , and strictly 
better for at least one man 𝑢𝑗 . We say that such a matching Pareto-dominates 𝑀 for the men. This is enough to show that 𝑀 is 
Pareto optimal, because if a matching 𝑀 ′ Pareto-dominates it, then at least one agent from both sides must get a different partner 
set, hence at least one man must strictly improve. Suppose for the contrary that there is a matching 𝑀 ′, where each man obtains 
an at least as good partner set as in the output matching 𝑀 and there is a man 𝑢𝑗 , who obtains a strictly better set. It is clear that 
no maximum size matching 𝑀 ′ can be weakly better for all men and strictly better for at least one, because among the maximum 
size matchings, the algorithm chose one that is best possible for 𝑢1, and with respect to that, best possible for 𝑢2, etc. Hence, if all of 
𝑢1, … , 𝑢𝑛 weakly improves in a maximum size matching 𝑀 ′, then 𝑀(𝑢1) =𝑀 ′(𝑢1) and so 𝑀(𝑢2) =𝑀 ′(𝑢2), and so 𝑀(𝑢𝑖) =𝑀 ′(𝑢𝑖)
for 𝑖 ∈ [𝑛], meaning that 𝑀 =𝑀 ′.

Let the best partner of 𝑢𝑗 in 𝑀 ′ ⧵𝑀 be 𝑤(𝑢𝑗 ). If 𝑤(𝑢𝑗 ) is not saturated in 𝑀 , then 𝑢𝑗 has to be saturated by the maximality of 𝑀 . 
But then, there is an edge 𝑢𝑗𝑤𝑙 ∈𝑀 ⧵𝑀 ′, so letting 𝑀 ′′ =𝑀 ∪ 𝑢𝑗𝑤(𝑢𝑗 ) ⧵ 𝑢𝑗𝑤𝑙 , we obtain a maximum size matching, where each 
man has an at least as good situation and 𝑢𝑗 is strictly better off, contradicting our above observation.

So for each man 𝑢𝑗 , who is better off in 𝑀 ′, their best partner in 𝑀 ′ ⧵𝑀 𝑤(𝑢𝑗 ) is saturated in 𝑀 . Hence, from each such woman, 
there is an edge that is in 𝑀 ⧵𝑀 ′. Therefore, starting from 𝑢𝑗 and then, from each man going to their best partner in 𝑀 ′ ⧵𝑀
and from each woman, going to an arbitrary partner in 𝑀 ⧵𝑀 ′, we can find a cycle 𝐶 that alternates between 𝑀 and 𝑀 ′. Each 
man strictly prefers 𝑀 ′ ∩ 𝐶 to 𝑀 ∩ 𝐶 in this cycle 𝐶 , because as 𝑀 ′ Pareto-dominates 𝑀 on the men’s side, the best partner a 
man 𝑢𝑖 gets in 𝑀 ′ ⧵𝑀 (which he gets in 𝑀 ′ ∩ 𝐶 too) is strictly better than the best partner in 𝑀 ⧵𝑀 ′ that they lose in 𝑀 ′, by 
the lexicographicality of the preferences. Thus letting 𝑀 ′′ =𝑀 ∪ (𝑀 ′ ∩ 𝐶) ⧵ (𝑀 ∩ 𝐶), we obtain a maximum size matching, that is 
weakly better than 𝑀 for each man, and strictly better for at least one, contradiction. □

On the negative side, we show that the same problem becomes NP-hard in the fixtures case.

Theorem 3.6. Deciding whether there exists a complete Pareto-optimal matching for the stable fixtures problem under lexicographic prefer-

ences is NP-hard, even if each capacity is at most 4.

Proof. Again we reduce from the problem EXACT-3-COVER. We use almost the same construction as in Theorem 3.3 with the only 
difference that here we substitute each 𝑎𝑖𝑏𝑖 and 𝑎𝑖𝑏𝑖−1 edge with an edge-gadget 𝐺𝑖 and 𝐻𝑖 respectively, illustrated in Fig. 5. Every 
gadget 𝐺𝑖 and 𝐻𝑖 are essentially just a copy of Example 3 in Section 2, illustrated in Fig. 1, only we add a special agent 𝑔𝑖 or ℎ𝑖
respectively. We will denote the agents corresponding to 𝑥1, ..., 𝑥10 by 𝑥𝑖1, ..., 𝑥

𝑖
10 in 𝐺𝑖 and by 𝑦𝑖1, ..., 𝑦

𝑖
10 in 𝐻𝑖. An agent 𝑔𝑖 has capacity 

2 and preference 𝑏𝑖 > 𝑥𝑖7 > 𝑥
𝑖
8 > 𝑎𝑖 and is added to the end of the preference lists of both 𝑥𝑖7 and 𝑥𝑖8. An agent ℎ𝑖 has capacity 2 and 

preference 𝑎𝑖 > 𝑦𝑖7 > 𝑦
𝑖
8 > 𝑏𝑖−1 and is added to the end of the preference lists of both 𝑦𝑖7 and 𝑦𝑖8. Finally, we substitute 𝑏𝑖 and 𝑏𝑖−1 in the 

preference list of 𝑎𝑖 by 𝑔𝑖 and ℎ𝑖, respectively, and similarly substitute 𝑎𝑖 and 𝑎𝑖+1 in 𝑏𝑖’s preference list by 𝑔𝑖 and ℎ𝑖+1, respectively, 
for each 𝑖 = 1, ..., 3𝑛. So the preference list of 𝑎𝑖 is 𝑔𝑖 > 𝑞𝑖 > 𝑑⌊(𝑖+2)∕3⌋ > ℎ𝑖 and the preference list of 𝑏𝑖 is ℎ𝑖+1 > 𝑝𝑖 > 𝑐⌊(𝑖+2)∕3⌋ > 𝑔𝑖.

Suppose that there is a complete Pareto-optimal matching 𝑀 in this instance and suppose that there is an index 𝑖 such that 𝑎𝑖𝑔𝑖
and 𝑔𝑖𝑏𝑖 are in 𝑀 . Then the matching 𝑀 restricted to the set of vertices {𝑥𝑖1, ..., 𝑥

𝑖
10} has to be {𝑥𝑖1𝑥

𝑖
3, 𝑥

𝑖
1𝑥
𝑖
4, 𝑥

𝑖
2𝑥
𝑖
5, 𝑥

𝑖
2𝑥
𝑖
6, 𝑥

𝑖
7𝑥
𝑖
8, 𝑥

𝑖
9𝑥
𝑖
10}

by the completeness of 𝑀 , but then if we give each agent apart from 𝑥𝑖1, .., 𝑥
𝑖
10 the same partners and match 𝑥𝑖1, ...𝑥

𝑖
10 such that each 

gets only their favourite, then we obtain a matching 𝑀 ′ that Pareto-dominates 𝑀 , a contradiction.
Similarly, if 𝑎𝑖ℎ𝑖 and ℎ𝑖𝑏𝑖−1 are in 𝑀 for some 𝑖, then 𝑀 cannot be Pareto-optimal either, a contradiction.
Since a gadget 𝐺𝑖 or 𝐻𝑖 can be saturated only if 𝑔𝑖 or ℎ𝑖 is matched to 0 or 2 agents in them, we obtain that there can be no edge 
227

in 𝑀 that connects an agent 𝑎𝑖 or 𝑏𝑖 to an agent 𝑔𝑗 or ℎ𝑗 . But 𝑀 is a complete matching, hence each agent in 𝐴 ∪𝐵 is saturated, so 
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all edges between 𝐴 and 𝑄 ∪𝐷 have to be included and also all edges between 𝐵 and 𝐶 ∪ 𝑃 . Then, since every agent in 𝑇 ∪ 𝑆 is 
saturated too, all edges between 𝑈 and 𝑇 and all edges between 𝑆 and 𝑉 are also included 𝑀 , so 𝑀 is basically the same matching 
that we constructed in Theorem 3.3, with some additional edges inside the edge gadgets.

Now if there would be an exact 3-cover in 𝐼 , then we could construct a matching 𝑀 ′ that Pareto-dominates 𝑀 , implying that 
there can be no complete Pareto-optimal matching in the same way as before, with the addition that the agents in 𝐴 ∪𝐵 obtain their 
partners in 

⋃
𝑖{𝑔𝑖} ∪

⋃
𝑖{ℎ𝑖} instead of each other. In this way each agent of forms 𝑔𝑗 and ℎ𝑗 obtains their best partner, so they are 

strictly better off, too. Finally, we also match each agent in the remaining parts of 
⋃
𝑖{𝐺𝑖} ∪

⋃
𝑖{𝐻𝑖} to their best choices. So the 

existence of an exact 3-cover implies that no complete Pareto-optimal matching exists.
In the other direction if there is no complete Pareto-optimal matching, then the matching 𝑀 constructed above is not Pareto-

optimal, so it is dominated by a matching 𝑀 ′. Again, the same proof works to show that there has to be a 3-cover of the original 
instance. The only additional thing we have to check in this case is that, if any agent from a gadget 𝐺𝑖 or 𝐻𝑖 improves their position, 
then so does every agent in 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷. But this is only possible if she gets her first choice in 𝑀 ′, which implies that every 
agent in the gadget obtains its best partner, so 𝑔𝑖 or ℎ𝑖 improves their position too, which leads to every edge between 𝐴 ∪ 𝐵 and ⋃
𝑖{𝑔𝑖} ∪

⋃
𝑖{ℎ𝑖} being included in 𝑀 ′, so the proof is complete. □

4. Relaxed strong core solutions

The NP-hardness of finding matchings in the strong core motivates us to relax the problem in some ways to make the problem 
tractable, and also to guarantee the existence of a desired solution.

