Browse by Person
Number of items: 12. Forgó, Ferenc (2010) A generalization of correlated equilibrium: A new protocol. Mathematical Social Sciences, 60 (3). pp. 186-190. DOI 10.1016/j.mathsocsci.2010.08.002 Forgó, Ferenc (2015) A note on the axiomatization of the Nash equilibrium correspondence. Mathematica Pannonica, 25 (1). pp. 147-155. Forgó, Ferenc and Temesi, József (1987) Computer aided licence selection. Engineering Costs and Production Economics , 11 (1). pp. 161-170. DOI 10.1016/0167-188X(87)90039-5 Forgó, Ferenc (2011) Generalized correlated equilibrium for two-person games in extensive form with perfect information. Central European Journal of Operations Research, 19 (2). pp. 201-213. DOI 10.1007/s10100-010-0142-y Forgó, Ferenc (2013) Gondolatok az egyensúlyról a játékelméletben. In: Matematikai közgazdaságtan: elmélet, modellezés, oktatás: Tanulmányok Zalai Ernőnek. Műszaki Könyvkiadó, Budapest, pp. 73-86. . ISBN 978 963 166 088 3 Forgó, Ferenc (2017) Korreláció, torlódási játékok, a gyáva nyúl játék (Correlation, congestion games, chicken game). Szigma, 48 (1-2). pp. 47-68. Forgó, Ferenc and Komlósi, Sándor (2015) Krekó Béla szerepe a közgazdászképzés modernizálásában. Krekó Béla (1915-1994) emlékére. Working Paper. Budapesti Corvinus Egyetem. Forgó, Ferenc (2019) Necessary conditions on the existence of pure Nash equilibrium in concave games and Cournot oligopoly games. Working Paper. Corvinus University of Budapest Faculty of Economics, Budapest. Forgó, Ferenc (2018) On symmetric bimatrix games. Working Paper. Corvinus University of Budapest Faculty of Economics, Budapest. Forgó, Ferenc (2017) On the enforcement value of soft correlated equilibrium for two-facility simple linear congestion games. Working Paper. Corvinus University of Budapest Faculty of Economics, Budapest. Forgó, Ferenc (2008) On the implementation of the L-Nash bargaining solution in two-person bargaining games. Central European Journal of Operations Research, 16 (4). pp. 359-377. DOI 10.1007/s10100-008-0064-0 Forgó, Ferenc (2016) The prisoners' dilemma, congestion games and correlation. Working Paper. Corvinus University of Budapest Faculty of Economics. |