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Abstract
It is shown that a lsc function is convex if and only if the minimal set of any linear 
perturbation of the function is convex. That fact also yields that the convexity of a 
function is equivalent to the quasiconvexity of its all linear perturbations.

Keywords  Minimal set · Linear perturbation · Convexity of functions

Mathematics Subject Classification  26B25 · 46N10

1  Introduction

The examination of convex functions through their level sets is arrestive thing in 
itself. But it has some relevance in theory of concave games, as well. In 1986, Joó 
in an article (Joó 1986) argued the necessity of concavity of the response funtions at 
their relevant variable, in the Nikaido-Isoda theorem (Theorem 3.1 in Nikaidô and 
Isoda 1955). Certainly Joó cannot mean the necessity in the direct sense since the 
concavity can be obviously replaced by quasiconcavity in the previously mentioned 
theorem. Instead, he meant the necessity in a “perturbative” sense, i.e., he supposed 
the existence of the equilibrium for all additive perturbations of the response func-
tions taken by concave functions, and hence concluded that the original response 
functions are concave in the relavant variable. To achieve his result, Joó used the 
following: a continuous function f ∶ [a, b] → ℝ is concave if and only if the set of 
maximum points of f + c ⋅ id form a closed interval for any c ∈ ℝ (Lemma 1 in Joó 
(1986)). But the author left it unproven. Recently Forgó and me used this lemma 
and also proved it in Forgó and Kánnai (2020). However, the idea of the proof was 
typically one-dimensional, while the relevance of convexity/concavity appears prin-
cipally for multivariate functions. Hereinafter we prove the convex analogue of Joó’s 
lemma for multivariate lower semicontinuous functions. It makes possible also to 
characterize the convexity by the quasiconvexity of all linear perturbations, and to 
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clarify the mathematical nature of the necessity in Joó’s result. The equivalence of 
points 1. and 2. of the characterization (Corollary 2 below) also appears in Proposi-
tion 2.1. of Aussel et al. (1994).

2 � The result

Theorem 1  Let (X, ⟨⋅ ∣ ⋅⟩) be a Euclidean space, K ⊆ X be a nonempty convex com-
pact subset, and f ∶ K → ℝ be a lower semicontinuous function such that the mini-
mal set (in other words, argmin set)

of the perturbed function f + ⟨c ∣ ⋅⟩, is convex for all c ∈ X. Then f is a convex 
function.

Proof  Lower semicontinuity obviously implies that f is bounded from below on the 
compact set K. Denote by

the strict epigraph of f. By elementary calculations we obtain that the convex hull 
of epiof  coincides with the strict epigraph of a suitable convex function f∗ ∶ K → ℝ 
bounded from below 

(
f ≥ f∗

)
:

Let K0 be the relative interior of K. We can assume (without loss of generality) that 
0X ∈ K0. We can also assume (otherwise restrict the Euclidean space X to the lin-
ear hull of K) that K0 = int K. Let x0 ∈ K0 be arbitrary. On account of the weak 
separation form of the Hahn-Banach theorem, we get a nonzero element (y, r) of 
the Euclidean space X ×ℝ which separates the convex set epiof∗ from the point (
x0, f∗

(
x0
))
, namely

Since � can be arbitrarily large in the term of the left-hand side, the number r can-
not be negative. If r were 0, then the linear functional ⟨y ∣ ⋅⟩ would separate the set K 
from the point x0 . But it is impossible because x0 is an interior point of K. So r > 0. 
Divided by r the latest inequality, and by choosing c ∶= −

y

r
, we obtain that

hence immediately we have that

�
x ∈ K ∶ f (x) + ⟨c ∣ x⟩ = min

y∈K
(f (y) + ⟨c ∣ y⟩)

�

epiof ∶= {(x, 𝛼) ∶ f (x) < 𝛼} ⊆ X ×ℝ

conv ( epiof ) = epiof∗.

inf
(x,�)∈ epiof∗

(⟨y ∣ x⟩ + r�) ≥ ⟨y ∣ x0⟩ + rf∗
�
x0
�
.

inf
(x,�)∈ epiof∗

(⟨−c ∣ x⟩ + �) ≥ ⟨−c ∣ x0⟩ + f∗
�
x0
�
,
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for every (x, �) ∈ epiof∗, whence we easily obtain that

for every x ∈ K , consequently by f (x) ≥ f∗(x),

According to the premise, the minimal set

is convex, on the other hand, by lower semicontinuity of f,   it is also non-
empty and compact. The set M is also the minimal set of the correspondence 
x ↦ f (x) − ⟨c ∣ x − x0⟩ − f∗

�
x0
�
. In consequence of the latest inequality, this term is 

nonnegative on the set K, hence its minimum (taken on the set M) is also nonnega-
tive. Therefore this term is positive out of M. Now suppose, by contradiction, that 
x0 ∉ M. Then on account of the strict separation form of the Hahn-Banach theorem, 
we get a vector d ∈ X of unit length, such that

Furthermore, by M being compact and ⟨d ∣ ⋅⟩ being continuous, there is a positive 
number � such that the relation

remains valid on the set

(where the symbol Bo denotes open balls and neighborhoods). Since the term 
f (x) − ⟨c ∣ x − x0⟩ − f∗

�
x0
�
 is lower semicontinuous and positive at the points of the 

compact set K ⧵ Bo(M, �), it takes its positive minimum on this set. That is, there 
exists a positive number A such that

for every x ∈ K⧵Bo(M, �). Denote by h the diameter of K. If z ∈ X with ‖z − c‖ ≤
A

2 h
, 

then

� ≥ ⟨c ∣ x − x0⟩ + f∗
�
x0
�

f∗(x) ≥ ⟨c ∣ x − x0⟩ + f∗
�
x0
�

f (x) ≥ ⟨c ∣ x − x0⟩ + f∗
�
x0
�
.