We give two algorithms, that are heavily inspired by the Top Trading Cycle (TTC) algorithm of Gale (Shapley and Scarf, 1974). 
The first algorithm computes a matching 𝑀 , such that 𝑀 violates the original capacity constraints by at most one, but is guaranteed 
to be a strong core solution for this slightly modified instance. We call such a solution a near-feasible strong core solution. The second 
algorithm computes a fractional matching 𝑀 , that is guaranteed to be in the strong core of fractional solutions of the original 
instance.

The algorithms described here not only work for the stable many-to-many matching case, but also for the non-bipartite stable 
fixtures problem. Moreover, both algorithms run in quadratic time in the number of edges.

The main idea of the algorithms is very simple: in each step, we create a directed graph 𝐷𝑖 = (𝑉𝑖, 𝐴𝑖), such that the vertices of 
𝐷𝑖 are the agents who have remaining capacities at the 𝑖-th iteration, and there is a directed edge from 𝑎 to 𝑏 if 𝑏 is 𝑎’s best choice 
from the vertices of 𝐷𝑖 who are not yet matched to 𝑎. Then we search for a directed cycle 𝐶𝑖 in 𝐷𝑖 and add the edges of 𝐶𝑖 to the 
matching.

4.1. Near feasible solutions

Now we describe the algorithm for finding a near feasible matching that is in the strong core of the modified instance formally. 
Let 𝑝𝑀

𝑈
(𝑣) denote the best agent in 𝑣’s preference list among the agents in 𝑈 who are not matched to 𝑣 in 𝑀 . Let 𝑘(𝑣) denote the 

capacity of 𝑣. We will denote the remaining capacity of 𝑣 by 𝑘𝑟(𝑣). Also we use 𝐸(𝐶𝑖) as the edges corresponding to the directed 
edges of 𝐴(𝐶𝑖) in the original graph 𝐺.

Algorithm 2 Near-feasible strong core matchings.
Set 𝑀 = ∅, 𝑖 = 0, 𝑘𝑟(𝑣) = 𝑘(𝑣)
𝑉0 =𝑁 , 𝐴0 = {𝑣𝑝𝑀

𝑉
(𝑣) ∶ 𝑣 ∈ 𝑉0},

while 𝐴𝑖 ≠ ∅ do

Find a directed cycle 𝐶𝑖 in 𝐷𝑖 = (𝑉𝑖, 𝐴𝑖).
For each 𝑒 ∈𝐸(𝐶𝑖): 𝑀 ∶=𝑀 ∪ 𝑒.
if |𝐶𝑖| = 2 then

For each 𝑣 ∈ 𝑉 (𝐶𝑖) ∶ 𝑘𝑟(𝑣) = 𝑘𝑟(𝑣) − 1
else

For each 𝑣 ∈ 𝑉 (𝐶𝑖) ∶ 𝑘𝑟(𝑣) = 𝑘𝑟(𝑣) − 2
end if

𝑉𝑖+1 = {𝑣 ∈𝑁 ∶ 𝑘𝑟(𝑣) ≥ 1}
𝐴𝑖+1 = {𝑣𝑝𝑀

𝑉𝑖+1
(𝑣) ∶ 𝑣 ∈ 𝑉𝑖+1}

𝑖 = 𝑖 + 1
end while

Theorem 4.1. Algorithm 2 produces a matching 𝑀 in (|𝐸|2) time for the stable fixtures problem that is in the strong core of the instance 
with modified capacities 𝑘′(𝑣), where 𝑘′(𝑣) =max{𝑘(𝑣), |𝑀(𝑣)|} ≤ 𝑘(𝑣) + 1.

Proof. In each iteration we add at least one edge to 𝑀 , so the algorithm terminates in at most |𝐸| iterations, each can be done in 
(|𝐸|) steps.

Also, we only add at most two edges containing a given vertex 𝑣 in one step and only to vertices with 𝑘𝑟(𝑣) ≥ 1, so |𝑀(𝑣)| ≤
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Finally, we show that 𝑀 is in the strong core of this new instance. First of all it is easy to see, that if we run the algorithm with 
these new capacities we get the same output 𝑀 , so we can suppose that the algorithm never violates the capacity constraints during 
its execution.

Suppose for a contradiction that there is a blocking coalition  for 𝑀 and let 𝑀 ′


be the matching for the vertices in  that 
blocks 𝑀 . Let 𝐶𝑖 be the first cycle that contains an edge that is not in 𝑀 ′


, but contains a vertex of  and let that vertex be 𝑢. 

Since 𝑀 ′

⊄𝑀 , such a cycle exists. Then, by the fact that 𝑢 must have an at least as good partner set it 𝑀 ′


we get that the edge 

corresponding to the arc 𝑢𝑤 starting from 𝑢 in 𝐶𝑖 is in 𝑀 ′


. (𝑢 cannot get a better partner than 𝑤 = 𝑝𝑀𝑖

𝑉𝑖
(𝑢) that she did not already 

have in 𝑀 , because then there would be a cycle 𝐶𝑗 before 𝐶𝑖 that contains a vertex in  but not every edge of 𝐸(𝐶𝑗 ) is in 𝑀 ′


, a 
contradiction). This also means that 𝑤 ∈  , and by similar reasoning, the edge corresponding to the arc starting from 𝑤 is in 𝑀 ′


, 

too, and continuing this argument we get that 𝐸(𝐶𝑖) ⊂𝑀 ′


, a contradiction. □

4.2. Fractional strong core matchings

We describe the algorithm that finds a fractional matching that is in the strong core of fractional matchings. The notation is the 
same, and the algorithm itself is also very similar to Algorithm 2. The main idea of the algorithm is that in each round, everybody 
with some remaining capacity points to his favourite partner who also has remaining capacity such that the edge between them has 
value less than 1 in 𝑓𝑀 at the moment. Then, we find a cycle in this graph, and add each edge with the same weight with as large 
weight as possible (to remain feasible).

For the sake of generality, here we assume that each vertex capacity 𝑘(𝑣) can be an arbitrary nonnegative real number instead 
of being integer. We also suppose that each edge has a nonnegative real capacity 𝑘(𝑒) (previously this was assumed to be 1). A 
fractional matching 𝑓𝑀 is called feasible in this case, if 𝑓𝑀 (𝑒) ≤ 𝑘(𝑒) also holds for each 𝑒 ∈ 𝐸. Let 𝑝𝑀

𝑈
(𝑣) denote the best agent in 

𝑣’s preference list among the agents in 𝑈 who are not matched with 𝑣 with full weight (so with weight 𝑘(𝑒)) in 𝑓𝑀 .

Algorithm 3 Fractional strong core.

Set 𝑓𝑀0 ≡ 0, 𝑖 = 0.
Set 𝑘𝑟(𝑣) = 𝑘(𝑣) (∀𝑣 ∈𝑁)
Set 𝑘𝑟(𝑒) = 𝑘(𝑒) (∀𝑒 ∈𝐸).
Let 𝑉0 = {𝑣 ∈𝑁 ∶ 𝑘(𝑣) > 0}, 𝐴0 = {𝑣𝑝𝑀

𝑉
(𝑣) ∶ 𝑣 ∈ 𝑉0},

while 𝐴𝑖 ≠ ∅ do

Find a directed cycle 𝐶𝑖 in 𝐷𝑖 = (𝑉𝑖, 𝐴𝑖).
Let 𝑓𝐶𝑖 (𝑒) = 1, if 𝑒 ∈𝐸(𝐶𝑖), 𝑓𝐶𝑖 (𝑒) = 0, if 𝑒 ∉𝐸(𝐶𝑖).
Let 𝜀𝑖 ∶= max{𝛿 ∶ 𝑓𝑀

𝑖
(𝑒) + 𝛿𝑓𝐶𝑖 (𝑒) is feasible}

𝑓𝑀
𝑖+1 = 𝑓

𝑀
𝑖

+ 𝜀𝑖𝑓𝐶𝑖 .
if |𝐶𝑖| = 2 ∶ then

For each 𝑣 ∈ 𝑉 (𝐶𝑖) ∶ 𝑘𝑟(𝑣) = 𝑘𝑟(𝑣) − 𝜀𝑖
For each 𝑒 ∈𝐸(𝐶𝑖): 𝑘𝑟(𝑒) = 𝑘𝑟(𝑒) − 𝜀𝑖 .

else

For each 𝑣 ∈ 𝑉 (𝐶𝑖) ∶ 𝑘𝑟(𝑣) = 𝑘𝑟(𝑣) − 2𝜀𝑖
For each 𝑒 ∈𝐸(𝐶𝑖): 𝑘𝑟(𝑒) = 𝑘𝑟(𝑒) − 𝜀𝑖 .

end if

𝑉𝑖+1 = {𝑣 ∈𝑁 ∶ 𝑘𝑟(𝑣) > 0}
𝐴𝑖+1 = {𝑣𝑝𝑀

𝑉𝑖+1
(𝑣) ∶ 𝑣 ∈ 𝑉𝑖+1}

𝑖 = 𝑖 + 1
end while

𝑓𝑀 = 𝑓𝑀
𝑖

Theorem 4.2. For the stable fixtures problem, Algorithm 3 produces a fractional matching 𝑓𝑀 in (|𝐸|2) time that is in the strong core of 
fractional matchings.

