Biró, Péter and Csáji, Gergely Kál (2024) Strong core and Pareto-optimality in the multiple partners matching problem under lexicographic preference domains. Games and Economic Behavior, 145 . pp. 217-238. DOI https://doi.org/10.1016/j.geb.2024.03.010
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
884kB |
Official URL: https://doi.org/10.1016/j.geb.2024.03.010
Abstract
We study strong core and Pareto-optimal solutions for multiple partners matching problem under lexicographic preference domains from a computational point of view. The restriction to the two-sided case is called stable many-to-many matching problem and the general one-sided case is called stable fixtures problem. We provide an example to show that the strong core can be empty even for many-to-many problems, and that deciding the non-emptiness of the strong core is NP-hard. On the positive side, we give efficient algorithms for finding a near feasible strong core solution and for finding a fractional matching in the strong core of fractional matchings. In contrast with the NP-hardness result for the stable fixtures problem, we show that finding a maximum size matching that is Pareto-optimal can be done efficiently for many-to-many problems. Finally, we show that for reverse-lexicographic preferences the strong core is always non-empty in the many-to-many case.
Item Type: | Article |
---|---|
Subjects: | Mathematics, Econometrics |
DOI: | https://doi.org/10.1016/j.geb.2024.03.010 |
ID Code: | 9818 |
Deposited By: | MTMT SWORD |
Deposited On: | 12 Apr 2024 12:09 |
Last Modified: | 12 Apr 2024 12:09 |
Repository Staff Only: item control page