M ∶=

�
x ∈ K ∶ f (x) − ⟨c ∣ x⟩ = min

y∈K
(f (y) − ⟨c ∣ y⟩)

�

max
x∈M

⟨d ∣ x⟩ < ⟨d ∣ x0⟩.

⟨d ∣ x⟩ < ⟨d ∣ x0⟩

K ∩ B
o(M, �) = K ∩

⋃

x∈M

B
o(x, �)

f (x) − ⟨c ∣ x − x0⟩ − f∗
�
x0
�
≥ A

f (x) − ⟨z ∣ x − x0⟩ − f∗
�
x0
�

≥ f (x) − ⟨c ∣ x − x0⟩ − f∗
�
x0
�
− ‖z − c‖��x − x0

�� ≥ A −
A

2h
h =

A

2
> 0
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for every x ∈ K⧵Bo(M, �). Take 0 < t ≤
A

2 h
, then ‖t ⋅ d‖ = t ⋅ ‖d‖ = t ≤

A

2 h
, hence by 

the latter we obtain that

for every x ∈ K⧵Bo(M, �). At the same time, for every x ∈ K ∩ B
o(M, �) by 

⟨d ∣ x⟩ < ⟨d ∣ x0⟩ we have ⟨d ∣ x − x0⟩ < 0, so

because the term f (x) − ⟨c ∣ x − x0⟩ − f∗
�
x0
�
 is nonnegative on the whole K. Thus, 

overall, the term f (x) − ⟨c + td ∣ x − x0⟩ − f∗
�
x0
�
 is positive on the whole K. This 

term being lower semicontinuous in x,  takes its positive minimum on the compact 
set K. That is, there is a suitable constant B > 0 such that

for every x ∈ K. Therefore the halfspace consisting of the vectors (x, �) satisfying 
the inequality

contains epiof  and its convex hull epiof∗ as well. Hence we easily obtain that

for every x ∈ K, in particular f∗
(
x0
)
≥ f∗

(
x0
)
+ B, which is a contradiction. Thus, 

x0 ∈ M. Hence the term f (x) − ⟨c ∣ x − x0⟩ defined on K, takes its minimum at x0 , 
namely with value f

(
x0
)
 ; what means that the value of the latter term is at least 

f
(
x0
)
 for every x ∈ K, that is,

whenever x ∈ K . It just means that the term ⟨c ∣ x − x0⟩ + f
�
x0
�
 defines an affine 

support to the function f at the point x0. Since it is true for every x0 ∈ int K, hence 
the upper envelope f̂  of all these affine support functions is a lower semicontinuous 
convex function such that f̂ ≤ f , moreover f̂  coincides with f in the interior of K. 
Fix a point x∗ ∈ int K. By restricting the functions f and f̂  to the line segments with 
endpoint x∗, and by applying the facts that f is lower semicontinuous, f̂  is convex 
lower semicontinuous, f̂ ≤ f , and f̂  coincides with f in the interior of K, we easily 
obtain that f̂  coincides with f on the whole K. Consequently f is a convex function. 	
� ◻

Recall that a function f ∶ X ↣ ℝ defined on a convex set, is quasiconvex if the 
level set (f ≤ �) is convex for every � ∈ ℝ.

f (x) − ⟨c + td ∣ x − x0⟩ − f∗
�
x0
�
> 0

f (x) − ⟨c + td ∣ x − x0⟩ − f∗
�
x0
�
= f (x) − ⟨c ∣ x − x0⟩ − f∗

�
x0
�
− t⟨d ∣ x − x0⟩

> f (x) − ⟨c ∣ x − x0⟩ − f∗
�
x0
�
≥ 0,

f (x) − ⟨c + td ∣ x − x0⟩ − f∗
�
x0
�
≥ B

� ≥ ⟨c + td ∣ x − x0⟩ + f∗
�
x0
�
+ B,

f∗(x) ≥ ⟨c + td ∣ x − x0⟩ + f∗
�
x0
�
+ B

f (x) ≥ ⟨c ∣ x − x0⟩ + f
�
x0
�
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Corollary 2  Let X be a Euclidean space and K ⊆ X be a nonempty convex compact 
subset. For a lower semicontinuous function f ∶ K → ℝ the following three condi-
tion are equivalent: 

1.	 f is convex;
2.	 the correspondence K → ℝ , x ↦ f (x) + ⟨c ∣ x⟩ is quasiconvex for every c ∈ X;
3.	 the minimal set 

 is convex for every c ∈ X.

Proof  1→ 2: If f is convex then also the correspondences x ↦ f (x) + ⟨c ∣ x⟩ are con-
vex, hence quasiconvex.

2→ 3: If the minimum of a term f (x) + ⟨c ∣ x⟩ is � , then the minimal set coincides 
the convex level set (f (x) + ⟨c ∣ x⟩ ≤ �).

3→ 1: It follows from the previous theorem. 	�  ◻

According to Corollary 2, the partial concavity result in Joó ’s necessity theorem 
(Theorem  2 in Joó 1986) is due to the excessively strong perturbation condition. 
Namely if all additive perturbations of a continuous function f taken by concave 
functions are quasiconcave then f is concave. This pure logical fact is independent 
from game theory.
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