Proof. The running time is (|𝐸|2), because in each iteration of the while loop, a vertex or an edge becomes saturated, as we choose 
the maximum possible value for 𝜀𝑖 (in the case of an edge this means 𝑓𝑀 (𝑒) = 𝑘(𝑒)); and each iteration can be done in (|𝐸|) time.

The capacity constraints are obviously satisfied during the algorithm, and so is 𝑓𝑀 (𝑒) ≤ 𝑘(𝑒) (∀𝑒 ∈𝐸) by the choice of 𝜀𝑖.
We show that the algorithm returns a fractional matching in the strong core even in the case when the agents and the edges can 

have arbitrary fractional capacities too. We prove this statement by induction on the number 𝑡 of iterations of the algorithm. Suppose 
the number of iterations is 0. Then, any edge induced by 𝑉0 has capacity 0, so the only feasible matching is 𝑓𝑀 ≡ 0 and hence the 
output is in the strong core.

Let 𝐼 be an instance and suppose now that the number of iterations is 𝑡 ≥ 1 and suppose that the statement holds for 𝑡 − 1. Let 
the first cycle that the algorithm finds be 𝐶1. If we decrease the vertex and edge capacities the same way as the algorithm in the 
first iteration, then in the obtained instance 𝐼 ′, the algorithm runs exactly the same way as it does in 𝐼 after the first iteration. Also, 
the number of iterations when run on 𝐼 ′ is strictly smaller, so the fractional matching 𝑔𝑀 that the algorithm outputs for 𝐼 ′ is in the 
229
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Games and Economic Behavior 145 (2024) 217–238P. Biró and G. Csáji

Suppose now that there is a blocking coalition  for 𝑓𝑀 with a fractional matching 𝑓𝑀


. We can suppose that 𝑓𝑀

(𝑢𝑣) > 0 only 

if 𝑢, 𝑣 ∈  . If there is no agent 𝑢 ∈ 𝑉 (𝐶1) ∩  , then each agent in  and each edge with positive value in 𝑓𝑀


has the same capacity 
in 𝐼 and 𝐼 ′, so 𝑓𝑀


is also feasible in 𝐼 ′. But, as 𝑓𝑀 ≥ 𝑔𝑀 , we obtain that  blocks 𝑔𝑀 with 𝑓𝑀


, contradicting that 𝑔𝑀 is in the 

strong core of 𝐼 ′.
Hence there is an agent 𝑢1 ∈ 𝑉 (𝐶1) ∩ . As 𝑢1 points to his favourite partner 𝑢2 in 𝐶1, by the lexicographical preferences we obtain 

that 𝑓𝑀


(𝑢1𝑢2) ≥ 𝜀1. In particular, 𝑢2 ∈  and by similar reasoning, 𝑓𝑀

(𝑢2𝑢3) ≥ 𝜀1, where 𝑢3 is 𝑢2 ’s favourite partner. Iterating this 

argument, we get that 𝑉 (𝐶1) ⊂  and 𝑓𝑀


(𝑒) ≥ 𝜀1 for each 𝑒 ∈𝐸(𝐶1). Therefore, 𝑔𝑀


= 𝑓𝑀


− 𝜀1𝑓𝐶1 is a feasible fractional matching 
in 𝐼 ′. As 𝑔𝑀 = 𝑓𝑀 − 𝜀1𝑓𝐶1 , we get that  blocks 𝑔𝑀 with the fractional matching 𝑔𝑀


in 𝐼 ′, contradiction. □

5. The weak core

In this section we consider another relaxation of the strong core, the weak core.3 We settle most of the corresponding complexity 
questions, we only leave open the complexity of finding a weak core matching in the stable many-to-many matching problem.

We note the concept of weak core might be too broad to be considered as the sole criterion, because it allows rather sub-optimal 
solutions. As a very simple example take three agents 𝑎, 𝑏 and 𝑐, where 𝑎 and 𝑐 have capacity one and 𝑏 has capacity two, and the 
possible pairs are 𝑎𝑏 and 𝑏𝑐, where 𝑏 prefers 𝑎 to 𝑐. In this example the unique strong core, Pareto-optimal and stable solution is to 
take both edges. However, edge 𝑎𝑏 alone is also in the weak core, since 𝑏𝑐 is not blocking and the grand coalition does not block 
either, since 𝑎 would not strictly improve. Therefore a decision maker may want to add some additional requirements when selecting 
a solution from the weak core.

5.1. Finding weak core solutions

In the fixtures case, it is easy to see that the weak core can also be empty, just consider three agents with cyclic preferences and 
unit capacities. By using such a no-instance, we are able to prove the NP-hardness of finding a strong core solution in a stable fixtures 
problem in a similar fashion as the strong core.

Theorem 5.1. It is NP-hard to decide whether an instance of the stable fixtures problem under lexicographic preferences admits a weak core 
solution.

Proof. We use the same construction as in Theorem 3.2, reducing from COM-SMTI. We only change the gadget 𝐺𝑖 for the women 
𝑤𝑖 ∈𝑊 𝑡 and the gadget 𝐺.

Let the gadget 𝐺𝑖 now only consist of two agents 𝑤′
𝑖

with capacity 2 and a dummy man 𝑢∗
𝑖

with capacity one, who is first choice 
for 𝑤′

𝑖
. 𝑤′

𝑖
ranks the two nodes corresponding to her original neighbours in an arbitrary strict way.

Let the gadget 𝐺 consist of a triangle with agents {𝑎, 𝑏, 𝑐} such that 𝑎 >𝑏 𝑐, 𝑏 >𝑐 𝑎, and 𝑐 >𝑎 𝑏. (Clearly, 𝐺 has no weak core 
solution). Again, the special agent 𝑔 is added to the top of 𝑎’s preference list, while 𝑎 is added to the end of 𝑔’s one.

Suppose that there is a complete stable matching 𝑀 in 𝐼 . We simply extend 𝑀 to 𝑀 ′ by adding the edges 𝑤′
𝑖
𝑢∗
𝑖

for each 𝑤𝑖 ∈𝑊 𝑡

and the edges 𝑎𝑔, 𝑏𝑐. We claim that 𝑀 ′ is in the weak core. Let  be a strictly blocking coalition. If no 𝑤′
𝑖

agent is in  with capacity 
2, then we can suppose that  consists of two agents with capacity one, who mutually prefer each other to their partner. But there 
is no blocking edge between the agents with capacity one in 𝑀 ′, as 𝑀 was stable and complete. Hence, there is an agent 𝑤′

𝑖
in  . 

Then, 𝑤′
𝑖

must keep her best partner 𝑢∗
𝑖
, and 𝑢∗

𝑖
cannot strictly improve, contradiction.

For the other direction, suppose that there is a weak core solution 𝑀 ′ in 𝐼 ′. Then, 𝑔 must be matched with 𝑎, otherwise 
{𝑎, 𝑏}, {𝑎, 𝑐} or {𝑏, 𝑐} form a strictly blocking coalition. Hence, no 𝑔𝑢′

𝑗
edge can be a blocking edge, so each man 𝑢′

𝑗
receives a partner 

𝑤′
𝑖

in 𝑀 ′. We claim that these edges form a complete and stable matching 𝑀 in 𝐼 .
Suppose that two men 𝑢′

𝑗
, 𝑢′
𝑘

both receive the same partner 𝑤′
𝑖
. Then, 𝑤′

𝑖
has capacity 2 and is not matched to 𝑢∗

𝑖
. Hence, {𝑤′

𝑖
, 𝑢∗
𝑖
}

form a strictly blocking coalition, contradiction. We conclude that 𝑀 is indeed a complete matching. Suppose the edge 𝑢𝑗𝑤𝑖 blocks 
𝑀 . Then, {𝑢𝑗 , 𝑤𝑖} is a strictly blocking coalition for 𝑀 ′, a contradiction. □

5.2. Verifying weak core solutions

Finally, we also consider the verification problem related to the weak core. In this case, the problem is hard even in the many-
to-many version. For the basis of our hardness result, we first show that verifying if a matching is weakly Pareto-optimal is also 
coNP-hard in the stable many-to-many matching problem.

Theorem 5.2. It is coNP-complete to decide whether a matching 𝑀 is weakly Pareto optimal in the stable many-to-many matching problem. 
Also, it is NP-hard to find a maximum size weakly Pareto optimal matching for the stable fixtures problem.
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Proof. For the verification problem, containment in coNP is trivial, as it is easy to verify if a matching 𝑀 ′ dominates 𝑀 .
We start by showing hardness of the verification problem. To show hardness, we reduce from EXACT-3-COVER. Let 𝐼 be an 

instance of EXACT-3-COVER with sets  = {𝑌1, … , 𝑌𝑚} and elements 𝑋 = {𝑥1, … , 𝑥3𝑛}. As previously discussed, we may assume that 
𝑚 = 3𝑛 and that each element appears in exactly 3 sets.

For each set 𝑌𝑗 ∈  in 𝐼 , we create agents 𝑠𝑗 and 𝑡𝑗 with capacity 4 along with agents 𝑢1
𝑗
, … , 𝑢4

𝑗
, 𝑣1
𝑗
… , 𝑣4

𝑗
with capacity 2 and 

agents 𝑤1
𝑗
, … , 𝑤4

𝑗
, 𝑧1
𝑗
… , 𝑧4

𝑗
with capacity 1.

For each element 𝑥𝑖 ∈𝑋, we add agents 𝑝𝑖 and 𝑞𝑖 each with capacity 1.
Finally, we create 2(𝑚 − 𝑛) agents 𝑎𝑙, 𝑏𝑙 for 𝑙 ∈ [𝑚 − 𝑛] with capacity 1 and 2𝑛 agents 𝑐𝑙 and 𝑑𝑙 for 𝑙 ∈ [𝑛] with capacity 1.
The preferences are as follows.

𝑝𝑖 ∶ [𝑇𝑖] 𝑞𝑖 ∶ [𝑆𝑖]
𝑠𝑗 ∶ [𝐷] > 𝑣1

𝑗
> 𝑣2

𝑗
> 𝑣3

𝑗
> [𝐵] > 𝑣4

𝑗
> [𝑄𝑗 ] 𝑡𝑗 ∶ [𝐶] > 𝑢1

𝑗
> 𝑢2

𝑗
> 𝑢3

𝑗
> [𝐴] > 𝑢4

𝑗
> [𝑃𝑗 ]

𝑐𝑙 ∶ [𝑇 ] 𝑑𝑙 ∶ [𝑆]
𝑢𝑙
𝑗
∶ 𝑧𝑙

𝑗
> 𝑣𝑙

𝑗
> 𝑡𝑗 𝑣𝑙

𝑗
∶ 𝑤𝑙

𝑗
> 𝑢𝑙

𝑗
> 𝑠𝑗

𝑤𝑙
𝑗
∶ 𝑣𝑙

𝑗
𝑧𝑙
𝑗
∶ 𝑢𝑙

𝑗

𝑎𝑙 ∶ [𝑇 ] 𝑏𝑙 ∶ [𝑆]

Here, 𝑇 = {𝑡𝑗 ∣ 𝑗 ∈ [𝑚]}, 𝑆 = {𝑠𝑗 ∣ 𝑗 ∈ [𝑚]}, 𝑇𝑖 (𝑆𝑖) denotes the 𝑡𝑗 (𝑠𝑗 ) agents such that 𝑥𝑖 ∈ 𝑌𝑗 , 𝐶 = {𝑐𝑙 ∣ 𝑙 ∈ [𝑛]}, 𝐷 = {𝑑𝑙 ∣ 𝑙 ∈ [𝑛]}
and 𝑄𝑗 (𝑃𝑗 ) denotes the set of 𝑞𝑖 (𝑝𝑖) agents such that 𝑥𝑖 ∈ 𝑌𝑗 . Furthermore, for an indexed set 𝐴, [𝐴] means that the elements of 𝐴
are ranked in the order of their indices.

So far the constructed instance is bipartite. Let the matching 𝑀 consist of the edges {𝑠𝑗𝑣𝑙𝑗 , 𝑡𝑗𝑢
𝑙
𝑗
, 𝑢𝑙
𝑗
𝑣𝑙
𝑗
∣ 𝑗 ∈ [𝑚], 𝑙 ∈ [4]}. We claim 

that there is matching 𝑀 ′, where every agent strictly improves, if and only if 𝐼 admits an exact 3-cover.
Suppose first that there is an exact 3-cover  ′ ⊂  . Let  ′ = {𝑌𝑗1 , … , 𝑌𝑗𝑛}. We create a matching 𝑀 ′ that strictly dominates 

𝑀 . For each 𝑌𝑗𝑘 ∈  ′, we add the three edges between 𝑠𝑗𝑘 and 𝑄𝑗𝑘 along with an edge between 𝑠𝑗𝑘 and 𝑑𝑘, as well as the three 
edges between 𝑡𝑗𝑘 and 𝑃𝑗𝑘 along an edge between 𝑡𝑗𝑘 and 𝑐𝑘. Then, all agents in 𝑃 , 𝑄, 𝐶 and 𝐷 get matched. For the rest of the 
sets {𝑌𝑙1 , … , 𝑌𝑙𝑚−𝑛}, we match 𝑠𝑙𝑖 to 𝑣1

𝑙𝑖
, 𝑣2
𝑙𝑖
, 𝑣3
𝑙𝑖

and 𝑏𝑖 and match 𝑡𝑙𝑖 to 𝑢1
𝑙𝑖
, 𝑢2
𝑙𝑖
, 𝑢3
𝑙𝑖

and 𝑎𝑖. Finally, we add the edges {𝑢𝑙
𝑗
𝑧𝑙
𝑗
, 𝑣𝑙
𝑗
𝑤𝑙
𝑗
∣ 𝑗 ∈

[𝑚], 𝑙 ∈ [4]}. Then, all agents from 𝐴 = {𝑎𝑙 ∣ 𝑙 ∈ [𝑚 − 𝑛]}, 𝐵 = {𝑏𝑙 ∣ 𝑙 ∈ [𝑚 − 𝑛]}, 𝑊 = {𝑤𝑖
𝑙
∣ 𝑙 ∈ [𝑚], 𝑖 ∈ [4]}, 𝑍 = {𝑧𝑖

𝑙
∣ 𝑙 ∈ [𝑚], 𝑖 ∈ [4]}

get matched too. Then, it is straightforward to verify that each agent strictly improves and that 𝑀 ′ is feasible.
For the other direction, suppose that there is a matching 𝑀 ′, where each agent strictly improves. Then, all agents in 𝑄 must get 

matched in 𝑀 ′. If an agent 𝑞𝑖 gets matched to an agent 𝑠𝑗 , then 𝑠𝑗 must get a partner from 𝐷 to improve. Otherwise, 𝑠𝑗 must keep 
𝑣1
𝑗
, 𝑣2
𝑗
, 𝑣3
𝑗
, but she also has 𝑞𝑖 now, so no other agents are matched to her, so she does not improve, contradiction. As |𝐷| = 𝑛, we get 

that all 𝑞𝑖 agents get matched to at most 𝑛 𝑠𝑗 agents, which is only possible if the sets corresponding to those 𝑠𝑗 agents form an exact 
3-cover.

Now, we extend the constructed instance 𝐼 ′ to an instance 𝐼 ′′ to show NP-hardness of deciding whether there is a complete 
weakly Pareto optimal matching. For this, we add special agents 𝑔, ℎ with capacity 3𝑛 + 5𝑚 along with agents 𝑔′, ℎ′ with capacity 1
and agents 𝑟1, 𝑟2 with capacity 2 and agents 𝑟3, 𝑟4 with capacity 1. Their preferences are the following.

𝑔 ∶ 𝑔′ > [𝑍] > [𝐵] > [𝐷] > [𝑄]
ℎ ∶ ℎ′ > [𝑊 ] > [𝐴] > [𝐶] > [𝑃 ]
𝑔′ ∶ 𝑔 > 𝑟1
ℎ′ ∶ ℎ > 𝑟1
𝑟1 ∶ 𝑟2 > ℎ

′ > 𝑔′

𝑟2 ∶ 𝑟1 > 𝑟3 > 𝑟4
𝑟3 ∶ 𝑟4 > 𝑟2
𝑟4 ∶ 𝑟3 > 𝑟2

Furthermore, we add 𝑔 as the worst acceptable partner to each agent in 𝑍 ∪𝐵 ∪𝐷 ∪𝑄 and ℎ as the worst partner for each agent 
in 𝑊 ∪𝐴 ∪𝐶 ∪ 𝑃 .

We illustrate the construction in Fig. 6.
With the help of this additional gadget, in the unique maximum size matching 𝑀 , where every agent is saturated, 𝑟2 is matched 

to 𝑟3 and 𝑟4, hence 𝑟1 is matched to 𝑔′ and ℎ′, hence 𝑔 is matched to all agents in 𝑍 ∪𝐵 ∪𝐷 ∪𝑄 and ℎ is matched to all agents in 
𝑊 ∪ 𝐴 ∪ 𝐶 ∪ 𝑃 , who have capacity one, so they have no other partner. Hence, the edges {𝑠𝑗𝑣𝑙𝑗 , 𝑡𝑗𝑢

𝑙
𝑗
, 𝑢𝑙
𝑗
𝑣𝑙
𝑗
∣ 𝑗 ∈ [𝑚], 𝑙 ∈ [4]} are also 

in 𝑀 as this is the only way for the other agents to be saturated. So if we restrict the matching to the vertices of 𝐼 ′, we exactly get 
back the same matching as before.

Now, if there is an exact 3-cover, then we can make a matching 𝑀 ′ just as before, with the addition that we add the edges 
𝑔𝑔′, ℎℎ′, 𝑟1𝑟2, 𝑟3𝑟4 to 𝑀 ′ to ensure that all newly added agents also strictly improve.

Also, if there is a matching 𝑀 ′ strictly dominating 𝑀 , then again, each agent 𝑞𝑖 must get matched to agents 𝑠𝑗 , who then must 
get an agent form 𝐷. So there can be at most 𝑛 such agents and their corresponding sets must form an exact 3-cover. □
231

Now we are ready to extend the hardness result to weak core verification.
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Fig. 6. An illustration for Theorem 5.2. The small nodes are the ones we add for the second construction along with the dashed edges. Bold edges are the corresponding 
edges of 𝑀 (a bold edge between two sets means that each edge between the two sets is in 𝑀).

Theorem 5.3. It is coNP-complete to decide if a matching 𝑀 is in the weak core under lexicographic preferences.

Proof. In Theorem 5.2 we showed that verifying whether a matching is weakly Pareto-optimal is coNP-complete even for the 
many-to-many case. Let 𝐼 be an instance of that problem with bipartite graph 𝐺 = (𝑈, 𝑊 , 𝐸) and a matching 𝑀 .

We create an instance 𝐼 ′ of weak core verification as follows. Keep each agent and edge from 𝐼 . For each agent in 𝑈 ∪𝑊 we 
increase the capacity by one. Furthermore, we add two super agents 𝑎 to 𝑊 and 𝑏 to 𝑈 . So let 𝑈 ′ = 𝑈 ∪ {𝑎}, 𝑊 ′ =𝑊 ∪ {𝑏}. Add 
𝑎 as the best partner for each agent in 𝑈 and 𝑏 as the best partner for each agent in 𝑊 . The preferences of 𝑎 and 𝑏 are such that 
they consider each other the worst, but otherwise their preferences are arbitrary (for example they rank the agents according to their 
indices).

Let the capacity of 𝑎 be |𝑊 ′| and the capacity of 𝑏 be |𝑈 ′|. Create a matching 𝑀 ′ by keeping all edges of 𝑀 and add {𝑎𝑢 ∣ 𝑢 ∈𝑈}
and {𝑏𝑤 ∣𝑤 ∈𝑊 }. As each agent in 𝑈 ∪𝑊 increased capacity, 𝑀 ′ is feasible.

We claim that 𝑀 ′ is in the weak core if and only if 𝑀 is weakly Pareto-optimal.
Suppose that 𝑀 is not weakly Pareto optimal in 𝐼 . Then, there is a matching 𝑁 , where each agent strictly improves. Extend 𝑁

to 𝑁 ′ by adding the edges {𝑎𝑢 ∣ 𝑢 ∈ 𝑈}, {𝑏𝑤 ∣𝑤 ∈𝑊 } and 𝑎𝑏. Then, each agent in 𝑈 ∪𝑊 still improves from 𝑀 ′ to 𝑁 ′ and 𝑎 and 
𝑏 also improve, as they received a new partner (each other). Hence 𝑀 ′ is not in the weak core, the grand coalition strictly blocks.

Suppose that 𝑀 ′ is not in the weak core. Let  be a blocking coalition. We claim that  =𝑈 ′ ∪𝑊 ′. Indeed, if any 𝑢 ∈𝑈 is in  , 
then they must keep their best partner 𝑏. If 𝑎 ∈  , then she also must get 𝑏 to strictly improve, as she received all other partners in 
𝑀 ′ and 𝑏 is the worst. Hence 𝑏 ∈  necessarily. Agent 𝑏 can only strictly improve by getting each 𝑢 ∈𝑈 and her worst partner 𝑎 too 
(she obtained all other partners in 𝑀 ′). So 𝑈 ′ ⊂  . Similarly for 𝑎 we get that 𝑊 ′ ⊂  .

This means that there is a matching 𝑁 ′, where each agent in 𝑈 ∪𝑊 strictly improves. The edges {𝑎𝑢 ∣ 𝑢 ∈𝑈}, {𝑏𝑤 ∣𝑤 ∈𝑊 } must 
be in 𝑁 ′, so 𝑁 ′ restricted to 𝐼 is a matching where each agent strictly improves from 𝑀 , hence 𝑀 is not weakly Pareto-optimal. □

6. Reverse-lexicographic preferences

In this section we study another simple preference structure that we call reverse-lexicographical preferences (RL-preferences for 
short). The motivation here is that in some situations, the agents may want to have as many partners as possible (for example a 
company aims to have all its positions filled) but they also do not want to receive very bad partners, e.g. they want their worst 
partner to be as good as possible.

Another motivation is that strong core solutions fail to always exists even in the many-to-many settings, but we will show that 
RL-preferences behave nicer in several aspects, and here a strong core solution is always guaranteed and can be found for the many-
to-many variant. It also behaves nicer for Pareto-optimal solutions: we show that, as opposed to lexicographic preferences, under 
RL-preferences we can find maximum size Pareto-optimal solutions even in the stable fixtures problem.

6.1. Finding strong core solutions

In this section we investigate the search problems related to the strong core. We start by proving that the strong core of a stable 
many-to-many matching problem is never empty if we assume RL preferences. For this, we first show that stable matchings always 
form a subset of the strong core.

Theorem 6.1. For reverse-lexicographic preferences, if a matching 𝑀 is stable then it is also in the strong core.

Proof. Let 𝑀 be a stable matching. Suppose for a contradiction that there is a weakly blocking coalition  for 𝑀 . Let 𝑀 ′


denote 
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the matching of the agents contained in  , that each of them weakly prefers, and at least one strictly prefers to 𝑀 .
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Since it must hold that 𝑀 ′


is not contained in 𝑀 , we get that there is an edge 𝑢𝑤 ∈𝑀 ′

⧵𝑀 . We will show that 𝑢𝑣 is a blocking 

pair for 𝑀 . If 𝑢 was saturated in 𝑀 , then so is she in 𝑀 ′


, and by the definition of the RL-preferences, it must hold that 𝑤 is better 
for 𝑢, than the worst agent in 𝑀 ′


, according to the order >𝑢. Similar argument for 𝑤 shows that either 𝑤 was unsaturated by 𝑀 , or 

𝑢 is preferred by 𝑤 to the worst agent in 𝑀(𝑤). So both 𝑢 and 𝑤 are either unsaturated, or they have a partner in 𝑀 that is worse, 
so 𝑢𝑤 is a blocking edge, a contradiction. □

By using the Gale-Shapley algorithm to find a stable matching in linear time, we get the following result immediately.

Theorem 6.2. For the stable many-to-many matching problems with RL-preferences, the strong core is always nonempty, and strong core 
solutions can be found in (|𝐸|) time.

However, as the following example illustrates, the strong core can be strictly larger than the set of stable solutions.

Example 4
We have three agents on both sides of a many-to-many market with capacity 2 each and the following preferences.

𝑎 ∶ 𝑧 > 𝑦 𝑥 ∶ 𝑐 > 𝑏

𝑏 ∶ 𝑥 > 𝑦 > 𝑧 𝑦 ∶ 𝑎 > 𝑏 > 𝑐

𝑐 ∶ 𝑦 > 𝑥 𝑧 ∶ 𝑏 > 𝑎

Here matching 𝑀 = {𝑎𝑦, 𝑎𝑧, 𝑏𝑥, 𝑏𝑧, 𝑐𝑥, 𝑐𝑦} is a strong core solution under RL-preferences, but not stable, since 𝑏𝑦 is a blocking 
pair.

Although the stable matchings will always be a part of the strong core, the set of strong core solutions can form a strictly larger 
set. Moreover, the existence problem becomes NP-hard for the fixtures variant, as stated in the next theorem.

Theorem 6.3. Deciding whether a given stable fixtures problem with RL-preferences admits a strong core solution is NP-hard, even if each 
capacity is at most 2.

Proof. We reduce from the NP-complete COM-SMTI, as in the proof of Theorem 3.2. Let 𝐼 be an instance of COM-SMTI, let the set of 
men be 𝑈 = {𝑢1, … , 𝑢𝑛}, and the set of women be 𝑊 = {𝑤1, … , 𝑤𝑚}, where 𝑊 𝑡 = {𝑤1, … , 𝑤𝑙} is the set of women, whose preference 
list is a single tie of length exactly 2, and 𝑊 𝑠 = {𝑤𝑙+1, … , 𝑤𝑛} is the set of women with strict preferences.

We create an instance 𝐼 ′ with 𝐺′ = (𝑉 ′, 𝐸′) of our problem as follows. For each woman 𝑤𝑖 ∈𝑊 𝑡, we create a gadget 𝐺𝑖, with the 
same preferences and capacities as in the proof of Theorem 3.2. For each woman 𝑤𝑖 ∈𝑊 𝑠, we create a single agent 𝑤′

𝑖
with capacity 

1. For each man 𝑢𝑖 ∈ 𝑈 , we create an agent 𝑢′
𝑖

with capacity 1. We also add a special agent 𝑥 with capacity 1, and 3 more agents 
𝑠1, 𝑠2, 𝑠3 again with capacity 1.

The agents in the 𝐺𝑖 gadgets have the same preferences as in the proof of Theorem 3.2. The 𝑤′
𝑖

agents for 𝑤𝑖 ∈𝑊 𝑠 have the 
same preferences as 𝑤𝑖, just on the 𝑢′

𝑗
agents instead of the 𝑢𝑗 -s. The 𝑢′

𝑗
agents also have the same preferences as 𝑢𝑗 , with the 

modification that agent 𝑥 is added to the end of their preference list. Agent 𝑥 has preference 𝑢1 >𝑥 𝑢2 >𝑥 ⋯ >𝑥 𝑢𝑛 >𝑥 𝑠1, agent 𝑠1 has 
preference 𝑥 >𝑠1 𝑠2 >𝑠1 𝑠3, 𝑠2 has preference 𝑠3 >𝑠2> 𝑠1 and 𝑠3 has preference 𝑠1 >𝑠3 𝑠2. The edges correspond exactly to the mutual 
acceptability relations according to the preference lists.

We show that the strong core is nonempty in 𝐼 ′ if and only if there is a complete weakly stable matching in 𝐼 .
First suppose that there is a complete weakly stable matching 𝑀 in 𝐼 . We create a matching 𝑀 ′ in 𝐼 ′ as follows. For each edge 

𝑢𝑗𝑤𝑖 ∈𝑀 , add the edge 𝑢′
𝑗
𝑤′
𝑖

or 𝑢′
𝑗
𝑤′′
𝑖

to 𝑀 ′. For each 𝑖 = 1, … , 𝑙 add the edges 𝑐𝑖𝑤′
𝑖

and 𝑐𝑖𝑤𝑖′′ to 𝑀 ′. Then, for each pair {𝑤′
𝑖
, 𝑤′′

𝑖
}, 

𝑖 = 1, … , 𝑙 if 𝑤𝑖 is matched to 𝑢𝑗 , then add the edge 𝑑𝑖𝑤′′
𝑖

, otherwise add the edge 𝑑𝑖𝑤′
𝑖
. Finally, add the edges 𝑥𝑠1 and 𝑠2𝑠3 to 𝑀 ′.

Suppose for a contradiction that there is a blocking coalition  with matching 𝑀 ′′


for 𝑀 ′. If there is an agent 𝑣𝑖 ∈ {𝑐𝑖, 𝑑𝑖, 𝑤′
𝑖
, 𝑤′′

𝑖
}

for some 𝑖 = 1, .., 𝑙 in 𝑈 , then a straightforward argument shows that all of {𝑐𝑖, 𝑑𝑖, 𝑤′
𝑖
, 𝑤′′

𝑖
} must be in  as every agent must be 

saturated in 𝑀 ′′


because they were saturated in 𝑀 ′. This also implies that they must get the same set of partners in 𝑀 ′′


as in 𝑀 ′, 
since a strict improvement of one of them would cause another to be strictly worse off. Therefore, we can suppose that  does not 
contain any such agent, since if it does, then by removing all four of them along with their partners we would still get a blocking 
coalition.

Observe that all other agents have capacity one, therefore  only contains agents with capacity 1, so 𝑀 ′′


is a union of vertex 
disjoint edges. Therefore, there must be a single edge such that its two agents still form a blocking coalition. This edge cannot be 
of the form 𝑢′

𝑗
𝑤′
𝑖
, since such an edge would contradict the weak stability of 𝑀 , because for capacity 1 agents, the RL-ranking is the 

same as their linear ranking over their neighbours.
The only other possibilities are 𝑢′

𝑗
𝑥 for some 𝑗, 𝑠1𝑠2 or 𝑠3𝑠1. It is straightforward to verify that none of them form a blocking 

coalition, as each 𝑢′
𝑗

is matched in 𝑀 ′ to someone better than 𝑥 and 𝑠1 is with her best possible partner.

For the other direction, suppose that there is a strong core solution 𝑀 ′ in 𝐼 ′. We show that 𝑀 ′ must induce a complete weakly 
stable matching by taking the 𝑢𝑗𝑤𝑖 edges such that 𝑢′

𝑗
𝑤′
𝑖

or 𝑢′
𝑗
𝑤′′
𝑖

is contained in 𝑀 . First suppose that there is a man 𝑢𝑗 that does not 
get a partner this way. Then, since {𝑢𝑗 , 𝑥} did not form a blocking coalition, 𝑥 must not be matched to 𝑠1 in 𝑀 ′. Hence, the agents 
233

𝑠1, 𝑠2, 𝑠3 must be matched among themselves, but then each of the 3 possible matchings would be strictly blocked by two agents of 
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them. Therefore, each 𝑢𝑗 gets a partner in 𝑀 ′. Suppose that 𝑢𝑗 and 𝑢𝑙 get the same partner. Then, 𝑢′
𝑗
𝑤′
𝑖

and 𝑢′
𝑙
𝑤′′
𝑖

are contained 
in 𝑀 ′. However this would imply that {𝑐𝑖, 𝑑𝑖, 𝑤′

𝑖
, 𝑤′′

𝑖
, 𝑢′
𝑗
} or {𝑐𝑖, 𝑑𝑖, 𝑤′

𝑖
, 𝑤′′

𝑖
, 𝑢′
𝑙
} would form a blocking coalition, as 𝑤′

𝑖
or 𝑤′′

𝑖
could 

switch to 𝑐𝑖 or 𝑑𝑖 and strictly improve without any other member of the coalition getting a worse partner set.
This implies, that 𝑀 is a complete matching. Hence, it only remains to show that it is weakly stable. Suppose there is a blocking 

edge 𝑢𝑗𝑤𝑖. This means that 𝑤𝑖 ∈𝑊 𝑠. But then, {𝑢′
𝑗
, 𝑤′

𝑖
} would form a blocking coalition for 𝑀 ′ , a contradiction. □

6.2. Verifying strong core and Pareto-optimal solutions

Next we turn our attention to the verification problem. We show that verifying if a matching 𝑀 is in the strong core is NP-
complete even for the many-to-many case. This also implies, that the set of strong core solutions can strictly contain the set of stable 
matchings even in this framework.

Theorem 6.4. Verifying whether a matching 𝑀 in a stable many-to-many matching problem with RL-preferences is in the strong core is 
coNP-complete even if each capacity is at most 5.

Proof. The problem is in coNP, as given a blocking coalition and a matching 𝑀 ′, we can check whether each agent weakly improves 
and at least one strictly improves, or not.

We reduce from EXACT-3-COVER. Take an instance 𝐼 = ( = {𝑌1, … , 𝑌𝑚), 𝑋 = (𝑥1, … , 𝑥3𝑛)) of EXACT-3-COVER. We can also sup-
pose that each element is contained in exactly three sets, which will be important, so 𝑚 = 3𝑛. The NP-completeness of this restricted 
version of EXACT-3-COVER was first shown by Hein et al. (1996), but only stated explicitly in Hickey et al. (2008). We create an 
instance 𝐼 ′ of stable many-to-many matching problem, as follows.

For each set 𝑌𝑗 we add a set-agent 𝑠𝑗 with capacity 3. Also, we add a local gadget for 𝑠𝑗 consisting of four agents 𝑣1
𝑗
, 𝑣2
𝑗
, 𝑣3
𝑗

with 
capacity 2, and 𝑢𝑗 with capacity 3. This will ensure that a set-agent must get all 3 element-agents to improve.

For each element 𝑥𝑖, we add an element-agent 𝑞𝑖 with capacity 5 and four connector agents: 𝑝1
𝑖
, 𝑝2
𝑖
, that have capacity 4 and 𝑟1

𝑖
, 𝑟2
𝑖

that have capacity 2. These will guarantee that all element-agents must be inside in any blocking coalition.
Finally, we add agents 𝑧1, 𝑧2, … 𝑧3𝑛 with capacity 3 and agents 𝑤1, ..., 𝑤3𝑛 with capacity 2. They will ensure that each 𝑞𝑖 must get 

a set-agent in a blocking coalition.
Now we describe the underlying strict preferences.

𝑠𝑗 ∶ [𝑄𝑗 ] > 𝑣1𝑗 > 𝑣
2
𝑗
> 𝑣3

𝑗
𝑞𝑖 ∶ [𝑆𝑖] > 𝑝1𝑖 > 𝑝

2
𝑖
> 𝑝1

𝑖−1 > 𝑝
2
𝑖−1 > 𝑧𝑖

𝑢𝑗 ∶ 𝑣1
𝑗
> 𝑣2

𝑗
> 𝑣3

𝑗
𝑣𝑙
𝑗
∶ 𝑠𝑗 > 𝑢𝑗

𝑝1
𝑖
∶ 𝑞𝑖 > 𝑞𝑖+1 > 𝑟

1
𝑖
> 𝑟2

𝑖−1 𝑟1
𝑖
∶ 𝑝2

𝑖
> 𝑝1

𝑖

𝑝2
𝑖
∶ 𝑞𝑖 > 𝑞𝑖+1 > 𝑟

1
𝑖
> 𝑟2

𝑖
𝑟2
𝑖
∶ 𝑝2

𝑖
> 𝑝1

𝑖+1
𝑤𝑖 ∶ 𝑧𝑖+1 > 𝑧𝑖 𝑧𝑖 ∶ 𝑞𝑖 > 𝑤𝑖 > 𝑤𝑖−1

Where 𝑖, 𝑗 ∈ [3𝑛], 𝑙 ∈ [3]. Here, [𝑄𝑗 ] denotes the 𝑞𝑖 agents corresponding to the elements in 𝑌𝑗 in the order of their indices and 
[𝑆𝑖] denotes the 𝑠𝑗 agents corresponding to the sets that include 𝑥𝑖 in the order of their indices. The edges are exactly those 𝑢𝑤 pairs 
that consider each other acceptable (so they appear on each other’s preference lists).

Now we construct the initial matching 𝑀 by adding every edge except the ones between 𝑆 and 𝑄. Observe that every agent is at 
full capacity in 𝑀 . The construction is illustrated in Fig. 7.

We prove that there is a weakly blocking coalition to 𝑀 if and only if there is an exact 3-cover in 𝐼 .
Suppose first that there is an exact 3-cover  ′. Take the coalition  , consisting of {𝑠𝑗 ∣ 𝑌𝑗 ∈  ′} ∪ {𝑞𝑖, 𝑝𝑙𝑖, 𝑟

𝑙
𝑖
∣ 𝑖 ∈ [3𝑛], 𝑙 ∈ [2]}. 

Take the matching 𝑀 we get by keeping all edges of 𝑀 , where both endpoints are contained in  , and then for all 𝑠𝑗 ∈  we add 
the three edges between 𝑠𝑗 and 𝑄𝑗 . As  ′ was an exact 3-cover, each agent remains at full capacity. Also, the 𝑞𝑖 and 𝑠𝑗 agents, who 
get different partner sets all strictly improve, as they only exchange their worst partner(s) for better one(s). This concludes that  is 
a weakly blocking coalition.

For the other direction, suppose that there is a weakly blocking coalition  . As only the edges between the 𝑆 and 𝑄 are not 
included in 𝑀 , only these edges can contribute to a strict improvement for some agent. Therefore, there is an element-agent 𝑞𝑖 in  , 
who gets a set-agent 𝑠𝑗 , thus both strictly improve in 𝑀 .

If a 𝑞𝑖 agent strictly improves, then she must still be matched with her 𝑝𝑙
𝑖
, 𝑝𝑙
𝑖−1, 𝑙 ∈ [2] partners. This holds because if 𝑞𝑖 would 

drop a 𝑝𝑙
𝑖

agent, then that 𝑝𝑙
𝑖

agent cannot be at full capacity anymore in 𝑀 so she is not in  , which implies that her 𝑟𝑙
𝑖

neighbours
also cannot be saturated in 𝑀 , hence they are also not in  . By iterating this, none of 𝑝𝑙

𝑖
, 𝑟𝑙
𝑖
, 𝑖 ∈ [3𝑛], 𝑙 ∈ [2] are in  . However, 

this leaves only 3 + 1 = 4 possible partners for 𝑞𝑖 (as each element is in at most 3 sets), whereas she had 5 partners in 𝑀 . This 
reasoning also shows that 𝑝1

𝑖
, 𝑝2
𝑖

are in  and so are all of 𝑝𝑙
𝑖
, 𝑟𝑙
𝑖
, 𝑖 ∈ [3𝑛], 𝑙 ∈ [2] and all of them get all of their acceptable partners, 

hence 𝑞1, .., 𝑞3𝑛 must be in  and they keep their 𝑝𝑙
𝑖

partners, too. As there is an 𝑞𝑖 who strictly improves, she can only do this by 
exchanging 𝑧𝑖 to an acceptable set-agent 𝑠𝑗 . By an analogous reasoning for the 𝑧𝑖, 𝑤𝑖 agents, we get that none of them are in  (𝑧𝑖
cannot be saturated, hence 𝑤𝑖 cannot be saturated, etc), so all 𝑞𝑖 agents lose a partner in 𝑀 and therefore all of them must get a 
234

set-agent as a partner in 𝑀 .
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Fig. 7. An illustration for Theorem 6.4. The bold edges represent the edges of 𝑀 . The 𝑠𝑗 vertex corresponds to a set 𝑌𝑗 = {𝑥1, 𝑥2, 𝑥3}.

Finally, if a set-agent 𝑠𝑗 receives a 𝑞𝑖 element-agent as a partner, then she must drop one of her original partners, a 𝑣𝑙
𝑗

agent. Then, 
none of her 𝑣𝑙

𝑗
partners can remain in  , as 𝑢𝑗 cannot remain saturated but she would be needed for 𝑣1

𝑗
, 𝑣2
𝑗
, 𝑣3
𝑗

to remain saturated. 
Hence to remain saturated, 𝑠𝑗 must get all three of her acceptable element-agents in 𝑀 .

This implies, that the set-agents in  all get 0 or 3 element-agents and all element-agents are matched to exactly one set-agent, 
which implies that the sets corresponding to the strictly improving set-agents in  must form an exact 3-cover. □

Verification for Pareto-optimality is also coNP-complete.

Theorem 6.5. It is coNP-complete to verify whether a matching 𝑀 is Pareto-optimal in the stable many-to-many matching problem under 
RL-preferences.

Proof. Containment in coNP is trivial.
To show hardness, we reduce from EXACT-3-COVER. Let 𝐼 be an instance of EXACT-3-COVER. We can suppose that the number of 

sets is 𝑚 = 3𝑛 and that each element is covered exactly three times in  .
For each set 𝑌𝑗 , we create an agent 𝑠𝑗 with capacity 3 along with agents 𝑣1

𝑗
, 𝑣2
𝑗
, 𝑧𝑗 with capacity 1.

For each element 𝑥𝑖, we create four agents 𝑝𝑖, 𝑞𝑖, 𝑝1𝑖 , 𝑝
2
𝑖

with capacity 2.
Finally, we create an agent 𝑎 with capacity 4𝑛 and an agent 𝑏 with capacity 2𝑛.
The preferences are as follows:

𝑝𝑖 ∶ 𝑞𝑖+1 > 𝑝
1
𝑖
> 𝑝2

𝑖
> 𝑞𝑖 𝑞𝑖 ∶ 𝑝𝑖 > [𝑆𝑖] > 𝑝𝑖−1

𝑠𝑗 ∶ 𝑣1
𝑗
> 𝑣2

𝑗
> [𝑄𝑗 ] > 𝑧𝑗 𝑝1

𝑖
, 𝑝2
𝑖
∶ 𝑝𝑖

𝑎 ∶ [𝑉 ] 𝑣1
𝑗
, 𝑣2
𝑗
∶ 𝑎 > 𝑠𝑗

𝑏 ∶ [𝑍] 𝑧𝑗 ∶ 𝑏 > 𝑠𝑗

where 𝑉 = {𝑣1
𝑗
, 𝑣2
𝑗
∣ 𝑗 ∈ [𝑚]} and 𝑍 = {𝑧𝑗 ∣ 𝑗 ∈ [𝑚]}. Here, [𝑄𝑗 ] denotes the 𝑞𝑖 agents corresponding to the elements in 𝑌𝑗 in the order 

of their indices and [𝑆𝑖] denotes the 𝑠𝑗 agents corresponding to the sets that include 𝑥𝑖 in the order of their indices. Let 𝑀 be the 
following matching. 𝑀 = {𝑞𝑖𝑝𝑖, 𝑞𝑖+1𝑝𝑖 ∣ 𝑖 ∈ [3𝑛]} ∪ {𝑠𝑗𝑣1𝑗 , 𝑠𝑗𝑣

2
𝑗
, 𝑠𝑗𝑧𝑗 ∣ 𝑗 ∈ [𝑚]}. We claim that 𝑀 is not Pareto-optimal if and only if 𝐼

admits an exact 3-cover.
Suppose that 𝐼 admits an exact 3-cover  ′ ⊂ . Then, it must hold for  ⧵ ′ that it covers each element exactly twice, as 𝑚 = 3𝑛

and each element is covered exactly three times in  . Create a matching 𝑀 ′ as follows. Match each 𝑝𝑖 to 𝑝1
𝑖

and 𝑝2
𝑖
. For each 𝑌𝑗 ∉ ′, 

match 𝑠𝑗 to her three partners in 𝑄𝑗 and match 𝑧𝑗 to 𝑏 and 𝑣1
𝑗
, 𝑣2
𝑗

to 𝑎. Then, each agent in 𝑄 is matched to two partners in 𝑀 ′ (as 
is she in 𝑀) and her worst partner in 𝑀 ′ is better. Finally, for 𝑌𝑗 ∈ ′, match 𝑠𝑗 to 𝑣1

𝑗
, 𝑣2
𝑗

and 𝑧𝑗 as in 𝑀 . Then, for example agent 
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𝑎 strictly improves. It is straightforward to verify that 𝑀 ′ is feasible and each agent weakly improves in 𝑀 ′, so 𝑀 ′ dominates 𝑀 .
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For the other direction suppose that there is a matching 𝑀 ′ Pareto dominating 𝑀 . We claim that the agents in 𝑄 must strictly 
improve. Indeed, if an agent 𝑝𝑖, 𝑝1𝑖 or 𝑝2

𝑖
improves, then 𝑝𝑖 must drop 𝑞𝑖+1 (otherwise she can only exchange her best partner to a 

worse one), so she must strictly improve. If an agent 𝑠𝑗 strictly improves, then she must get a 𝑞𝑖 agent, so 𝑞𝑖 strictly improves. If an 
agent 𝑣1

𝑗
, 𝑣2
𝑗
, 𝑧𝑗 , 𝑎 or 𝑏 strictly improves, then an 𝑠𝑗 agent loses a partner so she must strictly improve and therefore a 𝑞𝑖 agent also 

has to improve. Hence, we obtained that there is a 𝑞𝑖 agent strictly improving in 𝑀 ′. To see that all of them must strictly improve, 
observe that for 𝑞𝑖 to improve, she cannot keep 𝑝𝑖−1 (otherwise she can only exchange her best partner to a worse one). Hence, 𝑝𝑖−1
improves and drops 𝑞𝑖−1, so 𝑞𝑖−1 improves. Iterating the argument we get that all agents in 𝑄 strictly improve and no agents in 𝑃
can remain matched to agents in 𝑄.

Now, for 𝑞𝑖 to improve, she must get matched to two 𝑠𝑗 agents, since it had two partners in 𝑀 . Also, for an 𝑠𝑗 agent to improve, 
she cannot keep 𝑧𝑗 . However, only 2𝑛 𝑧𝑗 agents can improve in 𝑀 ′, as 𝑏 has capacity 2𝑛. Hence, there must be at most 2𝑛 agents 𝑠𝑗 , 
such that their corresponding sets in  cover each element at least twice. This is only possible, if the rest of the sets in  form an 
exact 3-cover, as desired. □

6.3. Finding maximum size Pareto-optimal solutions

While finding a maximum size Pareto-optimal solution is NP-hard in general if the preferences are lexicographic, the problem 
becomes tractable with RL-preferences, even in the fixtures case.

We present an algorithm that always finds a maximum size matching that is Pareto-optimal (and hence also weakly Pareto-
optimal) with RL-preferences in the stable fixtures problem. Let 𝑤𝑜𝑟𝑠𝑡𝐸(𝑣) denote the edge 𝑒 that is worst for 𝑣 among the adjacent 
edges in 𝐸. Informally, the algorithm does the following. We go through each agent, and while the deletion of her worst adjacent 
edge does not decrease the size of the maximum size matching, we delete it. Then, after we processed each agent, we add the 
edges that are worst for some agent among the remaining edges to 𝑀 . Then, we also delete these edges from the graph, decrease 
the capacities by the number of adjacent edges added in 𝑀 for each agent and iterate this for the remaining graph and the new 
capacities until 𝑀 becomes a maximum size matching (of the whole graph).

Algorithm 4 Maximum size Pareto-optimal matching with RL-preferences.
Let 𝑀 ∶= ∅
𝑥 ∶= |𝑀| = 0
𝑘 ∶= maximum size of a matching in 𝐺
while |𝑀| < 𝑘 do

for 𝑖 = 1, … , 𝑛 do

𝑙 = 𝑑𝑒𝑔𝐸 (𝑢𝑖)
𝑢𝑗 = 𝑙-th choice of 𝑢𝑖
while 𝑙 > 0 and there is a matching of size 𝑘 − 𝑥 in the graph (𝑉 , 𝐸 ⧵ {𝑢𝑖𝑢𝑗}) do

𝑢𝑗 = 𝑙-th choice of 𝑢𝑖
𝐸 ∶=𝐸 ⧵ {𝑢𝑖𝑢𝑗}
𝑙 = 𝑙 − 1

end while

end for

𝐸𝑤 ∶= {𝑒 ∣ 𝑒 =𝑤𝑜𝑟𝑠𝑡𝐸 (𝑣) for some 𝑣 ∈ 𝑉 }
𝑀 ∶=𝑀 ∪𝐸𝑤
𝑥 = |𝑀|
𝑘 = 𝑘 − 𝑥
Decrease the capacities of each vertex by the number of adjacent edges added
𝐸 ∶=𝐸 ⧵𝐸𝑤

end while

Theorem 6.6. Algorithm 4 finds a maximum size matching that is Pareto optimal (with respect to RL-preferences) in polynomial time in the 
stable fixtures problem.

Proof. We start by showing that 𝑀 is feasible, that is, no capacity is violated. To see this, observe that if an edge 𝑒 is added to 𝑀 in 
some iteration, then it must hold that 𝑒 is included in all maximum size matchings of the remaining edges (otherwise we would have 
deleted it). In particular, when we add all edges from {𝑒 ∣ 𝑒 =𝑤𝑜𝑟𝑠𝑡𝐸 (𝑣) for some 𝑣 ∈ 𝑉 }, then each of them must be included in all 
maximum size matchings in the current graph (which have capacities decreased by the number of adjacent edges from the previous 
iterations), hence they form a feasible matching.

𝑀 is clearly maximum size, as we never delete edges that make the size of the maximum size matching smaller.
We prove the Pareto-optimality of the solution by induction on the number of iterations of the outer While loop. Suppose the 

algorithm terminates in one iteration.
Suppose there is a matching 𝑀 ′ that Pareto-dominates 𝑀 . Then, each agent has as many adjacent edges in 𝑀 ′ as in 𝑀 . As 𝑀 is 

maximum size we get that each agent has the same number of adjacent edges in 𝑀 (so |𝑀| = |𝑀 ′| too). 𝑀 ′ cannot contain deleted 
edges, because otherwise some agent would receive a worse partner in 𝑀 ′, than the worst one she receives in 𝑀 , a contradiction. 
236

If the worst edge in 𝑀 ′ and 𝑀 is the same for each agent, then 𝑀 ′ =𝑀 , because the algorithm ended in one iteration with a 
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maximum size matching, contradiction. Otherwise, let 𝑢𝑖 be an agent with smallest index, whose worst partner is better in 𝑀 ′. Then, 
when the algorithm was processing 𝑢𝑖, it would have deleted the worst adjacent edge to 𝑢𝑖, as there would still have been a maximum 
size matching 𝑀 ′, a contradiction again.

Now suppose the number of iterations is 𝑖 > 1. A similar argument shows, that if 𝐹1 ⊂ 𝐸 is the set of edges that we add in the 
first iteration to 𝑀 , then 𝐹1 ⊂𝑀 ′. Also, 𝑀 ′ cannot contain other edges from the ones that were deleted in the first iteration. Hence, 
𝑀 ′ restricted to the remaining edges still dominates 𝑀 restricted to the remaining edges (with the decreased capacities after the 
first iteration). But, from our inductive assumption, we get a contradiction, as the matching 𝑀 ⧵ 𝐹1 is exactly the one which the 
algorithm would have found if we had run it for the graph where we deleted all edges from the first iteration plus the ones in 𝐹1 and 
decreased the capacities. □

6.4. Relaxed strong core solutions

Just like with lexicographic preferences, there is always a fractional matching in the strong core of the fractional matchings.

Theorem 6.7. If 𝑓𝑀 is a stable fractional matching, then 𝑓𝑀 is in the strong fractional core for RL-preferences.

Proof. Let 𝑓𝑀 be a fractional stable matching. Suppose that there is a weakly blocking coalition  to 𝑓𝑀 . Let 𝑓𝑀


denote the 
fractional matching of the agents contained in  , that each of them weakly prefers, and at least one strictly prefers to 𝑓𝑀 .

It must hold that there is an edge 𝑢𝑣 such that 𝑓𝑀

(𝑢𝑣) > 𝑓𝑀 (𝑢𝑣), as otherwise no one could strictly improve. If 𝑢 was saturated in 

𝑓𝑀 , then she also must be in 𝑓𝑀


. Therefore, there is a vertex 𝑣′, such that 0 ≤ 𝑓𝑀


(𝑢𝑣′) < 𝑓𝑀 (𝑢𝑣′). Take the one among such vertices 
that is the worst for 𝑢. Then, 𝑣 >𝑢 𝑣′, as otherwise if 𝑣 <𝑢 𝑣′ for each 𝑣′′ such that 𝑣′′ <𝑢 𝑣, 𝑓𝑀 (𝑢𝑣′′) ≥ 𝑓𝑀 (𝑢𝑣′′) and 𝑓𝑀


(𝑢𝑣) > 𝑓𝑀 (𝑢𝑣)

meaning that 𝑢 strictly RL-prefers 𝑓𝑀 to 𝑓𝑀


, contradiction.

Similar argument shows that if 𝑣 was saturated in 𝑓𝑀 , then there is a vertex 𝑢′ with 𝑢′ <𝑣 𝑢, such that 0 ≤ 𝑓𝑀


(𝑢′𝑣) < 𝑓𝑀 (𝑢′𝑣).
Therefore, 𝑢𝑣 is a blocking edge to 𝑀 , contradiction. □

Since we can always find a half-integral stable matching in any stable fixtures problem in polynomial time (Biró and Fleiner, 
2010; Dean and Munshi, 2010) with an extension of Tan’s algorithm (Tan, 1991), so we get the following result.

Theorem 6.8. The strong fractional core is always nonempty with RL-preferences, even for the stable fixtures problem. Also, a half-integer 
strong core solution can be found in polynomial time.

We can also find near feasible solutions. First, observe that in a stable fixtures problem, any stable half-integral matching satisfies 
that there is at most two fractional edges adjacent to any vertex 𝑣 and these fractional edges form edge disjoint cycles. To see this, 
observe that a vertex 𝑣 can only dominate one fractional edge, because among any two adjacent fractional edges, one is worse than 
the other and cannot be dominated. Furthermore, it can only dominate a half-integral edge, if there is another adjacent half-integral 
edge, so 𝑣 is saturated. By rounding the solution up/down alternatively on each cycle, and then adjusting the capacities, we get the 
following theorem.

Theorem 6.9. For each stable fixtures problem 𝐺 = (𝑉 , 𝐸) with capacities 𝑘(𝑣) ∈ℤ for each 𝑣 ∈ 𝑉 , there exists capacities 𝑘′(𝑣), such that 
|𝑘(𝑣) − 𝑘′(𝑣)| ≤ 1 for all 𝑣 ∈ 𝑉 , 

∑
𝑣∈𝑉 𝑘(𝑣) − 1 ≤

∑
𝑣∈𝑉 𝑘

′(𝑣) ≤
∑
𝑣∈𝑉 𝑘(𝑣) + 1, and for the capacities 𝑘′(𝑣) there exists a stable matching 

and those capacities and the stable matching can be found in polynomial time.

As a corollary we get the following result.

Theorem 6.10. For any stable fixtures problem with RL-preferences, there always exists a near feasible strong core solution, where every 
capacity is modified by at most 1, and the aggregate capacity is also modified by at most 1 and it can be found in polynomial time.

Final notes

We studied weak and strong core and Pareto-optimal solutions for multiple partners matching problems under lexicographic 
preferences. An intriguing open question is whether the weak core is always non-empty for the stable many-to-many matching 
problem, and what is the computational complexity of finding such a solution.

We worked with strict preferences in this paper, but some of our tractability results might be possible to get extended for 
weak preferences. Finally, one could consider also to extend our efficient algorithms for finding certain solutions for more general 
preference domains, such as additive and responsive preferences.
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